Exemplo n.º 1
0
static LLVMTypeRef llvm_type(int type)
{
  switch (type) {
    case SCM_FOREIGN_TYPE_FLOAT:
      return LLVMFloatType();
    case SCM_FOREIGN_TYPE_DOUBLE:
      return LLVMDoubleType();
    case SCM_FOREIGN_TYPE_BOOL:
      return LLVMInt1Type();
    case SCM_FOREIGN_TYPE_UINT8:
    case SCM_FOREIGN_TYPE_INT8:
      return LLVMInt8Type();
    case SCM_FOREIGN_TYPE_UINT16:
    case SCM_FOREIGN_TYPE_INT16:
      return LLVMInt16Type();
    case SCM_FOREIGN_TYPE_UINT32:
    case SCM_FOREIGN_TYPE_INT32:
      return LLVMInt32Type();
    case SCM_FOREIGN_TYPE_UINT64:
    case SCM_FOREIGN_TYPE_INT64:
      return LLVMInt64Type();
    default:
      return LLVMVoidType();
  };
}
Exemplo n.º 2
0
/*
 * Derive from the quad's upper left scalar coordinates the coordinates for
 * all other quad pixels
 */
static void
generate_pos0(LLVMBuilderRef builder,
              LLVMValueRef x,
              LLVMValueRef y,
              LLVMValueRef *x0,
              LLVMValueRef *y0)
{
   LLVMTypeRef int_elem_type = LLVMInt32Type();
   LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
   LLVMTypeRef elem_type = LLVMFloatType();
   LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
   LLVMValueRef x_offsets[QUAD_SIZE];
   LLVMValueRef y_offsets[QUAD_SIZE];
   unsigned i;

   x = lp_build_broadcast(builder, int_vec_type, x);
   y = lp_build_broadcast(builder, int_vec_type, y);

   for(i = 0; i < QUAD_SIZE; ++i) {
      x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
      y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
   }

   x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
   y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");

   *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
   *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
}
Exemplo n.º 3
0
static LLVMValueRef
add_test(LLVMModuleRef module, const char *name, lp_func_t lp_func)
{
   LLVMTypeRef v4sf = LLVMVectorType(LLVMFloatType(), 4);
   LLVMTypeRef args[1] = { v4sf };
   LLVMValueRef func = LLVMAddFunction(module, name, LLVMFunctionType(v4sf, args, 1, 0));
   LLVMValueRef arg1 = LLVMGetParam(func, 0);
   LLVMBuilderRef builder = LLVMCreateBuilder();
   LLVMBasicBlockRef block = LLVMAppendBasicBlock(func, "entry");
   LLVMValueRef ret;
   struct lp_build_context bld;

   bld.builder = builder;
   bld.type.floating = 1;
   bld.type.width = 32;
   bld.type.length = 4;

   LLVMSetFunctionCallConv(func, LLVMCCallConv);

   LLVMPositionBuilderAtEnd(builder, block);

   ret = lp_func(&bld, arg1);

   LLVMBuildRet(builder, ret);
   LLVMDisposeBuilder(builder);
   return func;
}
Exemplo n.º 4
0
/**
 * Do the one or two-sided stencil test comparison.
 * \sa lp_build_stencil_test_single
 * \param face  an integer indicating front (+) or back (-) facing polygon.
 *              If NULL, assume front-facing.
 */
static LLVMValueRef
lp_build_stencil_test(struct lp_build_context *bld,
                      const struct pipe_stencil_state stencil[2],
                      LLVMValueRef stencilRefs[2],
                      LLVMValueRef stencilVals,
                      LLVMValueRef face)
{
   LLVMValueRef res;

   assert(stencil[0].enabled);

   if (stencil[1].enabled && face) {
      /* do two-sided test */
      struct lp_build_flow_context *flow_ctx;
      struct lp_build_if_state if_ctx;
      LLVMValueRef front_facing;
      LLVMValueRef zero = LLVMConstReal(LLVMFloatType(), 0.0);
      LLVMValueRef result = bld->undef;

      flow_ctx = lp_build_flow_create(bld->builder);
      lp_build_flow_scope_begin(flow_ctx);

      lp_build_flow_scope_declare(flow_ctx, &result);

