Exemplo n.º 1
0
GLOBAL Int UMFPACK_report_symbolic
(
    void *SymbolicHandle,
    const double Control [UMFPACK_CONTROL]
)
{
    Int n_row, n_col, nz, nchains, nfr, maxnrows, maxncols, prl,
	k, chain, frontid, frontid1, frontid2, kk, *Chain_start, *W,
	*Chain_maxrows, *Chain_maxcols, *Front_npivcol, *Front_1strow,
	*Front_leftmostdesc, *Front_parent, done, status1, status2 ;
    SymbolicType *Symbolic ;

    prl = GET_CONTROL (UMFPACK_PRL, UMFPACK_DEFAULT_PRL) ;

    if (prl <= 2)
    {
	return (UMFPACK_OK) ;
    }

    PRINTF (("Symbolic object: ")) ;

    Symbolic = (SymbolicType *) SymbolicHandle ;
    if (!UMF_valid_symbolic (Symbolic))
    {
	PRINTF (("ERROR: invalid\n")) ;
	return (UMFPACK_ERROR_invalid_Symbolic_object) ;
    }

    n_row = Symbolic->n_row ;
    n_col = Symbolic->n_col ;

    nz = Symbolic->nz ;

    nchains = Symbolic->nchains ;
    nfr = Symbolic->nfr ;
    maxnrows = Symbolic->maxnrows ;
    maxncols = Symbolic->maxncols ;

    Chain_start = Symbolic->Chain_start ;
    Chain_maxrows = Symbolic->Chain_maxrows ;
    Chain_maxcols = Symbolic->Chain_maxcols ;
    Front_npivcol = Symbolic->Front_npivcol ;
    Front_1strow = Symbolic->Front_1strow ;
    Front_leftmostdesc = Symbolic->Front_leftmostdesc ;
    Front_parent = Symbolic->Front_parent ;

    if (prl >= 4)
    {

	PRINTF (("\n    matrix to be factorized:\n")) ;
	PRINTF (("\tn_row: "ID" n_col: "ID"\n", n_row, n_col)) ;
	PRINTF (("\tnumber of entries: "ID"\n", nz)) ;
	PRINTF (("    block size used for dense matrix kernels:   "ID"\n",
	Symbolic->nb)) ;

	PRINTF (("    strategy used:                              ")) ;
	/* strategy cannot be auto */
	if (Symbolic->strategy == UMFPACK_STRATEGY_SYMMETRIC)
	{
	    PRINTF (("symmetric\n")) ;
            PRINTF (("    ordering used:                              ")) ;
            if (Symbolic->ordering == UMFPACK_ORDERING_AMD)
            {
                PRINTF (("amd on A\n")) ;
            }
            else if (Symbolic->ordering == UMFPACK_ORDERING_GIVEN)
            {
                PRINTF (("user permutation")) ;
            }
            else if (Symbolic->ordering == UMFPACK_ORDERING_USER)
            {
                PRINTF (("user function")) ;
            }
            else if (Symbolic->ordering == UMFPACK_ORDERING_METIS)
            {
                PRINTF (("metis on A")) ;
            }
	}
	else /* if (Symbolic->strategy == UMFPACK_STRATEGY_UNSYMMETRIC) */
	{
	    PRINTF (("unsymmetric\n")) ;
            PRINTF (("    ordering used:                              ")) ;
            if (Symbolic->ordering == UMFPACK_ORDERING_AMD)
            {
                PRINTF (("colamd on A\n")) ;
            }
            else if (Symbolic->ordering == UMFPACK_ORDERING_GIVEN)
            {
                PRINTF (("user permutation")) ;
            }
            else if (Symbolic->ordering == UMFPACK_ORDERING_USER)
            {
                PRINTF (("user function")) ;
            }
            else if (Symbolic->ordering == UMFPACK_ORDERING_METIS)
            {
                PRINTF (("metis on A'A")) ;
            }
	}
	PRINTF (("\n")) ;

	PRINTF (("    performn column etree postorder:            ")) ;
	if (Symbolic->fixQ)
	{
	    PRINTF (("no\n")) ;
	}
	else
	{
	    PRINTF (("yes\n")) ;
	}

	PRINTF (("    prefer diagonal pivoting (attempt P=Q):     ")) ;
	if (Symbolic->prefer_diagonal)
	{
	    PRINTF (("yes\n")) ;
	}
	else
	{
	    PRINTF (("no\n")) ;
	}

