Exemplo n.º 1
0
static int
sum_tab (mpfr_ptr ret, mpfr_t *tab, unsigned long n, mpfr_rnd_t rnd)
{
  mpfr_ptr *tabtmp;
  unsigned long i;
  int inexact;
  MPFR_TMP_DECL(marker);

  MPFR_TMP_MARK(marker);
  tabtmp = (mpfr_ptr *) MPFR_TMP_ALLOC(n * sizeof(mpfr_srcptr));
  for (i = 0; i < n; i++)
    tabtmp[i] = tab[i];

  inexact = mpfr_sum (ret, tabtmp, n, rnd);
  MPFR_TMP_FREE(marker);
  return inexact;
}
Exemplo n.º 2
0
int
mpfr_sub1sp (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
  mpfr_exp_t bx,cx;
  mpfr_uexp_t d;
  mpfr_prec_t p, sh, cnt;
  mp_size_t n;
  mp_limb_t *ap, *bp, *cp;
  mp_limb_t limb;
  int inexact;
  mp_limb_t bcp,bcp1; /* Cp and C'p+1 */
  mp_limb_t bbcp = (mp_limb_t) -1, bbcp1 = (mp_limb_t) -1; /* Cp+1 and C'p+2,
    gcc claims that they might be used uninitialized. We fill them with invalid
    values, which should produce a failure if so. See README.dev file. */

  MPFR_TMP_DECL(marker);

  MPFR_TMP_MARK(marker);

  MPFR_ASSERTD(MPFR_PREC(a) == MPFR_PREC(b) && MPFR_PREC(b) == MPFR_PREC(c));
  MPFR_ASSERTD(MPFR_IS_PURE_FP(b));
  MPFR_ASSERTD(MPFR_IS_PURE_FP(c));

  /* Read prec and num of limbs */
  p = MPFR_PREC (b);
  n = MPFR_PREC2LIMBS (p);

  /* Fast cmp of |b| and |c|*/
  bx = MPFR_GET_EXP (b);
  cx = MPFR_GET_EXP (c);
  if (MPFR_UNLIKELY(bx == cx))
    {
      mp_size_t k = n - 1;
      /* Check mantissa since exponent are equals */
      bp = MPFR_MANT(b);
      cp = MPFR_MANT(c);
      while (k>=0 && MPFR_UNLIKELY(bp[k] == cp[k]))
        k--;
      if (MPFR_UNLIKELY(k < 0))
        /* b == c ! */
        {
          /* Return exact number 0 */
          if (rnd_mode == MPFR_RNDD)
            MPFR_SET_NEG(a);
          else
            MPFR_SET_POS(a);
          MPFR_SET_ZERO(a);
          MPFR_RET(0);
        }
      else if (bp[k] > cp[k])
        goto BGreater;
      else
        {
          MPFR_ASSERTD(bp[k]<cp[k]);
          goto CGreater;
        }
    }
  else if (MPFR_UNLIKELY(bx < cx))
    {
      /* Swap b and c and set sign */
      mpfr_srcptr t;
      mpfr_exp_t tx;
    CGreater:
      MPFR_SET_OPPOSITE_SIGN(a,b);
      t  = b;  b  = c;  c  = t;
      tx = bx; bx = cx; cx = tx;
    }
  else
    {
      /* b > c */
    BGreater:
      MPFR_SET_SAME_SIGN(a,b);
    }

  /* Now b > c */
  MPFR_ASSERTD(bx >= cx);
  d = (mpfr_uexp_t) bx - cx;
  DEBUG (printf ("New with diff=%lu\n", (unsigned long) d));

  if (MPFR_UNLIKELY(d <= 1))
    {
      if (MPFR_LIKELY(d < 1))
        {
          /* <-- b -->
             <-- c --> : exact sub */
          ap = MPFR_MANT(a);
          mpn_sub_n (ap, MPFR_MANT(b), MPFR_MANT(c), n);
          /* Normalize */
        ExactNormalize:
          limb = ap[n-1];
          if (MPFR_LIKELY(limb))
            {
              /* First limb is not zero. */
              count_leading_zeros(cnt, limb);
              /* cnt could be == 0 <= SubD1Lose */
              if (MPFR_LIKELY(cnt))
                {
                  mpn_lshift(ap, ap, n, cnt); /* Normalize number */
                  bx -= cnt; /* Update final expo */
                }
              /* Last limb should be ok */
              MPFR_ASSERTD(!(ap[0] & MPFR_LIMB_MASK((unsigned int) (-p)
                                                    % GMP_NUMB_BITS)));
            }
          else
            {
              /* First limb is zero */
              mp_size_t k = n-1, len;
              /* Find the first limb not equal to zero.
                 FIXME:It is assume it exists (since |b| > |c| and same prec)*/
              do
                {
                  MPFR_ASSERTD( k > 0 );
                  limb = ap[--k];
                }
              while (limb == 0);
              MPFR_ASSERTD(limb != 0);
              count_leading_zeros(cnt, limb);
              k++;
              len = n - k; /* Number of last limb */
              MPFR_ASSERTD(k >= 0);
              if (MPFR_LIKELY(cnt))
                mpn_lshift(ap+len, ap, k, cnt); /* Normalize the High Limb*/
              else
                {
                  /* Must use DECR since src and dest may overlap & dest>=src*/
                  MPN_COPY_DECR(ap+len, ap, k);
                }
              MPN_ZERO(ap, len); /* Zeroing the last limbs */
              bx -= cnt + len*GMP_NUMB_BITS; /* Update Expo */
              /* Last limb should be ok */
              MPFR_ASSERTD(!(ap[len]&MPFR_LIMB_MASK((unsigned int) (-p)
                                                    % GMP_NUMB_BITS)));
            }
          /* Check expo underflow */
          if (MPFR_UNLIKELY(bx < __gmpfr_emin))
            {
              MPFR_TMP_FREE(marker);
              /* inexact=0 */
              DEBUG( printf("(D==0 Underflow)\n") );
              if (rnd_mode == MPFR_RNDN &&
                  (bx < __gmpfr_emin - 1 ||
                   (/*inexact >= 0 &&*/ mpfr_powerof2_raw (a))))
                rnd_mode = MPFR_RNDZ;
              return mpfr_underflow (a, rnd_mode, MPFR_SIGN(a));
            }
          MPFR_SET_EXP (a, bx);
          /* No rounding is necessary since the result is exact */
          MPFR_ASSERTD(ap[n-1] > ~ap[n-1]);
          MPFR_TMP_FREE(marker);
          return 0;
        }
      else /* if (d == 1) */
        {
          /* | <-- b -->
             |  <-- c --> */
          mp_limb_t c0, mask;
          mp_size_t k;
          MPFR_UNSIGNED_MINUS_MODULO(sh, p);
          /* If we lose at least one bit, compute 2*b-c (Exact)
           * else compute b-c/2 */
          bp = MPFR_MANT(b);
          cp = MPFR_MANT(c);
          k = n-1;
          limb = bp[k] - cp[k]/2;
          if (limb > MPFR_LIMB_HIGHBIT)
            {
              /* We can't lose precision: compute b-c/2 */
              /* Shift c in the allocated temporary block */
            SubD1NoLose:
              c0 = cp[0] & (MPFR_LIMB_ONE<<sh);
              cp = MPFR_TMP_LIMBS_ALLOC (n);
              mpn_rshift(cp, MPFR_MANT(c), n, 1);
              if (MPFR_LIKELY(c0 == 0))
                {
                  /* Result is exact: no need of rounding! */
                  ap = MPFR_MANT(a);
                  mpn_sub_n (ap, bp, cp, n);
                  MPFR_SET_EXP(a, bx); /* No expo overflow! */
                  /* No truncate or normalize is needed */
                  MPFR_ASSERTD(ap[n-1] > ~ap[n-1]);
                  /* No rounding is necessary since the result is exact */
                  MPFR_TMP_FREE(marker);
                  return 0;
                }
              ap = MPFR_MANT(a);
              mask = ~MPFR_LIMB_MASK(sh);
              cp[0] &= mask; /* Delete last bit of c */
              mpn_sub_n (ap, bp, cp, n);
              MPFR_SET_EXP(a, bx);                 /* No expo overflow! */
              MPFR_ASSERTD( !(ap[0] & ~mask) );    /* Check last bits */
              /* No normalize is needed */
              MPFR_ASSERTD(ap[n-1] > ~ap[n-1]);
              /* Rounding is necessary since c0 = 1*/
              /* Cp =-1 and C'p+1=0 */
              bcp = 1; bcp1 = 0;
              if (MPFR_LIKELY(rnd_mode == MPFR_RNDN))
                {
                  /* Even Rule apply: Check Ap-1 */
                  if (MPFR_LIKELY( (ap[0] & (MPFR_LIMB_ONE<<sh)) == 0) )
                    goto truncate;
                  else
                    goto sub_one_ulp;
                }
              MPFR_UPDATE_RND_MODE(rnd_mode, MPFR_IS_NEG(a));
              if (rnd_mode == MPFR_RNDZ)
                goto sub_one_ulp;
              else
                goto truncate;
            }
          else if (MPFR_LIKELY(limb < MPFR_LIMB_HIGHBIT))
            {
              /* We lose at least one bit of prec */
              /* Calcul of 2*b-c (Exact) */
              /* Shift b in the allocated temporary block */
            SubD1Lose:
              bp = MPFR_TMP_LIMBS_ALLOC (n);
              mpn_lshift (bp, MPFR_MANT(b), n, 1);
              ap = MPFR_MANT(a);
              mpn_sub_n (ap, bp, cp, n);
              bx--;
              goto ExactNormalize;
            }
          else
            {
              /* Case: limb = 100000000000 */
              /* Check while b[k] == c'[k] (C' is C shifted by 1) */
              /* If b[k]<c'[k] => We lose at least one bit*/
              /* If b[k]>c'[k] => We don't lose any bit */
              /* If k==-1 => We don't lose any bit
                 AND the result is 100000000000 0000000000 00000000000 */
              mp_limb_t carry;
              do {
                carry = cp[k]&MPFR_LIMB_ONE;
                k--;
              } while (k>=0 &&
                       bp[k]==(carry=cp[k]/2+(carry<<(GMP_NUMB_BITS-1))));
              if (MPFR_UNLIKELY(k<0))
                {
                  /*If carry then (sh==0 and Virtual c'[-1] > Virtual b[-1]) */
                  if (MPFR_UNLIKELY(carry)) /* carry = cp[0]&MPFR_LIMB_ONE */
                    {
                      /* FIXME: Can be faster? */
                      MPFR_ASSERTD(sh == 0);
                      goto SubD1Lose;
                    }
                  /* Result is a power of 2 */
                  ap = MPFR_MANT (a);
                  MPN_ZERO (ap, n);
                  ap[n-1] = MPFR_LIMB_HIGHBIT;
                  MPFR_SET_EXP (a, bx); /* No expo overflow! */
                  /* No Normalize is needed*/
                  /* No Rounding is needed */
                  MPFR_TMP_FREE (marker);
                  return 0;
                }
              /* carry = cp[k]/2+(cp[k-1]&1)<<(GMP_NUMB_BITS-1) = c'[k]*/
              else if (bp[k] > carry)
                goto SubD1NoLose;
              else
                {
                  MPFR_ASSERTD(bp[k]<carry);
                  goto SubD1Lose;
                }
            }
        }
    }
  else if (MPFR_UNLIKELY(d >= p))
    {
      ap = MPFR_MANT(a);
      MPFR_UNSIGNED_MINUS_MODULO(sh, p);
      /* We can't set A before since we use cp for rounding... */
      /* Perform rounding: check if a=b or a=b-ulp(b) */
      if (MPFR_UNLIKELY(d == p))
        {
          /* cp == -1 and c'p+1 = ? */
          bcp  = 1;
          /* We need Cp+1 later for a very improbable case. */
          bbcp = (MPFR_MANT(c)[n-1] & (MPFR_LIMB_ONE<<(GMP_NUMB_BITS-2)));
          /* We need also C'p+1 for an even more unprobable case... */
          if (MPFR_LIKELY( bbcp ))
            bcp1 = 1;
          else
            {
              cp = MPFR_MANT(c);
              if (MPFR_UNLIKELY(cp[n-1] == MPFR_LIMB_HIGHBIT))
                {
                  mp_size_t k = n-1;
                  do {
                    k--;
                  } while (k>=0 && cp[k]==0);
                  bcp1 = (k>=0);
                }
              else
                bcp1 = 1;
            }
          DEBUG( printf("(D=P) Cp=-1 Cp+1=%d C'p+1=%d \n", bbcp!=0, bcp1!=0) );
          bp = MPFR_MANT (b);

