Exemplo n.º 1
0
/**
 * Allocate memory: determine the smallest pool that is big enough
 * to contain an element of 'size' and get an element from that pool.
 *
 * @param size the size in bytes of the memory needed
 * @return a pointer to the allocated memory or NULL if the pool is empty
 */
void *
mem_malloc(mem_size_t size)
{
  void *ret;
  struct memp_malloc_helper *element;
  memp_t poolnr;
  mem_size_t required_size = size + LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper));

  for (poolnr = MEMP_POOL_FIRST; poolnr <= MEMP_POOL_LAST; poolnr = (memp_t)(poolnr + 1)) {
#if MEM_USE_POOLS_TRY_BIGGER_POOL
again:
#endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */
    /* is this pool big enough to hold an element of the required size
       plus a struct memp_malloc_helper that saves the pool this element came from? */
    if (required_size <= memp_pools[poolnr]->size) {
      break;
    }
  }
  if (poolnr > MEMP_POOL_LAST) {
    LWIP_ASSERT("mem_malloc(): no pool is that big!", 0);
    MEM_STATS_INC(err);
    return NULL;
  }
  element = (struct memp_malloc_helper*)memp_malloc(poolnr);
  if (element == NULL) {
    /* No need to DEBUGF or ASSERT: This error is already
       taken care of in memp.c */
#if MEM_USE_POOLS_TRY_BIGGER_POOL
    /** Try a bigger pool if this one is empty! */
    if (poolnr < MEMP_POOL_LAST) {
      poolnr++;
      goto again;
    }
#endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */
    MEM_STATS_INC(err);
    return NULL;
  }

  /* save the pool number this element came from */
  element->poolnr = poolnr;
  /* and return a pointer to the memory directly after the struct memp_malloc_helper */
  ret = (u8_t*)element + LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper));

#if MEMP_OVERFLOW_CHECK || (LWIP_STATS && MEM_STATS)
  /* truncating to u16_t is safe because struct memp_desc::size is u16_t */
  element->size = (u16_t)size;
  MEM_STATS_INC_USED(used, element->size);
#endif /* MEMP_OVERFLOW_CHECK || (LWIP_STATS && MEM_STATS) */
#if MEMP_OVERFLOW_CHECK
  /* initialize unused memory (diff between requested size and selected pool's size) */
  memset((u8_t*)ret + size, 0xcd, memp_pools[poolnr]->size - size);
#endif /* MEMP_OVERFLOW_CHECK */
  return ret;
}
Exemplo n.º 2
0
/**
 * Allocate a block of memory with a minimum of 'size' bytes.
 *
 * @param size is the minimum size of the requested block in bytes.
 * @return pointer to allocated memory or NULL if no free memory was found.
 *
 * Note that the returned value must always be aligned (as defined by MEM_ALIGNMENT).
 */
void *
mem_malloc(mem_size_t size)
{
  void* ret = mem_clib_malloc(size + MEM_LIBC_STATSHELPER_SIZE);
  if (ret == NULL) {
    MEM_STATS_INC(err);
  } else {
    LWIP_ASSERT("malloc() must return aligned memory", LWIP_MEM_ALIGN(ret) == ret);
#if LWIP_STATS && MEM_STATS
    *(mem_size_t*)ret = size;
    ret = (u8_t*)ret + MEM_LIBC_STATSHELPER_SIZE;
    MEM_STATS_INC_USED(used, size);
#endif
  }
  return ret;
}
Exemplo n.º 3
0
/**
 * Adam's mem_malloc() plus solution for bug #17922
 * Allocate a block of memory with a minimum of 'size' bytes.
 *
 * @param size is the minimum size of the requested block in bytes.
 * @return pointer to allocated memory or NULL if no free memory was found.
 *
 * Note that the returned value will always be aligned (as defined by MEM_ALIGNMENT).
 */
void *
mem_malloc(mem_size_t size)
{
  mem_size_t ptr, ptr2;
  struct mem *mem, *mem2;
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
  u8_t local_mem_free_count = 0;
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
  LWIP_MEM_ALLOC_DECL_PROTECT();

  if (size == 0) {
    return NULL;
  }

  /* Expand the size of the allocated memory region so that we can
     adjust for alignment. */
  size = LWIP_MEM_ALIGN_SIZE(size);

  if(size < MIN_SIZE_ALIGNED) {
    /* every data block must be at least MIN_SIZE_ALIGNED long */
    size = MIN_SIZE_ALIGNED;
  }

  if (size > MEM_SIZE_ALIGNED) {
    return NULL;
  }

  /* protect the heap from concurrent access */
  sys_mutex_lock(&mem_mutex);
  LWIP_MEM_ALLOC_PROTECT();
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
  /* run as long as a mem_free disturbed mem_malloc or mem_trim */
  do {
    local_mem_free_count = 0;
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */

    /* Scan through the heap searching for a free block that is big enough,
     * beginning with the lowest free block.
     */
    for (ptr = (mem_size_t)((u8_t *)lfree - ram); ptr < MEM_SIZE_ALIGNED - size;
         ptr = ((struct mem *)(void *)&ram[ptr])->next) {
      mem = (struct mem *)(void *)&ram[ptr];
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
      mem_free_count = 0;
      LWIP_MEM_ALLOC_UNPROTECT();
      /* allow mem_free or mem_trim to run */
      LWIP_MEM_ALLOC_PROTECT();
      if (mem_free_count != 0) {
        /* If mem_free or mem_trim have run, we have to restart since they
           could have altered our current struct mem. */
        local_mem_free_count = 1;
        break;
      }
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */

      if ((!mem->used) &&
          (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size) {
        /* mem is not used and at least perfect fit is possible:
         * mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */

        if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED)) {
          /* (in addition to the above, we test if another struct mem (SIZEOF_STRUCT_MEM) containing
           * at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem')
           * -> split large block, create empty remainder,
           * remainder must be large enough to contain MIN_SIZE_ALIGNED data: if
           * mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size,
           * struct mem would fit in but no data between mem2 and mem2->next
           * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
           *       region that couldn't hold data, but when mem->next gets freed,
           *       the 2 regions would be combined, resulting in more free memory
           */
          ptr2 = ptr + SIZEOF_STRUCT_MEM + size;
          /* create mem2 struct */
          mem2 = (struct mem *)(void *)&ram[ptr2];
          mem2->used = 0;
          mem2->next = mem->next;
          mem2->prev = ptr;
          /* and insert it between mem and mem->next */
          mem->next = ptr2;
          mem->used = 1;

          if (mem2->next != MEM_SIZE_ALIGNED) {
            ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2;
          }
          MEM_STATS_INC_USED(used, (size + SIZEOF_STRUCT_MEM));
        } else {
          /* (a mem2 struct does no fit into the user data space of mem and mem->next will always
           * be used at this point: if not we have 2 unused structs in a row, plug_holes should have
           * take care of this).
           * -> near fit or excact fit: do not split, no mem2 creation
           * also can't move mem->next directly behind mem, since mem->next
           * will always be used at this point!
           */
          mem->used = 1;
          MEM_STATS_INC_USED(used, mem->next - (mem_size_t)((u8_t *)mem - ram));
        }
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
mem_malloc_adjust_lfree:
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
        if (mem == lfree) {
          struct mem *cur = lfree;
          /* Find next free block after mem and update lowest free pointer */
          while (cur->used && cur != ram_end) {
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
            mem_free_count = 0;
            LWIP_MEM_ALLOC_UNPROTECT();
            /* prevent high interrupt latency... */
            LWIP_MEM_ALLOC_PROTECT();
            if (mem_free_count != 0) {
              /* If mem_free or mem_trim have run, we have to restart since they
                 could have altered our current struct mem or lfree. */
              goto mem_malloc_adjust_lfree;
            }
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
            cur = (struct mem *)(void *)&ram[cur->next];
          }
          lfree = cur;
          LWIP_ASSERT("mem_malloc: !lfree->used", ((lfree == ram_end) || (!lfree->used)));
        }
        LWIP_MEM_ALLOC_UNPROTECT();
        sys_mutex_unlock(&mem_mutex);
        LWIP_ASSERT("mem_malloc: allocated memory not above ram_end.",
         (mem_ptr_t)mem + SIZEOF_STRUCT_MEM + size <= (mem_ptr_t)ram_end);
        LWIP_ASSERT("mem_malloc: allocated memory properly aligned.",
         ((mem_ptr_t)mem + SIZEOF_STRUCT_MEM) % MEM_ALIGNMENT == 0);
        LWIP_ASSERT("mem_malloc: sanity check alignment",
          (((mem_ptr_t)mem) & (MEM_ALIGNMENT-1)) == 0);

        return (u8_t *)mem + SIZEOF_STRUCT_MEM;
      }
    }
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
    /* if we got interrupted by a mem_free, try again */
  } while(local_mem_free_count != 0);
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
  LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SERIOUS, ("mem_malloc: could not allocate %"S16_F" bytes\n", (s16_t)size));
  MEM_STATS_INC(err);
  LWIP_MEM_ALLOC_UNPROTECT();
  sys_mutex_unlock(&mem_mutex);
  return NULL;
}