	PRINTF (("    variable-size part of Numeric object:\n")) ;
	PRINTF (("\tminimum initial size (Units): %.20g  (MBytes): %.1f\n",
	    Symbolic->dnum_mem_init_usage,
	    MBYTES (Symbolic->dnum_mem_init_usage))) ;
	PRINTF (("\testimated peak size (Units):  %.20g  (MBytes): %.1f\n",
	    Symbolic->num_mem_usage_est,
	    MBYTES (Symbolic->num_mem_usage_est))) ;
	PRINTF (("\testimated final size (Units): %.20g  (MBytes): %.1f\n",
	    Symbolic->num_mem_size_est,
	    MBYTES (Symbolic->num_mem_size_est))) ;
	PRINTF (("    symbolic factorization memory usage (Units):"
	    " %.20g  (MBytes): %.1f\n",
	    Symbolic->peak_sym_usage,
	    MBYTES (Symbolic->peak_sym_usage))) ;
	PRINTF (("    frontal matrices / supercolumns:\n")) ;
	PRINTF (("\tnumber of frontal chains: "ID"\n", nchains)) ;
	PRINTF (("\tnumber of frontal matrices: "ID"\n", nfr)) ;
	PRINTF (("\tlargest frontal matrix row dimension: "ID"\n", maxnrows)) ;
	PRINTF (("\tlargest frontal matrix column dimension: "ID"\n",maxncols));
    }

    k = 0 ;
    done = FALSE ;

    for (chain = 0 ; chain < nchains ; chain++)
    {
	frontid1 = Chain_start [chain] ;
	frontid2 = Chain_start [chain+1] - 1 ;
	PRINTF4 (("\n    Frontal chain: "ID".  Frontal matrices "ID" to "ID"\n",
	    INDEX (chain), INDEX (frontid1), INDEX (frontid2))) ;
	PRINTF4 (("\tLargest frontal matrix in Frontal chain: "ID"-by-"ID"\n",
	    Chain_maxrows [chain], Chain_maxcols [chain])) ;
	for (frontid = frontid1 ; frontid <= frontid2 ; frontid++)
	{
	    kk = Front_npivcol [frontid] ;
	    PRINTF4 (("\tFront: "ID"  pivot cols: "ID" (pivot columns "ID" to "
		ID")\n", INDEX (frontid), kk, INDEX (k), INDEX (k+kk-1))) ;
	    PRINTF4 (("\t    pivot row candidates: "ID" to "ID"\n",
		INDEX (Front_1strow [Front_leftmostdesc [frontid]]),
		INDEX (Front_1strow [frontid+1]-1))) ;
	    PRINTF4 (("\t    leftmost descendant: "ID"\n",
		INDEX (Front_leftmostdesc [frontid]))) ;
	    PRINTF4 (("\t    1st new candidate row : "ID"\n",
		INDEX (Front_1strow [frontid]))) ;
	    PRINTF4 (("\t    parent:")) ;
	    if (Front_parent [frontid] == EMPTY)
	    {
		PRINTF4 ((" (none)\n")) ;
	    }
	    else
	    {
		PRINTF4 ((" "ID"\n", INDEX (Front_parent [frontid]))) ;
	    }
	    done = (frontid == 20 && frontid < nfr-1 && prl == 4) ;
	    if (done)
	    {
		PRINTF4 (("\t...\n")) ;
		break ;
	    }
	    k += kk ;
	}
	if (Front_npivcol [nfr] != 0)
	{
	    PRINTF4 (("\tFront: "ID" placeholder for "ID" empty columns\n",
		INDEX (nfr), Front_npivcol [nfr])) ;
	}
	if (done)
	{
	    break ;
	}
    }

    W = (Int *) UMF_malloc (MAX (n_row, n_col), sizeof (Int)) ;
    if (!W)
    {
	PRINTF (("ERROR: out of memory to check Symbolic object\n\n")) ;
	return (UMFPACK_ERROR_out_of_memory) ;
    }

    PRINTF4 (("\nInitial column permutation, Q1: ")) ;
    status1 = UMF_report_perm (n_col, Symbolic->Cperm_init, W, prl, 0) ;

    PRINTF4 (("\nInitial row permutation, P1: ")) ;
    status2 = UMF_report_perm (n_row, Symbolic->Rperm_init, W, prl, 0) ;

    (void) UMF_free ((void *) W) ;

    if (status1 != UMFPACK_OK || status2 != UMFPACK_OK)
    {
	return (UMFPACK_ERROR_invalid_Symbolic_object) ;
    }

    PRINTF4 (("    Symbolic object:  ")) ;
    PRINTF (("OK\n\n")) ;
    return (UMFPACK_OK) ;
}
GLOBAL Int UMFPACK_report_numeric
(
    void *NumericHandle,
    const double Control [UMFPACK_CONTROL]
)
{
    Int prl, *W, nn, n_row, n_col, n_inner, num_fixed_size, numeric_size,
	npiv ;
    NumericType *Numeric ;

    prl = GET_CONTROL (UMFPACK_PRL, UMFPACK_DEFAULT_PRL) ;

    if (prl <= 2)
    {
	return (UMFPACK_OK) ;
    }

    PRINTF (("Numeric object:  ")) ;

    Numeric = (NumericType *) NumericHandle ;
    if (!UMF_valid_numeric (Numeric))
    {
	PRINTF (("ERROR: LU factors invalid\n\n")) ;
	return (UMFPACK_ERROR_invalid_Numeric_object) ;
    }

    n_row = Numeric->n_row ;
    n_col = Numeric->n_col ;
    nn = MAX (n_row, n_col) ;
    n_inner = MIN (n_row, n_col) ;
    npiv = Numeric->npiv ;

    DEBUG1 (("n_row "ID" n_col "ID" nn "ID" n_inner "ID" npiv "ID"\n",
	n_row, n_col, nn, n_inner, npiv)) ;