          /* Even if src and dest overlap, it is ok using MPN_COPY */
          if (MPFR_LIKELY(rnd_mode == MPFR_RNDN))
            {
              if (MPFR_UNLIKELY( bcp && bcp1==0 ))
                /* Cp=-1 and C'p+1=0: Even rule Apply! */
                /* Check Ap-1 = Bp-1 */
                if ((bp[0] & (MPFR_LIMB_ONE<<sh)) == 0)
                  {
                    MPN_COPY(ap, bp, n);
                    goto truncate;
                  }
              MPN_COPY(ap, bp, n);
              goto sub_one_ulp;
            }
          MPFR_UPDATE_RND_MODE(rnd_mode, MPFR_IS_NEG(a));
          if (rnd_mode == MPFR_RNDZ)
            {
              MPN_COPY(ap, bp, n);
              goto sub_one_ulp;
            }
          else
            {
              MPN_COPY(ap, bp, n);
              goto truncate;
            }
        }
      else
        {
          /* Cp=0, Cp+1=-1 if d==p+1, C'p+1=-1 */
          bcp = 0; bbcp = (d==p+1); bcp1 = 1;
          DEBUG( printf("(D>P) Cp=%d Cp+1=%d C'p+1=%d\n", bcp!=0,bbcp!=0,bcp1!=0) );
          /* Need to compute C'p+2 if d==p+1 and if rnd_mode=NEAREST
             (Because of a very improbable case) */
          if (MPFR_UNLIKELY(d==p+1 && rnd_mode==MPFR_RNDN))
            {
              cp = MPFR_MANT(c);
              if (MPFR_UNLIKELY(cp[n-1] == MPFR_LIMB_HIGHBIT))
                {
                  mp_size_t k = n-1;
                  do {
                    k--;
                  } while (k>=0 && cp[k]==0);
                  bbcp1 = (k>=0);
                }
              else
                bbcp1 = 1;
              DEBUG( printf("(D>P) C'p+2=%d\n", bbcp1!=0) );
            }
          /* Copy mantissa B in A */
          MPN_COPY(ap, MPFR_MANT(b), n);
          /* Round */
          if (MPFR_LIKELY(rnd_mode == MPFR_RNDN))
            goto truncate;
          MPFR_UPDATE_RND_MODE(rnd_mode, MPFR_IS_NEG(a));
          if (rnd_mode == MPFR_RNDZ)
            goto sub_one_ulp;
          else /* rnd_mode = AWAY */
            goto truncate;
        }
    }
  else
    {
      mpfr_uexp_t dm;
      mp_size_t m;
      mp_limb_t mask;

      /* General case: 2 <= d < p */
      MPFR_UNSIGNED_MINUS_MODULO(sh, p);
      cp = MPFR_TMP_LIMBS_ALLOC (n);

      /* Shift c in temporary allocated place */
      dm = d % GMP_NUMB_BITS;
      m = d / GMP_NUMB_BITS;
      if (MPFR_UNLIKELY(dm == 0))
        {
          /* dm = 0 and m > 0: Just copy */
          MPFR_ASSERTD(m!=0);
          MPN_COPY(cp, MPFR_MANT(c)+m, n-m);
          MPN_ZERO(cp+n-m, m);
        }
      else if (MPFR_LIKELY(m == 0))
        {
          /* dm >=2 and m == 0: just shift */
          MPFR_ASSERTD(dm >= 2);
          mpn_rshift(cp, MPFR_MANT(c), n, dm);
        }
      else
        {
          /* dm > 0 and m > 0: shift and zero  */
          mpn_rshift(cp, MPFR_MANT(c)+m, n-m, dm);
          MPN_ZERO(cp+n-m, m);
        }

      DEBUG( mpfr_print_mant_binary("Before", MPFR_MANT(c), p) );
      DEBUG( mpfr_print_mant_binary("B=    ", MPFR_MANT(b), p) );
      DEBUG( mpfr_print_mant_binary("After ", cp, p) );