      /* front_facing = face > 0.0 */
      front_facing = LLVMBuildFCmp(bld->builder, LLVMRealUGT, face, zero, "");

      lp_build_if(&if_ctx, flow_ctx, bld->builder, front_facing);
      {
         result = lp_build_stencil_test_single(bld, &stencil[0],
                                               stencilRefs[0], stencilVals);
      }
      lp_build_else(&if_ctx);
      {
         result = lp_build_stencil_test_single(bld, &stencil[1],
                                               stencilRefs[1], stencilVals);
      }
      lp_build_endif(&if_ctx);

      lp_build_flow_scope_end(flow_ctx);
      lp_build_flow_destroy(flow_ctx);

      res = result;
   }
   else {
      /* do single-side test */
      res = lp_build_stencil_test_single(bld, &stencil[0],
                                         stencilRefs[0], stencilVals);
   }

   return res;
}
Exemplo n.º 5
0
LLVMValueRef
lp_build_zero(struct lp_type type)
{
   if (type.length == 1) {
      if (type.floating)
         return LLVMConstReal(LLVMFloatType(), 0.0);
      else
         return LLVMConstInt(LLVMIntType(type.width), 0, 0);
   }
   else {
      LLVMTypeRef vec_type = lp_build_vec_type(type);
      return LLVMConstNull(vec_type);
   }
}
Exemplo n.º 6
0
static LLVMTypeRef
get_llvm_type(int type_specifier)
{
   switch (type_specifier) {
      case TYPE_INT:
         return LLVMInt32Type();
      case TYPE_FLOAT:
         return LLVMFloatType();
      default:
         fprintf(stderr, "Unknown type specifier: %d\n", type_specifier);
         exit(EXIT_FAILURE);
   }

   return NULL;
}
Exemplo n.º 7
0
static LLVMValueRef 
translateFloatLit(ASTNode *Node) {
  LLVMValueRef Container = LLVMBuildAlloca(Builder, LLVMFloatType(), "");
  LLVMBuildStore(Builder, LLVMConstReal(LLVMFloatType(), *((float*)Node->Value)), Container);
  return Container;
}
Exemplo n.º 8
0
/**
 * Generate the runtime callable function for the whole fragment pipeline.
 * Note that the function which we generate operates on a block of 16
 * pixels at at time.  The block contains 2x2 quads.  Each quad contains
 * 2x2 pixels.
 */
static void
generate_fragment(struct llvmpipe_context *lp,
                  struct lp_fragment_shader *shader,
                  struct lp_fragment_shader_variant *variant,
                  unsigned partial_mask)
{
   struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
   const struct lp_fragment_shader_variant_key *key = &variant->key;
   char func_name[256];
   struct lp_type fs_type;
   struct lp_type blend_type;
   LLVMTypeRef fs_elem_type;
   LLVMTypeRef fs_int_vec_type;
   LLVMTypeRef blend_vec_type;
   LLVMTypeRef arg_types[11];
   LLVMTypeRef func_type;
   LLVMValueRef context_ptr;
   LLVMValueRef x;
   LLVMValueRef y;
   LLVMValueRef a0_ptr;
   LLVMValueRef dadx_ptr;
   LLVMValueRef dady_ptr;
   LLVMValueRef color_ptr_ptr;
   LLVMValueRef depth_ptr;
   LLVMValueRef mask_input;
   LLVMValueRef counter = NULL;
   LLVMBasicBlockRef block;
   LLVMBuilderRef builder;
   struct lp_build_sampler_soa *sampler;
   struct lp_build_interp_soa_context interp;
   LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
   LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
   LLVMValueRef blend_mask;
   LLVMValueRef function;
   LLVMValueRef facing;
   unsigned num_fs;
   unsigned i;
   unsigned chan;
   unsigned cbuf;