    /* size of Numeric object, except Numeric->Memory and Numeric->Upattern */
    /* see also UMF_set_stats */
    num_fixed_size =
	UNITS (NumericType, 1)		/* Numeric structure */
	+ UNITS (Entry, n_inner+1)	/* D */
	+ UNITS (Int, n_row+1)		/* Rperm */
	+ UNITS (Int, n_col+1)		/* Cperm */
	+ 6 * UNITS (Int, npiv+1)	/* Lpos, Uilen, Uip, Upos, Lilen, Lip */
	+ ((Numeric->scale != UMFPACK_SCALE_NONE) ?
		UNITS (Entry, n_row) : 0) ; /* Rs */

    DEBUG1 (("num fixed size: "ID"\n", num_fixed_size)) ;
    DEBUG1 (("Numeric->size "ID"\n", Numeric->size)) ;
    DEBUG1 (("ulen units "ID"\n", UNITS (Int, Numeric->ulen))) ;

    /* size of Numeric->Memory is Numeric->size */
    /* size of Numeric->Upattern is Numeric->ulen */
    numeric_size = num_fixed_size + Numeric->size
	+ UNITS (Int, Numeric->ulen) ;

    DEBUG1 (("numeric total size "ID"\n", numeric_size)) ;

    if (prl >= 4)
    {
	PRINTF (("\n    n_row: "ID"  n_col: "ID"\n", n_row, n_col)) ;

	PRINTF (("    relative pivot tolerance used:              %g\n",
	    Numeric->relpt)) ;
	PRINTF (("    relative symmetric pivot tolerance used:    %g\n",
	    Numeric->relpt2)) ;

	PRINTF (("    matrix scaled: ")) ;
	if (Numeric->scale == UMFPACK_SCALE_NONE)
	{
	    PRINTF (("no")) ;
	}
	else if (Numeric->scale == UMFPACK_SCALE_SUM)
	{
	    PRINTF (("yes (divided each row by sum abs value in each row)\n")) ;
	    PRINTF (("    minimum sum (abs (rows of A)):              %.5e\n",
		Numeric->rsmin)) ;
	    PRINTF (("    maximum sum (abs (rows of A)):              %.5e",
		Numeric->rsmax)) ;
	}
	else if (Numeric->scale == UMFPACK_SCALE_MAX)
	{
	    PRINTF (("yes (divided each row by max abs value in each row)\n")) ;
	    PRINTF (("    minimum max (abs (rows of A)):              %.5e\n",
		Numeric->rsmin)) ;
	    PRINTF (("    maximum max (abs (rows of A)):              %.5e",
		Numeric->rsmax)) ;
	}
	PRINTF (("\n")) ;

	PRINTF (("    initial allocation parameter used:          %g\n",
	    Numeric->alloc_init)) ;
	PRINTF (("    frontal matrix allocation parameter used:   %g\n",
	    Numeric->front_alloc_init)) ;
	PRINTF (("    final total size of Numeric object (Units): "ID"\n",
	    numeric_size)) ;
	PRINTF (("    final total size of Numeric object (MBytes): %.1f\n",
	    MBYTES (numeric_size))) ;
	PRINTF (("    peak size of variable-size part (Units):    "ID"\n",
	    Numeric->max_usage)) ;
	PRINTF (("    peak size of variable-size part (MBytes):   %.1f\n",
	    MBYTES (Numeric->max_usage))) ;
	PRINTF (("    largest actual frontal matrix size:         "ID"\n",
	    Numeric->maxfrsize)) ;
	PRINTF (("    memory defragmentations:                    "ID"\n",
	    Numeric->ngarbage)) ;
	PRINTF (("    memory reallocations:                       "ID"\n",
	    Numeric->nrealloc)) ;
	PRINTF (("    costly memory reallocations:                "ID"\n",
	    Numeric->ncostly)) ;
	PRINTF (("    entries in compressed pattern (L and U):    "ID"\n",
	    Numeric->isize)) ;
	PRINTF (("    number of nonzeros in L (excl diag):        "ID"\n",
	    Numeric->lnz)) ;
	PRINTF (("    number of entries stored in L (excl diag):  "ID"\n",
	    Numeric->nLentries)) ;
	PRINTF (("    number of nonzeros in U (excl diag):        "ID"\n",
	    Numeric->unz)) ;
	PRINTF (("    number of entries stored in U (excl diag):  "ID"\n",
	    Numeric->nUentries)) ;
	PRINTF (("    factorization floating-point operations:    %g\n",
	    Numeric->flops)) ;
	PRINTF (("    number of nonzeros on diagonal of U:        "ID"\n",
	    Numeric->nnzpiv)) ;
	PRINTF (("    min abs. value on diagonal of U:            %.5e\n",
	    Numeric->min_udiag)) ;
	PRINTF (("    max abs. value on diagonal of U:            %.5e\n",
	    Numeric->max_udiag)) ;
	PRINTF (("    reciprocal condition number estimate:       %.2e\n",
	    Numeric->rcond)) ;
    }