      /* Compute bcp=Cp and bcp1=C'p+1 */
      if (MPFR_LIKELY(sh))
        {
          /* Try to compute them from C' rather than C (FIXME: Faster?) */
          bcp = (cp[0] & (MPFR_LIMB_ONE<<(sh-1))) ;
          if (MPFR_LIKELY( cp[0] & MPFR_LIMB_MASK(sh-1) ))
            bcp1 = 1;
          else
            {
              /* We can't compute C'p+1 from C'. Compute it from C */
              /* Start from bit x=p-d+sh in mantissa C
                 (+sh since we have already looked sh bits in C'!) */
              mpfr_prec_t x = p-d+sh-1;
              if (MPFR_LIKELY(x>p))
                /* We are already looked at all the bits of c, so C'p+1 = 0*/
                bcp1 = 0;
              else
                {
                  mp_limb_t *tp = MPFR_MANT(c);
                  mp_size_t kx = n-1 - (x / GMP_NUMB_BITS);
                  mpfr_prec_t sx = GMP_NUMB_BITS-1-(x%GMP_NUMB_BITS);
                  DEBUG (printf ("(First) x=%lu Kx=%ld Sx=%lu\n",
                                 (unsigned long) x, (long) kx,
                                 (unsigned long) sx));
                  /* Looks at the last bits of limb kx (if sx=0 does nothing)*/
                  if (tp[kx] & MPFR_LIMB_MASK(sx))
                    bcp1 = 1;
                  else
                    {
                      /*kx += (sx==0);*/
                      /*If sx==0, tp[kx] hasn't been checked*/
                      do {
                        kx--;
                      } while (kx>=0 && tp[kx]==0);
                      bcp1 = (kx >= 0);
                    }
                }
            }
        }
      else
        {
          /* Compute Cp and C'p+1 from C with sh=0 */
          mp_limb_t *tp = MPFR_MANT(c);
          /* Start from bit x=p-d in mantissa C */
          mpfr_prec_t  x = p-d;
          mp_size_t   kx = n-1 - (x / GMP_NUMB_BITS);
          mpfr_prec_t sx = GMP_NUMB_BITS-1-(x%GMP_NUMB_BITS);
          MPFR_ASSERTD(p >= d);
          bcp = (tp[kx] & (MPFR_LIMB_ONE<<sx));
          /* Looks at the last bits of limb kx (If sx=0, does nothing)*/
          if (tp[kx] & MPFR_LIMB_MASK(sx))
            bcp1 = 1;
          else
            {
              /*kx += (sx==0);*/ /*If sx==0, tp[kx] hasn't been checked*/
              do {
                kx--;
              } while (kx>=0 && tp[kx]==0);
              bcp1 = (kx>=0);
            }
        }
      DEBUG( printf("sh=%lu Cp=%d C'p+1=%d\n", sh, bcp!=0, bcp1!=0) );

      /* Check if we can lose a bit, and if so compute Cp+1 and C'p+2 */
      bp = MPFR_MANT(b);
      if (MPFR_UNLIKELY((bp[n-1]-cp[n-1]) <= MPFR_LIMB_HIGHBIT))
        {
          /* We can lose a bit so we precompute Cp+1 and C'p+2 */
          /* Test for trivial case: since C'p+1=0, Cp+1=0 and C'p+2 =0 */
          if (MPFR_LIKELY(bcp1 == 0))
            {
              bbcp = 0;
              bbcp1 = 0;
            }
          else /* bcp1 != 0 */
            {
              /* We can lose a bit:
                 compute Cp+1 and C'p+2 from mantissa C */
              mp_limb_t *tp = MPFR_MANT(c);
              /* Start from bit x=(p+1)-d in mantissa C */
              mpfr_prec_t x  = p+1-d;
              mp_size_t kx = n-1 - (x/GMP_NUMB_BITS);
              mpfr_prec_t sx = GMP_NUMB_BITS-1-(x%GMP_NUMB_BITS);
              MPFR_ASSERTD(p > d);
              DEBUG (printf ("(pre) x=%lu Kx=%ld Sx=%lu\n",
                             (unsigned long) x, (long) kx,
                             (unsigned long) sx));
              bbcp = (tp[kx] & (MPFR_LIMB_ONE<<sx)) ;
              /* Looks at the last bits of limb kx (If sx=0, does nothing)*/
              /* If Cp+1=0, since C'p+1!=0, C'p+2=1 ! */
              if (MPFR_LIKELY(bbcp==0 || (tp[kx]&MPFR_LIMB_MASK(sx))))
                bbcp1 = 1;
              else
                {
                  /*kx += (sx==0);*/ /*If sx==0, tp[kx] hasn't been checked*/
                  do {
                    kx--;
                  } while (kx>=0 && tp[kx]==0);
                  bbcp1 = (kx>=0);
                  DEBUG (printf ("(Pre) Scan done for %ld\n", (long) kx));
                }
            } /*End of Bcp1 != 0*/
          DEBUG( printf("(Pre) Cp+1=%d C'p+2=%d\n", bbcp!=0, bbcp1!=0) );
        } /* End of "can lose a bit" */

      /* Clean shifted C' */
      mask = ~MPFR_LIMB_MASK (sh);
      cp[0] &= mask;

      /* Subtract the mantissa c from b in a */
      ap = MPFR_MANT(a);
      mpn_sub_n (ap, bp, cp, n);
      DEBUG( mpfr_print_mant_binary("Sub=  ", ap, p) );

     /* Normalize: we lose at max one bit*/
      if (MPFR_UNLIKELY(MPFR_LIMB_MSB(ap[n-1]) == 0))
        {
          /* High bit is not set and we have to fix it! */
          /* Ap >= 010000xxx001 */
          mpn_lshift(ap, ap, n, 1);
          /* Ap >= 100000xxx010 */
          if (MPFR_UNLIKELY(bcp!=0)) /* Check if Cp = -1 */
            /* Since Cp == -1, we have to substract one more */
            {
              mpn_sub_1(ap, ap, n, MPFR_LIMB_ONE<<sh);
              MPFR_ASSERTD(MPFR_LIMB_MSB(ap[n-1]) != 0);
            }
          /* Ap >= 10000xxx001 */
          /* Final exponent -1 since we have shifted the mantissa */
          bx--;
          /* Update bcp and bcp1 */
          MPFR_ASSERTN(bbcp != (mp_limb_t) -1);
          MPFR_ASSERTN(bbcp1 != (mp_limb_t) -1);
          bcp  = bbcp;
          bcp1 = bbcp1;
          /* We dont't have anymore a valid Cp+1!
             But since Ap >= 100000xxx001, the final sub can't unnormalize!*/
        }
      MPFR_ASSERTD( !(ap[0] & ~mask) );

      /* Rounding */
      if (MPFR_LIKELY(rnd_mode == MPFR_RNDN))
        {
          if (MPFR_LIKELY(bcp==0))
            goto truncate;
          else if ((bcp1) || ((ap[0] & (MPFR_LIMB_ONE<<sh)) != 0))
            goto sub_one_ulp;
          else
            goto truncate;
        }

      /* Update rounding mode */
      MPFR_UPDATE_RND_MODE(rnd_mode, MPFR_IS_NEG(a));
      if (rnd_mode == MPFR_RNDZ && (MPFR_LIKELY(bcp || bcp1)))
        goto sub_one_ulp;
      goto truncate;
    }
  MPFR_RET_NEVER_GO_HERE ();

  /* Sub one ulp to the result */
 sub_one_ulp:
  mpn_sub_1 (ap, ap, n, MPFR_LIMB_ONE << sh);
  /* Result should be smaller than exact value: inexact=-1 */
  inexact = -1;
  /* Check normalisation */
  if (MPFR_UNLIKELY(MPFR_LIMB_MSB(ap[n-1]) == 0))
    {
      /* ap was a power of 2, and we lose a bit */
      /* Now it is 0111111111111111111[00000 */
      mpn_lshift(ap, ap, n, 1);
      bx--;
      /* And the lost bit x depends on Cp+1, and Cp */
      /* Compute Cp+1 if it isn't already compute (ie d==1) */
      /* FIXME: Is this case possible? */
      if (MPFR_UNLIKELY(d == 1))
        bbcp = 0;
      DEBUG( printf("(SubOneUlp)Cp=%d, Cp+1=%d C'p+1=%d\n", bcp!=0,bbcp!=0,bcp1!=0));
      /* Compute the last bit (Since we have shifted the mantissa)
         we need one more bit!*/
      MPFR_ASSERTN(bbcp != (mp_limb_t) -1);
      if ( (rnd_mode == MPFR_RNDZ && bcp==0)
           || (rnd_mode==MPFR_RNDN && bbcp==0)
           || (bcp && bcp1==0) ) /*Exact result*/
        {
          ap[0] |= MPFR_LIMB_ONE<<sh;
          if (rnd_mode == MPFR_RNDN)
            inexact = 1;
          DEBUG( printf("(SubOneUlp) Last bit set\n") );
        }
      /* Result could be exact if C'p+1 = 0 and rnd == Zero
         since we have had one more bit to the result */
      /* Fixme: rnd_mode == MPFR_RNDZ needed ? */
      if (bcp1==0 && rnd_mode==MPFR_RNDZ)
        {
          DEBUG( printf("(SubOneUlp) Exact result\n") );
          inexact = 0;
        }
    }