   /* TODO: actually pick these based on the fs and color buffer
    * characteristics. */

   memset(&fs_type, 0, sizeof fs_type);
   fs_type.floating = TRUE; /* floating point values */
   fs_type.sign = TRUE;     /* values are signed */
   fs_type.norm = FALSE;    /* values are not limited to [0,1] or [-1,1] */
   fs_type.width = 32;      /* 32-bit float */
   fs_type.length = 4;      /* 4 elements per vector */
   num_fs = 4;              /* number of quads per block */

   memset(&blend_type, 0, sizeof blend_type);
   blend_type.floating = FALSE; /* values are integers */
   blend_type.sign = FALSE;     /* values are unsigned */
   blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
   blend_type.width = 8;        /* 8-bit ubyte values */
   blend_type.length = 16;      /* 16 elements per vector */

   /* 
    * Generate the function prototype. Any change here must be reflected in
    * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
    */

   fs_elem_type = lp_build_elem_type(fs_type);
   fs_int_vec_type = lp_build_int_vec_type(fs_type);

   blend_vec_type = lp_build_vec_type(blend_type);

   util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s", 
		 shader->no, variant->no, partial_mask ? "partial" : "whole");

   arg_types[0] = screen->context_ptr_type;            /* context */
   arg_types[1] = LLVMInt32Type();                     /* x */
   arg_types[2] = LLVMInt32Type();                     /* y */
   arg_types[3] = LLVMFloatType();                     /* facing */
   arg_types[4] = LLVMPointerType(fs_elem_type, 0);    /* a0 */
   arg_types[5] = LLVMPointerType(fs_elem_type, 0);    /* dadx */
   arg_types[6] = LLVMPointerType(fs_elem_type, 0);    /* dady */
   arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0);  /* color */
   arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
   arg_types[9] = LLVMInt32Type();                     /* mask_input */
   arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */

   func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);

   function = LLVMAddFunction(screen->module, func_name, func_type);
   LLVMSetFunctionCallConv(function, LLVMCCallConv);

   variant->function[partial_mask] = function;


   /* XXX: need to propagate noalias down into color param now we are
    * passing a pointer-to-pointer?
    */
   for(i = 0; i < Elements(arg_types); ++i)
      if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
         LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);

   context_ptr  = LLVMGetParam(function, 0);
   x            = LLVMGetParam(function, 1);
   y            = LLVMGetParam(function, 2);
   facing       = LLVMGetParam(function, 3);
   a0_ptr       = LLVMGetParam(function, 4);
   dadx_ptr     = LLVMGetParam(function, 5);
   dady_ptr     = LLVMGetParam(function, 6);
   color_ptr_ptr = LLVMGetParam(function, 7);
   depth_ptr    = LLVMGetParam(function, 8);
   mask_input   = LLVMGetParam(function, 9);

   lp_build_name(context_ptr, "context");
   lp_build_name(x, "x");
   lp_build_name(y, "y");
   lp_build_name(a0_ptr, "a0");
   lp_build_name(dadx_ptr, "dadx");
   lp_build_name(dady_ptr, "dady");
   lp_build_name(color_ptr_ptr, "color_ptr_ptr");
   lp_build_name(depth_ptr, "depth");
   lp_build_name(mask_input, "mask_input");

   if (key->occlusion_count) {
      counter = LLVMGetParam(function, 10);
      lp_build_name(counter, "counter");
   }

   /*
    * Function body
    */

   block = LLVMAppendBasicBlock(function, "entry");
   builder = LLVMCreateBuilder();
   LLVMPositionBuilderAtEnd(builder, block);

   /*
    * The shader input interpolation info is not explicitely baked in the
    * shader key, but everything it derives from (TGSI, and flatshade) is
    * already included in the shader key.
    */
   lp_build_interp_soa_init(&interp, 
                            lp->num_inputs,
                            lp->inputs,
                            builder, fs_type,
                            a0_ptr, dadx_ptr, dady_ptr,
                            x, y);

   /* code generated texture sampling */
   sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);

   /* loop over quads in the block */
   for(i = 0; i < num_fs; ++i) {
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
      LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
      LLVMValueRef depth_ptr_i;

      if(i != 0)
         lp_build_interp_soa_update(&interp, i);

      depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");

      generate_fs(lp, shader, key,
                  builder,
                  fs_type,
                  context_ptr,
                  i,
                  &interp,
                  sampler,
                  &fs_mask[i], /* output */
                  out_color,
                  depth_ptr_i,
                  facing,
                  partial_mask,
                  mask_input,
                  counter);

      for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
	 for(chan = 0; chan < NUM_CHANNELS; ++chan)
	    fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
   }

   sampler->destroy(sampler);