    W = (Int *) UMF_malloc (nn, sizeof (Int)) ;
    if (!W)
    {
	PRINTF ((" ERROR: out of memory to check Numeric object\n\n")) ;
	return (UMFPACK_ERROR_out_of_memory) ;
    }

    if (Numeric->Rs)
    {
#ifndef NRECIPROCAL
	if (Numeric->do_recip)
	{
	    PRINTF4 (("\nScale factors applied via multiplication\n")) ;
	}
	else
#endif
	{
	    PRINTF4 (("\nScale factors applied via division\n")) ;
	}
	PRINTF4 (("Scale factors, Rs: ")) ;
	(void) UMF_report_vector (n_row, Numeric->Rs, (double *) NULL,
	    prl, FALSE, TRUE) ;
    }
    else
    {
	PRINTF4 (("Scale factors, Rs: (not present)\n")) ;
    }

    PRINTF4 (("\nP: row ")) ;
    if (UMF_report_perm (n_row, Numeric->Rperm, W, prl, 0) != UMFPACK_OK)
    {
	(void) UMF_free ((void *) W) ;
	return (UMFPACK_ERROR_invalid_Numeric_object) ;
    }

    PRINTF4 (("\nQ: column ")) ;
    if (UMF_report_perm (n_col, Numeric->Cperm, W, prl, 0) != UMFPACK_OK)
    {
	(void) UMF_free ((void *) W) ;
	return (UMFPACK_ERROR_invalid_Numeric_object) ;
    }

    if (!report_L (Numeric, W, prl))
    {
	(void) UMF_free ((void *) W) ;
	PRINTF ((" ERROR: L factor invalid\n\n")) ;
	return (UMFPACK_ERROR_invalid_Numeric_object) ;
    }

    if (!report_U (Numeric, W, prl))
    {
	(void) UMF_free ((void *) W) ;
	PRINTF ((" ERROR: U factor invalid\n\n")) ;
	return (UMFPACK_ERROR_invalid_Numeric_object) ;
    }

    /* The diagonal of U is in "merged" (Entry) form, not "split" form. */
    PRINTF4 (("\ndiagonal of U: ")) ;
    (void) UMF_report_vector (n_inner, (double *) Numeric->D, (double *) NULL,
	prl, FALSE, FALSE) ;

    (void) UMF_free ((void *) W) ;

    PRINTF4 (("    Numeric object:  ")) ;
    PRINTF (("OK\n\n")) ;
    return (UMFPACK_OK) ;
}
GLOBAL void UMFPACK_report_info
(
    const double Control [UMFPACK_CONTROL],
    const double Info [UMFPACK_INFO]
)
{

    double lnz_est, unz_est, lunz_est, lnz, unz, lunz, tsym, tnum, fnum, tsolve,
	fsolve, ftot, twsym, twnum, twsolve, twtot, n2 ;
    Int n_row, n_col, n_inner, prl, is_sym, strategy ;

    /* ---------------------------------------------------------------------- */
    /* get control settings and status to determine what to print */
    /* ---------------------------------------------------------------------- */

    prl = GET_CONTROL (UMFPACK_PRL, UMFPACK_DEFAULT_PRL) ;

    if (!Info || prl < 2)
    {
	/* no output generated if Info is (double *) NULL */
	/* or if prl is less than 2 */
	return ;
    }

    /* ---------------------------------------------------------------------- */
    /* print umfpack version */
    /* ---------------------------------------------------------------------- */

    PRINTF  (("UMFPACK V%d.%d.%d (%s), Info:\n", UMFPACK_MAIN_VERSION,
	UMFPACK_SUB_VERSION, UMFPACK_SUBSUB_VERSION, UMFPACK_DATE)) ;

#ifndef NDEBUG
    PRINTF ((
"**** Debugging enabled (UMFPACK will be exceedingly slow!) *****************\n"
    )) ;
#endif

    /* ---------------------------------------------------------------------- */
    /* print run-time options */
    /* ---------------------------------------------------------------------- */

#ifdef DINT
    PRINTF (("    matrix entry defined as:          double\n")) ;
    PRINTF (("    Int (generic integer) defined as: int\n")) ;
#endif
#ifdef DLONG
    PRINTF (("    matrix entry defined as:          double\n")) ;
    PRINTF (("    Int (generic integer) defined as: SuiteSparse_long\n")) ;
#endif
#ifdef ZINT
    PRINTF (("    matrix entry defined as:          double complex\n")) ;
    PRINTF (("    Int (generic integer) defined as: int\n")) ;
#endif
#ifdef ZLONG
    PRINTF (("    matrix entry defined as:          double complex\n")) ;
    PRINTF (("    Int (generic integer) defined as: SuiteSparse_long\n")) ;
#endif

    /* ---------------------------------------------------------------------- */
    /* print compile-time options */
    /* ---------------------------------------------------------------------- */

    PRINTF (("    BLAS library used: ")) ;

#ifdef NBLAS
    PRINTF (("none.  UMFPACK will be slow.\n")) ;
#else
    PRINTF (("Fortran BLAS.  size of BLAS integer: "ID"\n",
	(Int) (sizeof (BLAS_INT)))) ;
#endif

    PRINTF (("    MATLAB:                           ")) ;
#ifdef MATLAB_MEX_FILE
    PRINTF (("yes.\n")) ;
#else
#ifdef MATHWORKS
    PRINTF (("yes.\n")) ;
#else
    PRINTF (("no.\n")) ;
#endif
#endif