  goto end_of_sub;

 truncate:
  /* Check if the result is an exact power of 2: 100000000000
     in which cases, we could have to do sub_one_ulp due to some nasty reasons:
     If Result is a Power of 2:
      + If rnd = AWAY,
      |  If Cp=-1 and C'p+1 = 0, SubOneUlp and the result is EXACT.
         If Cp=-1 and C'p+1 =-1, SubOneUlp and the result is above.
         Otherwise truncate
      + If rnd = NEAREST,
         If Cp= 0 and Cp+1  =-1 and C'p+2=-1, SubOneUlp and the result is above
         If cp=-1 and C'p+1 = 0, SubOneUlp and the result is exact.
         Otherwise truncate.
      X bit should always be set if SubOneUlp*/
  if (MPFR_UNLIKELY(ap[n-1] == MPFR_LIMB_HIGHBIT))
    {
      mp_size_t k = n-1;
      do {
        k--;
      } while (k>=0 && ap[k]==0);
      if (MPFR_UNLIKELY(k<0))
        {
          /* It is a power of 2! */
          /* Compute Cp+1 if it isn't already compute (ie d==1) */
          /* FIXME: Is this case possible? */
          if (d == 1)
            bbcp=0;
          DEBUG( printf("(Truncate) Cp=%d, Cp+1=%d C'p+1=%d C'p+2=%d\n", \
                 bcp!=0, bbcp!=0, bcp1!=0, bbcp1!=0) );
          MPFR_ASSERTN(bbcp != (mp_limb_t) -1);
          MPFR_ASSERTN((rnd_mode != MPFR_RNDN) || (bcp != 0) || (bbcp == 0) || (bbcp1 != (mp_limb_t) -1));
          if (((rnd_mode != MPFR_RNDZ) && bcp)
              ||
              ((rnd_mode == MPFR_RNDN) && (bcp == 0) && (bbcp) && (bbcp1)))
            {
              DEBUG( printf("(Truncate) Do sub\n") );
              mpn_sub_1 (ap, ap, n, MPFR_LIMB_ONE << sh);
              mpn_lshift(ap, ap, n, 1);
              ap[0] |= MPFR_LIMB_ONE<<sh;
              bx--;
              /* FIXME: Explain why it works (or why not)... */
              inexact = (bcp1 == 0) ? 0 : (rnd_mode==MPFR_RNDN) ? -1 : 1;
              goto end_of_sub;
            }
        }
    }

  /* Calcul of Inexact flag.*/
  inexact = MPFR_LIKELY(bcp || bcp1) ? 1 : 0;

 end_of_sub:
  /* Update Expo */
  /* FIXME: Is this test really useful?
      If d==0      : Exact case. This is never called.
      if 1 < d < p : bx=MPFR_EXP(b) or MPFR_EXP(b)-1 > MPFR_EXP(c) > emin
      if d == 1    : bx=MPFR_EXP(b). If we could lose any bits, the exact
                     normalisation is called.
      if d >=  p   : bx=MPFR_EXP(b) >= MPFR_EXP(c) + p > emin
     After SubOneUlp, we could have one bit less.
      if 1 < d < p : bx >= MPFR_EXP(b)-2 >= MPFR_EXP(c) > emin
      if d == 1    : bx >= MPFR_EXP(b)-1 = MPFR_EXP(c) > emin.
      if d >=  p   : bx >= MPFR_EXP(b)-1 > emin since p>=2.
  */
  MPFR_ASSERTD( bx >= __gmpfr_emin);
  /*
    if (MPFR_UNLIKELY(bx < __gmpfr_emin))
    {
      DEBUG( printf("(Final Underflow)\n") );
      if (rnd_mode == MPFR_RNDN &&
          (bx < __gmpfr_emin - 1 ||
           (inexact >= 0 && mpfr_powerof2_raw (a))))
        rnd_mode = MPFR_RNDZ;
      MPFR_TMP_FREE(marker);
      return mpfr_underflow (a, rnd_mode, MPFR_SIGN(a));
    }
  */
  MPFR_SET_EXP (a, bx);

  MPFR_TMP_FREE(marker);
  MPFR_RET (inexact * MPFR_INT_SIGN (a));
}
Exemplo n.º 3
0
/* agm(x,y) is between x and y, so we don't need to save exponent range */
int
mpfr_agm (mpfr_ptr r, mpfr_srcptr op2, mpfr_srcptr op1, mp_rnd_t rnd_mode)
{
  int compare, inexact;
  mp_size_t s;
  mp_prec_t p, q;
  mp_limb_t *up, *vp, *tmpp;
  mpfr_t u, v, tmp;
  unsigned long n; /* number of iterations */
  unsigned long err = 0;
  MPFR_ZIV_DECL (loop);
  MPFR_TMP_DECL(marker);

  MPFR_LOG_FUNC (("op2[%#R]=%R op1[%#R]=%R rnd=%d", op2,op2,op1,op1,rnd_mode),
                 ("r[%#R]=%R inexact=%d", r, r, inexact));

  /* Deal with special values */
  if (MPFR_ARE_SINGULAR (op1, op2))
    {
      /* If a or b is NaN, the result is NaN */
      if (MPFR_IS_NAN(op1) || MPFR_IS_NAN(op2))
        {
          MPFR_SET_NAN(r);
          MPFR_RET_NAN;
        }
      /* now one of a or b is Inf or 0 */
      /* If a and b is +Inf, the result is +Inf.
         Otherwise if a or b is -Inf or 0, the result is NaN */
      else if (MPFR_IS_INF(op1) || MPFR_IS_INF(op2))
        {
          if (MPFR_IS_STRICTPOS(op1) && MPFR_IS_STRICTPOS(op2))
            {
              MPFR_SET_INF(r);
              MPFR_SET_SAME_SIGN(r, op1);
              MPFR_RET(0); /* exact */
            }
          else
            {
              MPFR_SET_NAN(r);
              MPFR_RET_NAN;
            }
        }
      else /* a and b are neither NaN nor Inf, and one is zero */
        {  /* If a or b is 0, the result is +0 since a sqrt is positive */
          MPFR_ASSERTD (MPFR_IS_ZERO (op1) || MPFR_IS_ZERO (op2));
          MPFR_SET_POS (r);
          MPFR_SET_ZERO (r);
          MPFR_RET (0); /* exact */
        }
    }
  MPFR_CLEAR_FLAGS (r);

  /* If a or b is negative (excluding -Infinity), the result is NaN */
  if (MPFR_UNLIKELY(MPFR_IS_NEG(op1) || MPFR_IS_NEG(op2)))
    {
      MPFR_SET_NAN(r);
      MPFR_RET_NAN;
    }

  /* Precision of the following calculus */
  q = MPFR_PREC(r);
  p = q + MPFR_INT_CEIL_LOG2(q) + 15;
  MPFR_ASSERTD (p >= 7); /* see algorithms.tex */
  s = (p - 1) / BITS_PER_MP_LIMB + 1;

  /* b (op2) and a (op1) are the 2 operands but we want b >= a */
  compare = mpfr_cmp (op1, op2);
  if (MPFR_UNLIKELY( compare == 0 ))
    {
      mpfr_set (r, op1, rnd_mode);
      MPFR_RET (0); /* exact */
    }
  else if (compare > 0)
    {
      mpfr_srcptr t = op1;
      op1 = op2;
      op2 = t;
    }
  /* Now b(=op2) >= a (=op1) */

  MPFR_TMP_MARK(marker);

  /* Main loop */
  MPFR_ZIV_INIT (loop, p);
  for (;;)
    {
      mp_prec_t eq;

      /* Init temporary vars */
      MPFR_TMP_INIT (up, u, p, s);
      MPFR_TMP_INIT (vp, v, p, s);
      MPFR_TMP_INIT (tmpp, tmp, p, s);