   /* Loop over color outputs / color buffers to do blending.
    */
   for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
      LLVMValueRef color_ptr;
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
      LLVMValueRef blend_in_color[NUM_CHANNELS];
      unsigned rt;

      /* 
       * Convert the fs's output color and mask to fit to the blending type. 
       */
      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
	 lp_build_conv(builder, fs_type, blend_type,
		       fs_out_color[cbuf][chan], num_fs,
		       &blend_in_color[chan], 1);
	 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
      }

      if (partial_mask || !variant->opaque) {
         lp_build_conv_mask(builder, fs_type, blend_type,
                            fs_mask, num_fs,
                            &blend_mask, 1);
      } else {
         blend_mask = lp_build_const_int_vec(blend_type, ~0);
      }

      color_ptr = LLVMBuildLoad(builder, 
				LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
				"");
      lp_build_name(color_ptr, "color_ptr%d", cbuf);

      /* which blend/colormask state to use */
      rt = key->blend.independent_blend_enable ? cbuf : 0;

      /*
       * Blending.
       */
      generate_blend(&key->blend,
                     rt,
		     builder,
		     blend_type,
		     context_ptr,
		     blend_mask,
		     blend_in_color,
		     color_ptr);
   }

#ifdef PIPE_ARCH_X86
   /* Avoid corrupting the FPU stack on 32bit OSes. */
   lp_build_intrinsic(builder, "llvm.x86.mmx.emms", LLVMVoidType(), NULL, 0);
#endif

   LLVMBuildRetVoid(builder);

   LLVMDisposeBuilder(builder);


   /* Verify the LLVM IR.  If invalid, dump and abort */
#ifdef DEBUG
   if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
      if (1)
         lp_debug_dump_value(function);
      abort();
   }
#endif

   /* Apply optimizations to LLVM IR */
   LLVMRunFunctionPassManager(screen->pass, function);

   if (gallivm_debug & GALLIVM_DEBUG_IR) {
      /* Print the LLVM IR to stderr */
      lp_debug_dump_value(function);
      debug_printf("\n");
   }

   /*
    * Translate the LLVM IR into machine code.
    */
   {
      void *f = LLVMGetPointerToGlobal(screen->engine, function);

      variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);

      if (gallivm_debug & GALLIVM_DEBUG_ASM) {
         lp_disassemble(f);
      }
      lp_func_delete_body(function);
   }
}
Exemplo n.º 9
0
Arquivo: type.c Projeto: ryvnf/zc1
/* create new float type */
struct type *type_new_float() {
	struct type *r = malloc(sizeof *r);
	r->val = TYPE_FLOAT;
	r->llvm_type = LLVMFloatType();
	return r;
}
Exemplo n.º 10
0
struct cl2llvm_val_t *llvm_type_cast(struct cl2llvm_val_t * original_val, 
	struct cl2llvmTypeWrap *totype_w_sign)
{
	struct cl2llvm_val_t *llvm_val = cl2llvm_val_create();

	int i;
	struct cl2llvmTypeWrap *elem_type;
	struct cl2llvm_val_t *cast_original_val;
	LLVMValueRef index;
	LLVMValueRef vector_addr;
	LLVMValueRef vector;
	LLVMValueRef const_elems[16];
	LLVMTypeRef fromtype = cl2llvmTypeWrapGetLlvmType(original_val->type);
	LLVMTypeRef totype = cl2llvmTypeWrapGetLlvmType(totype_w_sign);
	int fromsign = cl2llvmTypeWrapGetSign(original_val->type);
	int tosign = cl2llvmTypeWrapGetSign(totype_w_sign);

	/*By default the return value is the same as the original_val*/
	llvm_val->val = original_val->val;
	cl2llvmTypeWrapSetLlvmType(llvm_val->type, cl2llvmTypeWrapGetLlvmType(original_val->type));
	cl2llvmTypeWrapSetSign(llvm_val->type, cl2llvmTypeWrapGetSign(original_val->type));
	
	snprintf(temp_var_name, sizeof temp_var_name,
		"tmp_%d", temp_var_count++);
		