    PRINTF (("    CPU timer:                        ")) ;
#ifdef SUITESPARSE_TIMER_ENABLED
    PRINTF (("POSIX C clock_getttime ( ) routine.\n")) ;
#else
    PRINTF (("none.\n")) ;
#endif

    /* ---------------------------------------------------------------------- */
    /* print n and nz */
    /* ---------------------------------------------------------------------- */

    n_row = (Int) Info [UMFPACK_NROW] ;
    n_col = (Int) Info [UMFPACK_NCOL] ;
    n_inner = MIN (n_row, n_col) ;

    PRINT_INFO ("    number of rows in matrix A:       "ID"\n", n_row) ;
    PRINT_INFO ("    number of columns in matrix A:    "ID"\n", n_col) ;
    PRINT_INFO ("    entries in matrix A:              "ID"\n",
	(Int) Info [UMFPACK_NZ]) ;
    PRINT_INFO ("    memory usage reported in:         "ID"-byte Units\n",
	(Int) Info [UMFPACK_SIZE_OF_UNIT]) ;

    PRINT_INFO ("    size of int:                      "ID" bytes\n",
	(Int) Info [UMFPACK_SIZE_OF_INT]) ;
    PRINT_INFO ("    size of SuiteSparse_long:         "ID" bytes\n",
	(Int) Info [UMFPACK_SIZE_OF_LONG]) ;
    PRINT_INFO ("    size of pointer:                  "ID" bytes\n",
	(Int) Info [UMFPACK_SIZE_OF_POINTER]) ;
    PRINT_INFO ("    size of numerical entry:          "ID" bytes\n",
	(Int) Info [UMFPACK_SIZE_OF_ENTRY]) ;

    /* ---------------------------------------------------------------------- */
    /* symbolic parameters */
    /* ---------------------------------------------------------------------- */

    strategy = Info [UMFPACK_STRATEGY_USED] ;
    if (strategy == UMFPACK_STRATEGY_SYMMETRIC)
    {
	PRINTF (("\n    strategy used:                    symmetric\n")) ;
        if (Info [UMFPACK_ORDERING_USED] == UMFPACK_ORDERING_AMD)
        {
            PRINTF (("    ordering used:                    amd on A+A'\n")) ;
        }
        else if (Info [UMFPACK_ORDERING_USED] == UMFPACK_ORDERING_GIVEN)
        {
            PRINTF (("    ordering used:                    user perm.\n")) ;
        }
        else if (Info [UMFPACK_ORDERING_USED] == UMFPACK_ORDERING_USER)
        {
            PRINTF (("    ordering used:                    user function\n")) ;
        }
        else if (Info [UMFPACK_ORDERING_USED] == UMFPACK_ORDERING_NONE)
        {
            PRINTF (("    ordering used:                    none\n")) ;
        }
        else if (Info [UMFPACK_ORDERING_USED] == UMFPACK_ORDERING_METIS)
        {
            PRINTF (("    ordering used:                    metis on A+A'\n")) ;
        }
        else
        {
            PRINTF (("    ordering used:                    not computed\n")) ;
        }
    }
    else
    {
	PRINTF (("\n    strategy used:                    unsymmetric\n")) ;
        if (Info [UMFPACK_ORDERING_USED] == UMFPACK_ORDERING_AMD)
        {
            PRINTF (("    ordering used:                    colamd on A\n")) ;
        }
        else if (Info [UMFPACK_ORDERING_USED] == UMFPACK_ORDERING_GIVEN)
        {
            PRINTF (("    ordering used:                    user perm.\n")) ;
        }
        else if (Info [UMFPACK_ORDERING_USED] == UMFPACK_ORDERING_USER)
        {
            PRINTF (("    ordering used:                    user function\n")) ;
        }
        else if (Info [UMFPACK_ORDERING_USED] == UMFPACK_ORDERING_NONE)
        {
            PRINTF (("    ordering used:                    none\n")) ;
        }
        else if (Info [UMFPACK_ORDERING_USED] == UMFPACK_ORDERING_METIS)
        {
            PRINTF (("    ordering used:                    metis on A'A\n")) ;
        }
        else
        {
            PRINTF (("    ordering used:                    not computed\n")) ;
        }
    }

    if (Info [UMFPACK_QFIXED] == 1)
    {
	PRINTF (("    modify Q during factorization:    no\n")) ;
    }
    else if (Info [UMFPACK_QFIXED] == 0)
    {
	PRINTF (("    modify Q during factorization:    yes\n")) ;
    }

    if (Info [UMFPACK_DIAG_PREFERRED] == 0)
    {
	PRINTF (("    prefer diagonal pivoting:         no\n")) ;
    }
    else if (Info [UMFPACK_DIAG_PREFERRED] == 1)
    {
	PRINTF (("    prefer diagonal pivoting:         yes\n")) ;
    }

    /* ---------------------------------------------------------------------- */
    /* singleton statistics */
    /* ---------------------------------------------------------------------- */