      /* Calculus of un and vn */
      mpfr_mul (u, op1, op2, GMP_RNDN); /* Faster since PREC(op) < PREC(u) */
      mpfr_sqrt (u, u, GMP_RNDN);
      mpfr_add (v, op1, op2, GMP_RNDN); /* add with !=prec is still good*/
      mpfr_div_2ui (v, v, 1, GMP_RNDN);
      n = 1;
      while (mpfr_cmp2 (u, v, &eq) != 0 && eq <= p - 2)
        {
          mpfr_add (tmp, u, v, GMP_RNDN);
          mpfr_div_2ui (tmp, tmp, 1, GMP_RNDN);
          /* See proof in algorithms.tex */
          if (4*eq > p)
            {
              mpfr_t w;
              /* tmp = U(k) */
              mpfr_init2 (w, (p + 1) / 2);
              mpfr_sub (w, v, u, GMP_RNDN);         /* e = V(k-1)-U(k-1) */
              mpfr_sqr (w, w, GMP_RNDN);            /* e = e^2 */
              mpfr_div_2ui (w, w, 4, GMP_RNDN);     /* e*= (1/2)^2*1/4  */
              mpfr_div (w, w, tmp, GMP_RNDN);       /* 1/4*e^2/U(k) */
              mpfr_sub (v, tmp, w, GMP_RNDN);
              err = MPFR_GET_EXP (tmp) - MPFR_GET_EXP (v); /* 0 or 1 */
              mpfr_clear (w);
              break;
            }
          mpfr_mul (u, u, v, GMP_RNDN);
          mpfr_sqrt (u, u, GMP_RNDN);
          mpfr_swap (v, tmp);
          n ++;
        }
      /* the error on v is bounded by (18n+51) ulps, or twice if there
         was an exponent loss in the final subtraction */
      err += MPFR_INT_CEIL_LOG2(18 * n + 51); /* 18n+51 should not overflow
                                                 since n is about log(p) */
      /* we should have n+2 <= 2^(p/4) [see algorithms.tex] */
      if (MPFR_LIKELY (MPFR_INT_CEIL_LOG2(n + 2) <= p / 4 &&
                       MPFR_CAN_ROUND (v, p - err, q, rnd_mode)))
        break; /* Stop the loop */

      /* Next iteration */
      MPFR_ZIV_NEXT (loop, p);
      s = (p - 1) / BITS_PER_MP_LIMB + 1;
    }
  MPFR_ZIV_FREE (loop);

  /* Setting of the result */
  inexact = mpfr_set (r, v, rnd_mode);

  /* Let's clean */
  MPFR_TMP_FREE(marker);

  return inexact; /* agm(u,v) can be exact for u, v rational only for u=v.
                     Proof (due to Nicolas Brisebarre): it suffices to consider
                     u=1 and v<1. Then 1/AGM(1,v) = 2F1(1/2,1/2,1;1-v^2),
                     and a theorem due to G.V. Chudnovsky states that for x a
                     non-zero algebraic number with |x|<1, then
                     2F1(1/2,1/2,1;x) and 2F1(-1/2,1/2,1;x) are algebraically
                     independent over Q. */
}
Exemplo n.º 4
0
int
mpfr_mul_ui (mpfr_ptr y, mpfr_srcptr x, unsigned long int u, mpfr_rnd_t rnd_mode)
{
  mp_limb_t *yp;
  mp_size_t xn;
  int cnt, inexact;
  MPFR_TMP_DECL (marker);

  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
    {
      if (MPFR_IS_NAN (x))
        {
          MPFR_SET_NAN (y);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF (x))
        {
          if (u != 0)
            {
              MPFR_SET_INF (y);
              MPFR_SET_SAME_SIGN (y, x);
              MPFR_RET (0); /* infinity is exact */
            }
          else /* 0 * infinity */
            {
              MPFR_SET_NAN (y);
              MPFR_RET_NAN;
            }
        }
      else /* x is zero */
        {
          MPFR_ASSERTD (MPFR_IS_ZERO (x));
          MPFR_SET_ZERO (y);
          MPFR_SET_SAME_SIGN (y, x);
          MPFR_RET (0); /* zero is exact */
        }
    }
  else if (MPFR_UNLIKELY (u <= 1))
    {
      if (u < 1)
        {
          MPFR_SET_ZERO (y);
          MPFR_SET_SAME_SIGN (y, x);
          MPFR_RET (0); /* zero is exact */
        }
      else
        return mpfr_set (y, x, rnd_mode);
    }
  else if (MPFR_UNLIKELY (IS_POW2 (u)))
    return mpfr_mul_2si (y, x, MPFR_INT_CEIL_LOG2 (u), rnd_mode);

  yp = MPFR_MANT (y);
  xn = MPFR_LIMB_SIZE (x);

  MPFR_ASSERTD (xn < MP_SIZE_T_MAX);
  MPFR_TMP_MARK(marker);
  yp = MPFR_TMP_LIMBS_ALLOC (xn + 1);

  MPFR_ASSERTN (u == (mp_limb_t) u);
  yp[xn] = mpn_mul_1 (yp, MPFR_MANT (x), xn, u);

  /* x * u is stored in yp[xn], ..., yp[0] */

  /* since the case u=1 was treated above, we have u >= 2, thus
     yp[xn] >= 1 since x was msb-normalized */
  MPFR_ASSERTD (yp[xn] != 0);
  if (MPFR_LIKELY (MPFR_LIMB_MSB (yp[xn]) == 0))
    {
      count_leading_zeros (cnt, yp[xn]);
      mpn_lshift (yp, yp, xn + 1, cnt);
    }
  else
    {
      cnt = 0;
    }

  /* now yp[xn], ..., yp[0] is msb-normalized too, and has at most
     PREC(x) + (GMP_NUMB_BITS - cnt) non-zero bits */
  MPFR_RNDRAW (inexact, y, yp, (mpfr_prec_t) (xn + 1) * GMP_NUMB_BITS,
               rnd_mode, MPFR_SIGN (x), cnt -- );

  MPFR_TMP_FREE (marker);

  cnt = GMP_NUMB_BITS - cnt;
  if (MPFR_UNLIKELY (__gmpfr_emax < MPFR_EMAX_MIN + cnt
                     || MPFR_GET_EXP (x) > __gmpfr_emax - cnt))
    return mpfr_overflow (y, rnd_mode, MPFR_SIGN(x));

  MPFR_SET_EXP (y, MPFR_GET_EXP (x) + cnt);
  MPFR_SET_SAME_SIGN (y, x);

  return inexact;
}
Exemplo n.º 5
0
/* Don't need to save / restore exponent range: the cache does it */
int
mpfr_const_log2_internal (mpfr_ptr x, mpfr_rnd_t rnd_mode)
{
  unsigned long n = MPFR_PREC (x);
  mpfr_prec_t w; /* working precision */
  unsigned long N;
  mpz_t *T, *P, *Q;
  mpfr_t t, q;
  int inexact;
  int ok = 1; /* ensures that the 1st try will give correct rounding */
  unsigned long lgN, i;
  MPFR_GROUP_DECL(group);
  MPFR_TMP_DECL(marker);
  MPFR_ZIV_DECL(loop);

  MPFR_LOG_FUNC (
    ("rnd_mode=%d", rnd_mode),
    ("x[%Pu]=%.*Rg inex=%d", mpfr_get_prec(x), mpfr_log_prec, x, inexact));

  if (n < 1253)
    w = n + 10; /* ensures correct rounding for the four rounding modes,
                   together with N = w / 3 + 1 (see below). */
  else if (n < 2571)
    w = n + 11; /* idem */
  else if (n < 3983)
    w = n + 12;
  else if (n < 4854)
    w = n + 13;
  else if (n < 26248)
    w = n + 14;
  else
    {
      w = n + 15;
      ok = 0;
    }

  MPFR_TMP_MARK(marker);
  MPFR_GROUP_INIT_2(group, w, t, q);

  MPFR_ZIV_INIT (loop, w);
  for (;;)
    {
      N = w / 3 + 1; /* Warning: do not change that (even increasing N!)
                        without checking correct rounding in the above
                        ranges for n. */

      /* the following are needed for error analysis (see algorithms.tex) */
      MPFR_ASSERTD(w >= 3 && N >= 2);

      lgN = MPFR_INT_CEIL_LOG2 (N) + 1;
      T  = (mpz_t *) MPFR_TMP_ALLOC (3 * lgN * sizeof (mpz_t));
      P  = T + lgN;
      Q  = T + 2*lgN;
      for (i = 0; i < lgN; i++)
        {
          mpz_init (T[i]);
          mpz_init (P[i]);
          mpz_init (Q[i]);
        }