	/* Check that fromtype is not a vector, unless both types are identical. */
	if (LLVMGetTypeKind(fromtype) == LLVMVectorTypeKind)
	{
		if ((LLVMGetVectorSize(fromtype) != LLVMGetVectorSize(totype) 
			|| LLVMGetElementType(fromtype) 
			!= LLVMGetElementType(totype)) 
			|| fromsign != tosign)
		{
			if (LLVMGetTypeKind(totype) == LLVMVectorTypeKind)
				cl2llvm_yyerror("Casts between vector types are forbidden");
			cl2llvm_yyerror("A vector may not be cast to any other type.");
		}
	}

	/* If totype is a vector, create a vector whose components are equal to 
	original_val */

	if (LLVMGetTypeKind(totype) == LLVMVectorTypeKind
		&& LLVMGetTypeKind(fromtype) != LLVMVectorTypeKind)
	{
		/*Go to entry block and declare vector*/
		LLVMPositionBuilder(cl2llvm_builder, cl2llvm_current_function->entry_block,
			cl2llvm_current_function->branch_instr);
		
		snprintf(temp_var_name, sizeof temp_var_name,
			"tmp_%d", temp_var_count++);
			
		vector_addr = LLVMBuildAlloca(cl2llvm_builder, 
			totype, temp_var_name);
		LLVMPositionBuilderAtEnd(cl2llvm_builder, current_basic_block);

		/* Load vector */
		snprintf(temp_var_name, sizeof temp_var_name,
			"tmp_%d", temp_var_count++);
	
		vector = LLVMBuildLoad(cl2llvm_builder, vector_addr, temp_var_name);
		
		/* Create object to represent element type of totype */
		elem_type = cl2llvmTypeWrapCreate(LLVMGetElementType(totype), tosign);

		/* If original_val is constant create a constant vector */
		if (LLVMIsConstant(original_val->val))
		{
			cast_original_val = llvm_type_cast(original_val, elem_type);
			for (i = 0; i < LLVMGetVectorSize(totype); i++)
				const_elems[i] = cast_original_val->val;

			vector = LLVMConstVector(const_elems, 	
				LLVMGetVectorSize(totype));
			llvm_val->val = vector;

			cl2llvm_val_free(cast_original_val);
		}
		/* If original value is not constant insert elements */
		else
		{
			for (i = 0; i < LLVMGetVectorSize(totype); i++)
			{
				index = LLVMConstInt(LLVMInt32Type(), i, 0);
				cast_original_val = llvm_type_cast(original_val, elem_type);
				snprintf(temp_var_name, sizeof temp_var_name,
					"tmp_%d", temp_var_count++);
	
				vector = LLVMBuildInsertElement(cl2llvm_builder, 
					vector, cast_original_val->val, index, temp_var_name);
				cl2llvm_val_free(cast_original_val);
			}
		}
		cl2llvmTypeWrapFree(elem_type);
		llvm_val->val = vector;
	}


	if (fromtype == LLVMInt64Type())
	{
		if (totype == LLVMDoubleType())
		{
			if (fromsign)
			{
				llvm_val->val =
						LLVMBuildSIToFP(cl2llvm_builder,
						  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMFloatType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMHalfType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMInt64Type())
		{
			if (tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
			temp_var_count--;
		}
		else if (totype == LLVMInt32Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt32Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt16Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt16Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt8Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt8Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt1Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
			
	}
	else if (fromtype == LLVMInt32Type())
	{
		if (totype == LLVMDoubleType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMFloatType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMHalfType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMInt64Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			if (tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt32Type())
		{
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
			temp_var_count--;
		}
		else if (totype == LLVMInt16Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt16Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt8Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				 original_val->val, LLVMInt8Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt1Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
			
	}
	else if (fromtype == LLVMInt16Type())
	{
		if (totype == LLVMDoubleType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMFloatType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMHalfType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMInt64Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			if (tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt32Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt16Type())
		{
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
			temp_var_count--;
		}
		else if (totype == LLVMInt8Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt8Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt1Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
			