    PRINT_INFO ("    pivots with zero Markowitz cost:               %0.f\n",
	Info [UMFPACK_COL_SINGLETONS] + Info [UMFPACK_ROW_SINGLETONS]) ;
    PRINT_INFO ("    submatrix S after removing zero-cost pivots:\n"
		"        number of \"dense\" rows:                    %.0f\n",
	Info [UMFPACK_NDENSE_ROW]) ;
    PRINT_INFO ("        number of \"dense\" columns:                 %.0f\n",
	Info [UMFPACK_NDENSE_COL]) ;
    PRINT_INFO ("        number of empty rows:                      %.0f\n",
	Info [UMFPACK_NEMPTY_ROW]) ;
    PRINT_INFO ("        number of empty columns                    %.0f\n",
	Info [UMFPACK_NEMPTY_COL]) ;
    is_sym = Info [UMFPACK_S_SYMMETRIC] ;
    if (is_sym > 0)
    {
	PRINTF (("        submatrix S square and diagonal preserved\n")) ;
    }
    else if (is_sym == 0)
    {
	PRINTF (("        submatrix S not square or diagonal not preserved\n"));
    }

    /* ---------------------------------------------------------------------- */
    /* statistics from amd_aat */
    /* ---------------------------------------------------------------------- */

    n2 = Info [UMFPACK_N2] ;
    if (n2 >= 0)
    {
	PRINTF (("    pattern of square submatrix S:\n")) ;
    }
    PRINT_INFO ("        number rows and columns                    %.0f\n",
	n2) ;
    PRINT_INFO ("        symmetry of nonzero pattern:               %.6f\n",
	Info [UMFPACK_PATTERN_SYMMETRY]) ;
    PRINT_INFO ("        nz in S+S' (excl. diagonal):               %.0f\n",
	Info [UMFPACK_NZ_A_PLUS_AT]) ;
    PRINT_INFO ("        nz on diagonal of matrix S:                %.0f\n",
	Info [UMFPACK_NZDIAG]) ;
    if (Info [UMFPACK_NZDIAG] >= 0 && n2 > 0)
    {
	PRINTF (("        fraction of nz on diagonal:                %.6f\n",
	Info [UMFPACK_NZDIAG] / n2)) ;
    }

    /* ---------------------------------------------------------------------- */
    /* statistics from AMD */
    /* ---------------------------------------------------------------------- */

    if (strategy == UMFPACK_STRATEGY_SYMMETRIC && 
        Info [UMFPACK_ORDERING_USED] != UMFPACK_ORDERING_GIVEN)
    {
	double dmax = Info [UMFPACK_SYMMETRIC_DMAX] ;
	PRINTF (("    AMD statistics, for strict diagonal pivoting:\n")) ;
	PRINT_INFO ("        est. flops for LU factorization:           %.5e\n",
	    Info [UMFPACK_SYMMETRIC_FLOPS]) ;
	PRINT_INFO ("        est. nz in L+U (incl. diagonal):           %.0f\n",
	    Info [UMFPACK_SYMMETRIC_LUNZ]) ;
        if (dmax > 0)
        {
            PRINT_INFO
            ("        est. largest front (# entries):            %.0f\n",
	    dmax*dmax) ;
        }
	PRINT_INFO ("        est. max nz in any column of L:            %.0f\n",
	    dmax) ;
	PRINT_INFO (
	    "        number of \"dense\" rows/columns in S+S':    %.0f\n",
	    Info [UMFPACK_SYMMETRIC_NDENSE]) ;
    }

    /* ---------------------------------------------------------------------- */
    /* symbolic factorization */
    /* ---------------------------------------------------------------------- */

    tsym = Info [UMFPACK_SYMBOLIC_TIME] ;
    twsym = Info [UMFPACK_SYMBOLIC_WALLTIME] ;

    PRINT_INFO ("    symbolic factorization defragmentations:       %.0f\n",
	Info [UMFPACK_SYMBOLIC_DEFRAG]) ;
    PRINT_INFO ("    symbolic memory usage (Units):                 %.0f\n",
	Info [UMFPACK_SYMBOLIC_PEAK_MEMORY]) ;
    PRINT_INFO ("    symbolic memory usage (MBytes):                %.1f\n",
	MBYTES (Info [UMFPACK_SYMBOLIC_PEAK_MEMORY])) ;
    PRINT_INFO ("    Symbolic size (Units):                         %.0f\n",
	Info [UMFPACK_SYMBOLIC_SIZE]) ;
    PRINT_INFO ("    Symbolic size (MBytes):                        %.0f\n",
	MBYTES (Info [UMFPACK_SYMBOLIC_SIZE])) ;
    PRINT_INFO ("    symbolic factorization wallclock time(sec):    %.2f\n",
	twsym) ;