      S (T, P, Q, 0, N, 0);

      mpfr_set_z (t, T[0], MPFR_RNDN);
      mpfr_set_z (q, Q[0], MPFR_RNDN);
      mpfr_div (t, t, q, MPFR_RNDN);

      for (i = 0; i < lgN; i++)
        {
          mpz_clear (T[i]);
          mpz_clear (P[i]);
          mpz_clear (Q[i]);
        }

      if (MPFR_LIKELY (ok != 0
                       || mpfr_can_round (t, w - 2, MPFR_RNDN, rnd_mode, n)))
        break;

      MPFR_ZIV_NEXT (loop, w);
      MPFR_GROUP_REPREC_2(group, w, t, q);
    }
  MPFR_ZIV_FREE (loop);

  inexact = mpfr_set (x, t, rnd_mode);

  MPFR_GROUP_CLEAR(group);
  MPFR_TMP_FREE(marker);

  return inexact;
}
Exemplo n.º 6
0
int
mpfr_sqr (mpfr_ptr a, mpfr_srcptr b, mpfr_rnd_t rnd_mode)
{
  int cc, inexact;
  mpfr_exp_t ax;
  mp_limb_t *tmp;
  mp_limb_t b1;
  mpfr_prec_t bq;
  mp_size_t bn, tn;
  MPFR_TMP_DECL(marker);

  MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", b, b, rnd_mode),
                 ("y[%#R]=%R inexact=%d", a, a, inexact));

  /* deal with special cases */
  if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(b)))
    {
      if (MPFR_IS_NAN(b))
        {
          MPFR_SET_NAN(a);
          MPFR_RET_NAN;
        }
      MPFR_SET_POS (a);
      if (MPFR_IS_INF(b))
        MPFR_SET_INF(a);
      else
        ( MPFR_ASSERTD(MPFR_IS_ZERO(b)), MPFR_SET_ZERO(a) );
      MPFR_RET(0);
    }
  ax = 2 * MPFR_GET_EXP (b);
  bq = MPFR_PREC(b);

  MPFR_ASSERTD (2 * bq > bq); /* PREC_MAX is /2 so no integer overflow */

  bn = MPFR_LIMB_SIZE(b); /* number of limbs of b */
  tn = 1 + (2 * bq - 1) / GMP_NUMB_BITS; /* number of limbs of square,
                                               2*bn or 2*bn-1 */

  MPFR_TMP_MARK(marker);
  tmp = (mp_limb_t *) MPFR_TMP_ALLOC((size_t) 2 * bn * BYTES_PER_MP_LIMB);

  /* Multiplies the mantissa in temporary allocated space */
  mpn_sqr_n (tmp, MPFR_MANT(b), bn);
  b1 = tmp[2 * bn - 1];

  /* now tmp[0]..tmp[2*bn-1] contains the product of both mantissa,
     with tmp[2*bn-1]>=2^(GMP_NUMB_BITS-2) */
  b1 >>= GMP_NUMB_BITS - 1; /* msb from the product */

  /* if the mantissas of b and c are uniformly distributed in ]1/2, 1],
     then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
     and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
  tmp += 2 * bn - tn; /* +0 or +1 */
  if (MPFR_UNLIKELY(b1 == 0))
    mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */

  cc = mpfr_round_raw (MPFR_MANT (a), tmp, 2 * bq, 0,
                       MPFR_PREC (a), rnd_mode, &inexact);
  /* cc = 1 ==> result is a power of two */
  if (MPFR_UNLIKELY(cc))
    MPFR_MANT(a)[MPFR_LIMB_SIZE(a)-1] = MPFR_LIMB_HIGHBIT;

  MPFR_TMP_FREE(marker);
  {
    mpfr_exp_t ax2 = ax + (mpfr_exp_t) (b1 - 1 + cc);
    if (MPFR_UNLIKELY( ax2 > __gmpfr_emax))
      return mpfr_overflow (a, rnd_mode, MPFR_SIGN_POS);
    if (MPFR_UNLIKELY( ax2 < __gmpfr_emin))
      {
        /* In the rounding to the nearest mode, if the exponent of the exact
           result (i.e. before rounding, i.e. without taking cc into account)
           is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
           both arguments are powers of 2), then round to zero. */
        if (rnd_mode == MPFR_RNDN &&
            (ax + (mpfr_exp_t) b1 < __gmpfr_emin || mpfr_powerof2_raw (b)))
          rnd_mode = MPFR_RNDZ;
        return mpfr_underflow (a, rnd_mode, MPFR_SIGN_POS);
      }
    MPFR_SET_EXP (a, ax2);
    MPFR_SET_POS (a);
  }
  MPFR_RET (inexact);
}
Exemplo n.º 7
0
Arquivo: mul.c Projeto: gnooth/xcl
static int
mpfr_mul3 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
    /* Old implementation */
    int sign_product, cc, inexact;
    mpfr_exp_t ax;
    mp_limb_t *tmp;
    mp_limb_t b1;
    mpfr_prec_t bq, cq;
    mp_size_t bn, cn, tn, k;
    MPFR_TMP_DECL(marker);

    /* deal with special cases */
    if (MPFR_ARE_SINGULAR(b,c))
    {
        if (MPFR_IS_NAN(b) || MPFR_IS_NAN(c))
        {
            MPFR_SET_NAN(a);
            MPFR_RET_NAN;
        }
        sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );
        if (MPFR_IS_INF(b))
        {
            if (MPFR_IS_INF(c) || MPFR_NOTZERO(c))
            {
                MPFR_SET_SIGN(a,sign_product);
                MPFR_SET_INF(a);
                MPFR_RET(0); /* exact */
            }
            else
            {
                MPFR_SET_NAN(a);
                MPFR_RET_NAN;
            }
        }
        else if (MPFR_IS_INF(c))
        {
            if (MPFR_NOTZERO(b))
            {
                MPFR_SET_SIGN(a, sign_product);
                MPFR_SET_INF(a);
                MPFR_RET(0); /* exact */
            }
            else
            {
                MPFR_SET_NAN(a);
                MPFR_RET_NAN;
            }
        }
        else
        {
            MPFR_ASSERTD(MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c));
            MPFR_SET_SIGN(a, sign_product);
            MPFR_SET_ZERO(a);
            MPFR_RET(0); /* 0 * 0 is exact */
        }
    }
    sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );

    ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c);

    bq = MPFR_PREC(b);
    cq = MPFR_PREC(c);

    MPFR_ASSERTD(bq+cq > bq); /* PREC_MAX is /2 so no integer overflow */

    bn = (bq+GMP_NUMB_BITS-1)/GMP_NUMB_BITS; /* number of limbs of b */
    cn = (cq+GMP_NUMB_BITS-1)/GMP_NUMB_BITS; /* number of limbs of c */
    k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */
    tn = (bq + cq + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS;
    /* <= k, thus no int overflow */
    MPFR_ASSERTD(tn <= k);

    /* Check for no size_t overflow*/
    MPFR_ASSERTD((size_t) k <= ((size_t) -1) / BYTES_PER_MP_LIMB);
    MPFR_TMP_MARK(marker);
    tmp = (mp_limb_t *) MPFR_TMP_ALLOC((size_t) k * BYTES_PER_MP_LIMB);

    /* multiplies two mantissa in temporary allocated space */
    b1 = (MPFR_LIKELY(bn >= cn)) ?
         mpn_mul (tmp, MPFR_MANT(b), bn, MPFR_MANT(c), cn)
         : mpn_mul (tmp, MPFR_MANT(c), cn, MPFR_MANT(b), bn);

    /* now tmp[0]..tmp[k-1] contains the product of both mantissa,
       with tmp[k-1]>=2^(GMP_NUMB_BITS-2) */
    b1 >>= GMP_NUMB_BITS - 1; /* msb from the product */

    /* if the mantissas of b and c are uniformly distributed in ]1/2, 1],
       then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
       and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
    tmp += k - tn;
    if (MPFR_UNLIKELY(b1 == 0))
        mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
    cc = mpfr_round_raw (MPFR_MANT (a), tmp, bq + cq,
                         MPFR_IS_NEG_SIGN(sign_product),
                         MPFR_PREC (a), rnd_mode, &inexact);

    /* cc = 1 ==> result is a power of two */
    if (MPFR_UNLIKELY(cc))
        MPFR_MANT(a)[MPFR_LIMB_SIZE(a)-1] = MPFR_LIMB_HIGHBIT;

    MPFR_TMP_FREE(marker);