	}
	else if (fromtype == LLVMInt8Type())
	{
		if (totype == LLVMDoubleType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMFloatType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMHalfType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMInt64Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			if (tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt32Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt16Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt16Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt16Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt8Type())
		{
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
			temp_var_count--;
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt1Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
			
	}
	else if (fromtype == LLVMInt1Type())
	{
		if (totype == LLVMDoubleType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMFloatType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMHalfType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMInt64Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			if (tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt32Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt16Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt16Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt16Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt8Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt8Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt8Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt1Type())
		{
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
			temp_var_count--;
		}			
	}

	/*We now know that from type must be a floating point.*/

	/*Floating point to signed integer conversions*/
	else if (tosign && LLVMGetTypeKind(totype) == 8)
	{
		if (totype == LLVMInt64Type())
		{
			llvm_val->val = LLVMBuildFPToSI(cl2llvm_builder, 
				  original_val->val, LLVMInt64Type(), temp_var_name);
		}
		else if (totype == LLVMInt32Type())
		{
			llvm_val->val = LLVMBuildFPToSI(cl2llvm_builder, 
				  original_val->val, LLVMInt32Type(), temp_var_name);
		}
		else if (totype == LLVMInt16Type())
		{
			llvm_val->val = LLVMBuildFPToSI(cl2llvm_builder, 
				  original_val->val, LLVMInt16Type(), temp_var_name);
		}
		else if (totype == LLVMInt8Type())
		{
			llvm_val->val = LLVMBuildFPToSI(cl2llvm_builder, 
				  original_val->val, LLVMInt8Type(), temp_var_name);
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildFPToSI(cl2llvm_builder, 
				  original_val->val, LLVMInt1Type(), temp_var_name);
		}
		cl2llvmTypeWrapSetSign(llvm_val->type, 1);
	}
	/*Floating point to unsigned integer conversions*/
	else if (!tosign)
	{
		if (totype == LLVMInt64Type())
		{
			llvm_val->val = LLVMBuildFPToUI(cl2llvm_builder, 
				  original_val->val, LLVMInt64Type(), temp_var_name);
		}
		else if (totype == LLVMInt32Type())
		{
			llvm_val->val = LLVMBuildFPToUI(cl2llvm_builder, 
				  original_val->val, LLVMInt32Type(), temp_var_name);
		}
		else if (totype == LLVMInt16Type())
		{
			llvm_val->val = LLVMBuildFPToUI(cl2llvm_builder, 
				  original_val->val, LLVMInt16Type(), temp_var_name);
		}
		else if (totype == LLVMInt8Type())
		{
			llvm_val->val = LLVMBuildFPToUI(cl2llvm_builder, 
				  original_val->val, LLVMInt8Type(), temp_var_name);
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildFPToUI(cl2llvm_builder, 
				  original_val->val, LLVMInt1Type(), temp_var_name);
		}
		cl2llvmTypeWrapSetSign(llvm_val->type, 0);
	}
	else if (totype == LLVMDoubleType())
	{
		llvm_val->val = LLVMBuildFPExt(cl2llvm_builder, 
			  original_val->val, LLVMDoubleType(), temp_var_name);
		cl2llvmTypeWrapSetSign(llvm_val->type, 1);
	}
	else if (totype == LLVMFloatType())
	{
		if (fromtype == LLVMDoubleType())
		{
			llvm_val->val = LLVMBuildFPTrunc(cl2llvm_builder, 
				  original_val->val, LLVMFloatType(), temp_var_name);
		}
		else if (fromtype == LLVMHalfType())
		{
			llvm_val->val = LLVMBuildFPExt(cl2llvm_builder, 
				  original_val->val, LLVMFloatType(), temp_var_name);
		}
		cl2llvmTypeWrapSetSign(llvm_val->type, 1);
	}
	else if (totype == LLVMHalfType())
	{
		llvm_val->val = LLVMBuildFPTrunc(cl2llvm_builder, 
			  original_val->val, LLVMHalfType(), temp_var_name);
		cl2llvmTypeWrapSetSign(llvm_val->type, 1);
	}
	cl2llvmTypeWrapSetLlvmType(llvm_val->type, totype);
	cl2llvmTypeWrapSetSign(llvm_val->type, tosign);
	
	return llvm_val;
}