Exemplo n.º 1
0
/*
 * Sets the maximum number of bytes that the heap source is allowed
 * to allocate from the system.  Clamps to the appropriate maximum
 * value.
 */
static void setIdealFootprint(size_t max)
{
    HS_BOILERPLATE();

    HeapSource *hs = gHs;
    size_t maximumSize = getMaximumSize(hs);
    if (max > maximumSize) {
        LOGI_HEAP("Clamp target GC heap from %zd.%03zdMB to %u.%03uMB",
                  FRACTIONAL_MB(max),
                  FRACTIONAL_MB(maximumSize));
        max = maximumSize;
    }

    /* Convert max into a size that applies to the active heap.
     * Old heaps will count against the ideal size.
     */
    size_t overhead = getSoftFootprint(false);
    size_t activeMax;
    if (overhead < max) {
        activeMax = max - overhead;
    } else {
        activeMax = 0;
    }

    setSoftLimit(hs, activeMax);
    hs->idealSize = max;
}
Exemplo n.º 2
0
/* Try as hard as possible to allocate some memory.
 */
static void *tryMalloc(size_t size)
{
    void *ptr;

    /* Don't try too hard if there's no way the allocation is
     * going to succeed.  We have to collect SoftReferences before
     * throwing an OOME, though.
     */
    if (size >= gDvm.heapGrowthLimit) {
        ALOGW("%zd byte allocation exceeds the %zd byte maximum heap size",
             size, gDvm.heapGrowthLimit);
        ptr = NULL;
        goto collect_soft_refs;
    }

//TODO: figure out better heuristics
//    There will be a lot of churn if someone allocates a bunch of
//    big objects in a row, and we hit the frag case each time.
//    A full GC for each.
//    Maybe we grow the heap in bigger leaps
//    Maybe we skip the GC if the size is large and we did one recently
//      (number of allocations ago) (watch for thread effects)
//    DeflateTest allocs a bunch of ~128k buffers w/in 0-5 allocs of each other
//      (or, at least, there are only 0-5 objects swept each time)

    ptr = dvmHeapSourceAlloc(size);
    if (ptr != NULL) {
        return ptr;
    }

    /*
     * The allocation failed.  If the GC is running, block until it
     * completes and retry.
     */
    if (gDvm.gcHeap->gcRunning) {
        /*
         * The GC is concurrently tracing the heap.  Release the heap
         * lock, wait for the GC to complete, and retrying allocating.
         */
        dvmWaitForConcurrentGcToComplete();
        ptr = dvmHeapSourceAlloc(size);
        if (ptr != NULL) {
            return ptr;
        }
    }
    /*
     * Another failure.  Our thread was starved or there may be too
     * many live objects.  Try a foreground GC.  This will have no
     * effect if the concurrent GC is already running.
     */
    gcForMalloc(false);
    ptr = dvmHeapSourceAlloc(size);
    if (ptr != NULL) {
        return ptr;
    }

    /* Even that didn't work;  this is an exceptional state.
     * Try harder, growing the heap if necessary.
     */
    ptr = dvmHeapSourceAllocAndGrow(size);
    if (ptr != NULL) {
        size_t newHeapSize;

        newHeapSize = dvmHeapSourceGetIdealFootprint();
//TODO: may want to grow a little bit more so that the amount of free
//      space is equal to the old free space + the utilization slop for
//      the new allocation.
        LOGI_HEAP("Grow heap (frag case) to "
                "%zu.%03zuMB for %zu-byte allocation",
                FRACTIONAL_MB(newHeapSize), size);
        return ptr;
    }

    /* Most allocations should have succeeded by now, so the heap
     * is really full, really fragmented, or the requested size is
     * really big.  Do another GC, collecting SoftReferences this
     * time.  The VM spec requires that all SoftReferences have
     * been collected and cleared before throwing an OOME.
     */
//TODO: wait for the finalizers from the previous GC to finish
collect_soft_refs:
    LOGI_HEAP("Forcing collection of SoftReferences for %zu-byte allocation",
            size);
    gcForMalloc(true);
    ptr = dvmHeapSourceAllocAndGrow(size);
    if (ptr != NULL) {
        return ptr;
    }
//TODO: maybe wait for finalizers and try one last time

    LOGE_HEAP("Out of memory on a %zd-byte allocation.", size);
//TODO: tell the HeapSource to dump its state
    dvmDumpThread(dvmThreadSelf(), false);

    return NULL;
}