    {
        mpfr_exp_t ax2 = ax + (mpfr_exp_t) (b1 - 1 + cc);
        if (MPFR_UNLIKELY( ax2 > __gmpfr_emax))
            return mpfr_overflow (a, rnd_mode, sign_product);
        if (MPFR_UNLIKELY( ax2 < __gmpfr_emin))
        {
            /* In the rounding to the nearest mode, if the exponent of the exact
               result (i.e. before rounding, i.e. without taking cc into account)
               is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
               both arguments are powers of 2), then round to zero. */
            if (rnd_mode == MPFR_RNDN &&
                    (ax + (mpfr_exp_t) b1 < __gmpfr_emin ||
                     (mpfr_powerof2_raw (b) && mpfr_powerof2_raw (c))))
                rnd_mode = MPFR_RNDZ;
            return mpfr_underflow (a, rnd_mode, sign_product);
        }
        MPFR_SET_EXP (a, ax2);
        MPFR_SET_SIGN(a, sign_product);
    }
    MPFR_RET (inexact);
}
Exemplo n.º 8
0
int
mpfr_sqrt (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
  mp_size_t rsize; /* number of limbs of r (plus 1 if exact limb multiple) */
  mp_size_t rrsize;
  mp_size_t usize; /* number of limbs of u */
  mp_size_t tsize; /* number of limbs of the sqrtrem remainder */
  mp_size_t k;
  mp_size_t l;
  mpfr_limb_ptr rp, rp0;
  mpfr_limb_ptr up;
  mpfr_limb_ptr sp;
  mp_limb_t sticky0; /* truncated part of input */
  mp_limb_t sticky1; /* truncated part of rp[0] */
  mp_limb_t sticky;
  int odd_exp;
  int sh; /* number of extra bits in rp[0] */
  int inexact; /* return ternary flag */
  mpfr_exp_t expr;
  MPFR_TMP_DECL(marker);

  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (u), mpfr_log_prec, u, rnd_mode),
     ("y[%Pu]=%.*Rg inexact=%d",
      mpfr_get_prec (r), mpfr_log_prec, r, inexact));

  if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(u)))
    {
      if (MPFR_IS_NAN(u))
        {
          MPFR_SET_NAN(r);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_ZERO(u))
        {
          /* 0+ or 0- */
          MPFR_SET_SAME_SIGN(r, u);
          MPFR_SET_ZERO(r);
          MPFR_RET(0); /* zero is exact */
        }
      else
        {
          MPFR_ASSERTD(MPFR_IS_INF(u));
          /* sqrt(-Inf) = NAN */
          if (MPFR_IS_NEG(u))
            {
              MPFR_SET_NAN(r);
              MPFR_RET_NAN;
            }
          MPFR_SET_POS(r);
          MPFR_SET_INF(r);
          MPFR_RET(0);
        }
    }
  if (MPFR_UNLIKELY(MPFR_IS_NEG(u)))
    {
      MPFR_SET_NAN(r);
      MPFR_RET_NAN;
    }
  MPFR_SET_POS(r);

  MPFR_TMP_MARK (marker);
  MPFR_UNSIGNED_MINUS_MODULO(sh,MPFR_PREC(r));
  if (sh == 0 && rnd_mode == MPFR_RNDN)
    sh = GMP_NUMB_BITS; /* ugly case */
  rsize = MPFR_LIMB_SIZE(r) + (sh == GMP_NUMB_BITS);
  /* rsize is the number of limbs of r + 1 if exact limb multiple and rounding
     to nearest, this is the number of wanted limbs for the square root */
  rrsize = rsize + rsize;
  usize = MPFR_LIMB_SIZE(u); /* number of limbs of u */
  rp0 = MPFR_MANT(r);
  rp = (sh < GMP_NUMB_BITS) ? rp0 : MPFR_TMP_LIMBS_ALLOC (rsize);
  up = MPFR_MANT(u);
  sticky0 = MPFR_LIMB_ZERO; /* truncated part of input */
  sticky1 = MPFR_LIMB_ZERO; /* truncated part of rp[0] */
  odd_exp = (unsigned int) MPFR_GET_EXP (u) & 1;
  inexact = -1; /* return ternary flag */

  sp = MPFR_TMP_LIMBS_ALLOC (rrsize);

  /* copy the most significant limbs of u to {sp, rrsize} */
  if (MPFR_LIKELY(usize <= rrsize)) /* in case r and u have the same precision,
                                       we have indeed rrsize = 2 * usize */
    {
      k = rrsize - usize;
      if (MPFR_LIKELY(k))
        MPN_ZERO (sp, k);
      if (odd_exp)
        {
          if (MPFR_LIKELY(k))
            sp[k - 1] = mpn_rshift (sp + k, up, usize, 1);
          else
            sticky0 = mpn_rshift (sp, up, usize, 1);
        }
      else
        MPN_COPY (sp + rrsize - usize, up, usize);
    }
  else /* usize > rrsize: truncate the input */
    {
      k = usize - rrsize;
      if (odd_exp)
        sticky0 = mpn_rshift (sp, up + k, rrsize, 1);
      else
        MPN_COPY (sp, up + k, rrsize);
      l = k;
      while (sticky0 == MPFR_LIMB_ZERO && l != 0)
        sticky0 = up[--l];
    }

  /* sticky0 is non-zero iff the truncated part of the input is non-zero */

  /* mpn_rootrem with NULL 2nd argument is faster than mpn_sqrtrem, thus use
     it if available and if the user asked to use GMP internal functions */
#if defined(WANT_GMP_INTERNALS) && defined(HAVE___GMPN_ROOTREM)
  tsize = __gmpn_rootrem (rp, NULL, sp, rrsize, 2);
#else
  tsize = mpn_sqrtrem (rp, NULL, sp, rrsize);
#endif

  /* a return value of zero in mpn_sqrtrem indicates a perfect square */
  sticky = sticky0 || tsize != 0;

  /* truncate low bits of rp[0] */
  sticky1 = rp[0] & ((sh < GMP_NUMB_BITS) ? MPFR_LIMB_MASK(sh)
                     : ~MPFR_LIMB_ZERO);
  rp[0] -= sticky1;

  sticky = sticky || sticky1;

  expr = (MPFR_GET_EXP(u) + odd_exp) / 2;  /* exact */

  if (rnd_mode == MPFR_RNDZ || rnd_mode == MPFR_RNDD || sticky == MPFR_LIMB_ZERO)
    {
      inexact = (sticky == MPFR_LIMB_ZERO) ? 0 : -1;
      goto truncate;
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      /* if sh < GMP_NUMB_BITS, the round bit is bit (sh-1) of sticky1
                  and the sticky bit is formed by the low sh-1 bits from
                  sticky1, together with the sqrtrem remainder and sticky0. */
      if (sh < GMP_NUMB_BITS)
        {
          if (sticky1 & (MPFR_LIMB_ONE << (sh - 1)))
            { /* round bit is set */
              if (sticky1 == (MPFR_LIMB_ONE << (sh - 1)) && tsize == 0
                  && sticky0 == 0)
                goto even_rule;
              else
                goto add_one_ulp;
            }
          else /* round bit is zero */
            goto truncate; /* with the default inexact=-1 */
        }
      else /* sh = GMP_NUMB_BITS: the round bit is the most significant bit
              of rp[0], and the remaining GMP_NUMB_BITS-1 bits contribute to
              the sticky bit */
        {
          if (sticky1 & MPFR_LIMB_HIGHBIT)
            { /* round bit is set */
              if (sticky1 == MPFR_LIMB_HIGHBIT && tsize == 0 && sticky0 == 0)
                goto even_rule;
              else
                goto add_one_ulp;
            }
          else /* round bit is zero */
            goto truncate; /* with the default inexact=-1 */
        }
    }
  else /* rnd_mode=GMP_RDNU, necessarily sticky <> 0, thus add 1 ulp */
    goto add_one_ulp;

 even_rule: /* has to set inexact */
  if (sh < GMP_NUMB_BITS)
    inexact = (rp[0] & (MPFR_LIMB_ONE << sh)) ? 1 : -1;
  else
    inexact = (rp[1] & MPFR_LIMB_ONE) ? 1 : -1;
  if (inexact == -1)
    goto truncate;
  /* else go through add_one_ulp */

 add_one_ulp:
  inexact = 1; /* always here */
  if (sh == GMP_NUMB_BITS)
    {
      rp ++;
      rsize --;
      sh = 0;
    }
  if (mpn_add_1 (rp0, rp, rsize, MPFR_LIMB_ONE << sh))
    {
      expr ++;
      rp[rsize - 1] = MPFR_LIMB_HIGHBIT;
    }
  goto end;

 truncate: /* inexact = 0 or -1 */
  if (sh == GMP_NUMB_BITS)
    MPN_COPY (rp0, rp + 1, rsize - 1);

 end:
  MPFR_ASSERTN (expr >= MPFR_EMIN_MIN && expr <= MPFR_EMAX_MAX);
  MPFR_EXP (r) = expr;
  MPFR_TMP_FREE(marker);

  return mpfr_check_range (r, inexact, rnd_mode);
}
Exemplo n.º 9
0
/* compute sign(b) * (|b| + |c|)
   Returns 0 iff result is exact,
   a negative value when the result is less than the exact value,
   a positive value otherwise. */
int
mpfr_add1sp (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
  mpfr_uexp_t d;
  mpfr_prec_t p;
  unsigned int sh;
  mp_size_t n;
  mp_limb_t *ap, *cp;
  mpfr_exp_t bx;
  mp_limb_t limb;
  int inexact;
  MPFR_TMP_DECL(marker);