    /* ---------------------------------------------------------------------- */
    /* scaling, from numerical factorization */
    /* ---------------------------------------------------------------------- */

    if (Info [UMFPACK_WAS_SCALED] == UMFPACK_SCALE_NONE)
    {
	PRINTF (("\n    matrix scaled: no\n")) ;
    }
    else if (Info [UMFPACK_WAS_SCALED] == UMFPACK_SCALE_SUM)
    {
	PRINTF (("\n    matrix scaled: yes ")) ;
	PRINTF (("(divided each row by sum of abs values in each row)\n")) ;
	PRINTF (("    minimum sum (abs (rows of A)):              %.5e\n",
	    Info [UMFPACK_RSMIN])) ;
	PRINTF (("    maximum sum (abs (rows of A)):              %.5e\n",
	    Info [UMFPACK_RSMAX])) ;
    }
    else if (Info [UMFPACK_WAS_SCALED] == UMFPACK_SCALE_MAX)
    {
	PRINTF (("\n    matrix scaled: yes ")) ;
	PRINTF (("(divided each row by max abs value in each row)\n")) ;
	PRINTF (("    minimum max (abs (rows of A)):              %.5e\n",
	    Info [UMFPACK_RSMIN])) ;
	PRINTF (("    maximum max (abs (rows of A)):              %.5e\n",
	    Info [UMFPACK_RSMAX])) ;
    }

    /* ---------------------------------------------------------------------- */
    /* estimate/actual in symbolic/numeric factorization */
    /* ---------------------------------------------------------------------- */

    /* double relop, but ignore NaN case: */
    if (Info [UMFPACK_SYMBOLIC_DEFRAG] >= 0	/* UMFPACK_*symbolic called */
    ||  Info [UMFPACK_NUMERIC_DEFRAG] >= 0)	/* UMFPACK_numeric called */
    {
	PRINTF (("\n    symbolic/numeric factorization:      upper bound")) ;
	PRINTF (("               actual      %%\n")) ;
	PRINTF (("    variable-sized part of Numeric object:\n")) ;
    }
    print_ratio ("    initial size (Units)", " %20.0f",
	Info [UMFPACK_VARIABLE_INIT_ESTIMATE], Info [UMFPACK_VARIABLE_INIT]) ;
    print_ratio ("    peak size (Units)", " %20.0f",
	Info [UMFPACK_VARIABLE_PEAK_ESTIMATE], Info [UMFPACK_VARIABLE_PEAK]) ;
    print_ratio ("    final size (Units)", " %20.0f",
	Info [UMFPACK_VARIABLE_FINAL_ESTIMATE], Info [UMFPACK_VARIABLE_FINAL]) ;
    print_ratio ("Numeric final size (Units)", " %20.0f",
	Info [UMFPACK_NUMERIC_SIZE_ESTIMATE], Info [UMFPACK_NUMERIC_SIZE]) ;
    print_ratio ("Numeric final size (MBytes)", " %20.1f",
	MBYTES (Info [UMFPACK_NUMERIC_SIZE_ESTIMATE]),
	MBYTES (Info [UMFPACK_NUMERIC_SIZE])) ;
    print_ratio ("peak memory usage (Units)", " %20.0f",
	Info [UMFPACK_PEAK_MEMORY_ESTIMATE], Info [UMFPACK_PEAK_MEMORY]) ;
    print_ratio ("peak memory usage (MBytes)", " %20.1f",
	MBYTES (Info [UMFPACK_PEAK_MEMORY_ESTIMATE]),
	MBYTES (Info [UMFPACK_PEAK_MEMORY])) ;
    print_ratio ("numeric factorization flops", " %20.5e",
	Info [UMFPACK_FLOPS_ESTIMATE], Info [UMFPACK_FLOPS]) ;

    lnz_est = Info [UMFPACK_LNZ_ESTIMATE] ;
    unz_est = Info [UMFPACK_UNZ_ESTIMATE] ;
    if (lnz_est >= 0 && unz_est >= 0)	/* double relop, but ignore NaN case */
    {
	lunz_est = lnz_est + unz_est - n_inner ;
    }
    else
    {
	lunz_est = EMPTY ;
    }
    lnz = Info [UMFPACK_LNZ] ;
    unz = Info [UMFPACK_UNZ] ;
    if (lnz >= 0 && unz >= 0)		/* double relop, but ignore NaN case */
    {
	lunz = lnz + unz - n_inner ;
    }
    else
    {
	lunz = EMPTY ;
    }
    print_ratio ("nz in L (incl diagonal)", " %20.0f", lnz_est, lnz) ;
    print_ratio ("nz in U (incl diagonal)", " %20.0f", unz_est, unz) ;
    print_ratio ("nz in L+U (incl diagonal)", " %20.0f", lunz_est, lunz) ;

    print_ratio ("largest front (# entries)", " %20.0f",
	Info [UMFPACK_MAX_FRONT_SIZE_ESTIMATE], Info [UMFPACK_MAX_FRONT_SIZE]) ;
    print_ratio ("largest # rows in front", " %20.0f",
	Info [UMFPACK_MAX_FRONT_NROWS_ESTIMATE],
	Info [UMFPACK_MAX_FRONT_NROWS]) ;
    print_ratio ("largest # columns in front", " %20.0f",
	Info [UMFPACK_MAX_FRONT_NCOLS_ESTIMATE],
	Info [UMFPACK_MAX_FRONT_NCOLS]) ;

    /* ---------------------------------------------------------------------- */
    /* numeric factorization */
    /* ---------------------------------------------------------------------- */

    tnum = Info [UMFPACK_NUMERIC_TIME] ;
    twnum = Info [UMFPACK_NUMERIC_WALLTIME] ;
    fnum = Info [UMFPACK_FLOPS] ;

    PRINT_INFO ("\n    initial allocation ratio used:                 %0.3g\n",
	Info [UMFPACK_ALLOC_INIT_USED]) ;
    PRINT_INFO ("    # of forced updates due to frontal growth:     %.0f\n",
	Info [UMFPACK_FORCED_UPDATES]) ;
    PRINT_INFO ("    number of off-diagonal pivots:                 %.0f\n",
	Info [UMFPACK_NOFF_DIAG]) ;
    PRINT_INFO ("    nz in L (incl diagonal), if none dropped       %.0f\n",
	Info [UMFPACK_ALL_LNZ]) ;
    PRINT_INFO ("    nz in U (incl diagonal), if none dropped       %.0f\n",
	Info [UMFPACK_ALL_UNZ]) ;
    PRINT_INFO ("    number of small entries dropped                %.0f\n",
	Info [UMFPACK_NZDROPPED]) ;
    PRINT_INFO ("    nonzeros on diagonal of U:                     %.0f\n",
	Info [UMFPACK_UDIAG_NZ]) ;
    PRINT_INFO ("    min abs. value on diagonal of U:               %.2e\n",
	Info [UMFPACK_UMIN]) ;
    PRINT_INFO ("    max abs. value on diagonal of U:               %.2e\n",
	Info [UMFPACK_UMAX]) ;
    PRINT_INFO ("    estimate of reciprocal of condition number:    %.2e\n",
	Info [UMFPACK_RCOND]) ;
    PRINT_INFO ("    indices in compressed pattern:                 %.0f\n",
	Info [UMFPACK_COMPRESSED_PATTERN]) ;
    PRINT_INFO ("    numerical values stored in Numeric object:     %.0f\n",
	Info [UMFPACK_LU_ENTRIES]) ;
    PRINT_INFO ("    numeric factorization defragmentations:        %.0f\n",
	Info [UMFPACK_NUMERIC_DEFRAG]) ;
    PRINT_INFO ("    numeric factorization reallocations:           %.0f\n",
	Info [UMFPACK_NUMERIC_REALLOC]) ;
    PRINT_INFO ("    costly numeric factorization reallocations:    %.0f\n",
	Info [UMFPACK_NUMERIC_COSTLY_REALLOC]) ;
    PRINT_INFO ("    numeric factorization wallclock time (sec):    %.2f\n",
	twnum) ;

#define TMIN 0.001

    if (twnum > TMIN && fnum > 0)
    {
	PRINT_INFO (
	   "    numeric factorization mflops (wallclock):      %.2f\n",
	   1e-6 * fnum / twnum) ;
    }

    ftot = fnum ;

    twtot = EMPTY ;
    if (twsym >= TMIN && twnum >= TMIN)
    {
	twtot = twsym + twnum ;
	PRINT_INFO ("    symbolic + numeric wall clock time (sec):      %.2f\n",
	    twtot) ;
	if (ftot > 0 && twtot > TMIN)
	{
	    PRINT_INFO (
		"    symbolic + numeric mflops (wall clock):        %.2f\n",
		1e-6 * ftot / twtot) ;
	}
    }

    /* ---------------------------------------------------------------------- */
    /* solve */
    /* ---------------------------------------------------------------------- */

    tsolve = Info [UMFPACK_SOLVE_TIME] ;
    twsolve = Info [UMFPACK_SOLVE_WALLTIME] ;
    fsolve = Info [UMFPACK_SOLVE_FLOPS] ;

    PRINT_INFO ("\n    solve flops:                                   %.5e\n",
	fsolve) ;
    PRINT_INFO ("    iterative refinement steps taken:              %.0f\n",
	Info [UMFPACK_IR_TAKEN]) ;
    PRINT_INFO ("    iterative refinement steps attempted:          %.0f\n",
	Info [UMFPACK_IR_ATTEMPTED]) ;
    PRINT_INFO ("    sparse backward error omega1:                  %.2e\n",
	Info [UMFPACK_OMEGA1]) ;
    PRINT_INFO ("    sparse backward error omega2:                  %.2e\n",
	Info [UMFPACK_OMEGA2]) ;
    PRINT_INFO ("    solve wall clock time (sec):                   %.2f\n",
	twsolve) ;
    if (fsolve > 0 && twsolve > TMIN)
    {
	PRINT_INFO (
	    "    solve mflops (wall clock time):                %.2f\n",
	    1e-6 * fsolve / twsolve) ;
    }

    if (ftot >= 0 && fsolve >= 0)
    {
	ftot += fsolve ;
	PRINT_INFO (
	"\n    total symbolic + numeric + solve flops:        %.5e\n", ftot) ;
    }

    if (twsolve >= TMIN)
    {
	if (twtot >= TMIN && ftot >= 0)
	{
	    twtot += tsolve ;
	    PRINT_INFO (
		"    total symbolic+numeric+solve wall clock time:  %.2f\n",
		twtot) ;
	    if (ftot > 0 && twtot > TMIN)
	    {
		PRINT_INFO (
		"    total symbolic+numeric+solve mflops(wallclock) %.2f\n",
		1e-6 * ftot / twtot) ;
	    }
	}
    }
    PRINTF (("\n")) ;
}