  MPFR_TMP_MARK(marker);

  MPFR_ASSERTD(MPFR_PREC(a) == MPFR_PREC(b) && MPFR_PREC(b) == MPFR_PREC(c));
  MPFR_ASSERTD(MPFR_IS_PURE_FP(b));
  MPFR_ASSERTD(MPFR_IS_PURE_FP(c));
  MPFR_ASSERTD(MPFR_GET_EXP(b) >= MPFR_GET_EXP(c));

  /* Read prec and num of limbs */
  p = MPFR_PREC(b);
  n = MPFR_PREC2LIMBS (p);
  MPFR_UNSIGNED_MINUS_MODULO(sh, p);
  bx = MPFR_GET_EXP(b);
  d = (mpfr_uexp_t) (bx - MPFR_GET_EXP(c));

  DEBUG (printf ("New add1sp with diff=%lu\n", (unsigned long) d));

  if (MPFR_UNLIKELY(d == 0))
    {
      /* d==0 */
      DEBUG( mpfr_print_mant_binary("C= ", MPFR_MANT(c), p) );
      DEBUG( mpfr_print_mant_binary("B= ", MPFR_MANT(b), p) );
      bx++;                                /* exp + 1 */
      ap = MPFR_MANT(a);
      limb = mpn_add_n(ap, MPFR_MANT(b), MPFR_MANT(c), n);
      DEBUG( mpfr_print_mant_binary("A= ", ap, p) );
      MPFR_ASSERTD(limb != 0);             /* There must be a carry */
      limb = ap[0];                        /* Get LSB (In fact, LSW) */
      mpn_rshift(ap, ap, n, 1);            /* Shift mantissa A */
      ap[n-1] |= MPFR_LIMB_HIGHBIT;        /* Set MSB */
      ap[0]   &= ~MPFR_LIMB_MASK(sh);      /* Clear LSB bit */
      if (MPFR_LIKELY((limb&(MPFR_LIMB_ONE<<sh)) == 0)) /* Check exact case */
        { inexact = 0; goto set_exponent; }
      /* Zero: Truncate
         Nearest: Even Rule => truncate or add 1
         Away: Add 1 */
      if (MPFR_LIKELY(rnd_mode==MPFR_RNDN))
        {
          if (MPFR_LIKELY((ap[0]&(MPFR_LIMB_ONE<<sh))==0))
            { inexact = -1; goto set_exponent; }
          else
            goto add_one_ulp;
        }
      MPFR_UPDATE_RND_MODE(rnd_mode, MPFR_IS_NEG(b));
      if (rnd_mode==MPFR_RNDZ)
        { inexact = -1; goto set_exponent; }
      else
        goto add_one_ulp;
    }
  else if (MPFR_UNLIKELY (d >= p))
    {
      if (MPFR_LIKELY (d > p))
        {
          /* d > p : Copy B in A */
          /* Away:    Add 1
             Nearest: Trunc
             Zero:    Trunc */
          if (MPFR_LIKELY (rnd_mode==MPFR_RNDN
                           || MPFR_IS_LIKE_RNDZ (rnd_mode, MPFR_IS_NEG (b))))
            {
            copy_set_exponent:
              ap = MPFR_MANT (a);
              MPN_COPY (ap, MPFR_MANT(b), n);
              inexact = -1;
              goto set_exponent;
            }
          else
            {
            copy_add_one_ulp:
              ap = MPFR_MANT(a);
              MPN_COPY (ap, MPFR_MANT(b), n);
              goto add_one_ulp;
            }
        }
      else
        {
          /* d==p : Copy B in A */
          /* Away:    Add 1
             Nearest: Even Rule if C is a power of 2, else Add 1
             Zero:    Trunc */
          if (MPFR_LIKELY(rnd_mode==MPFR_RNDN))
            {
              /* Check if C was a power of 2 */
              cp = MPFR_MANT(c);
              if (MPFR_UNLIKELY(cp[n-1] == MPFR_LIMB_HIGHBIT))
                {
                  mp_size_t k = n-1;
                  do {
                    k--;
                  } while (k>=0 && cp[k]==0);
                  if (MPFR_UNLIKELY(k<0))
                    /* Power of 2: Even rule */
                    if ((MPFR_MANT (b)[0]&(MPFR_LIMB_ONE<<sh))==0)
                      goto copy_set_exponent;
                }
              /* Not a Power of 2 */
              goto copy_add_one_ulp;
            }
          else if (MPFR_IS_LIKE_RNDZ (rnd_mode, MPFR_IS_NEG (b)))
            goto copy_set_exponent;
          else
            goto copy_add_one_ulp;
        }
    }
  else
    {
      mp_limb_t mask;
      mp_limb_t bcp, bcp1; /* Cp and C'p+1 */

      /* General case: 1 <= d < p */
      cp = MPFR_TMP_LIMBS_ALLOC (n);

      /* Shift c in temporary allocated place */
      {
        mpfr_uexp_t dm;
        mp_size_t m;

        dm = d % GMP_NUMB_BITS;
        m = d / GMP_NUMB_BITS;
        if (MPFR_UNLIKELY(dm == 0))
          {
            /* dm = 0 and m > 0: Just copy */
            MPFR_ASSERTD(m!=0);
            MPN_COPY(cp, MPFR_MANT(c)+m, n-m);
            MPN_ZERO(cp+n-m, m);
          }
        else if (MPFR_LIKELY(m == 0))
          {
            /* dm >=1 and m == 0: just shift */
            MPFR_ASSERTD(dm >= 1);
            mpn_rshift(cp, MPFR_MANT(c), n, dm);
          }
        else
          {
            /* dm > 0 and m > 0: shift and zero  */
            mpn_rshift(cp, MPFR_MANT(c)+m, n-m, dm);
            MPN_ZERO(cp+n-m, m);
          }
      }

      DEBUG( mpfr_print_mant_binary("Before", MPFR_MANT(c), p) );
      DEBUG( mpfr_print_mant_binary("B=    ", MPFR_MANT(b), p) );
      DEBUG( mpfr_print_mant_binary("After ", cp, p) );

      /* Compute bcp=Cp and bcp1=C'p+1 */
      if (MPFR_LIKELY (sh > 0))
        {
          /* Try to compute them from C' rather than C */
          bcp = (cp[0] & (MPFR_LIMB_ONE<<(sh-1))) ;
          if (MPFR_LIKELY(cp[0]&MPFR_LIMB_MASK(sh-1)))
            bcp1 = 1;
          else
            {
              /* We can't compute C'p+1 from C'. Compute it from C */
              /* Start from bit x=p-d+sh in mantissa C
                 (+sh since we have already looked sh bits in C'!) */
              mpfr_prec_t x = p-d+sh-1;
              if (MPFR_LIKELY(x>p))
                /* We are already looked at all the bits of c, so C'p+1 = 0*/
                bcp1 = 0;
              else
                {
                  mp_limb_t *tp = MPFR_MANT(c);
                  mp_size_t kx = n-1 - (x / GMP_NUMB_BITS);
                  mpfr_prec_t sx = GMP_NUMB_BITS-1-(x%GMP_NUMB_BITS);
                  DEBUG (printf ("(First) x=%lu Kx=%ld Sx=%lu\n",
                                 (unsigned long) x, (long) kx,
                                 (unsigned long) sx));
                  /* Looks at the last bits of limb kx (if sx=0 does nothing)*/
                  if (tp[kx] & MPFR_LIMB_MASK(sx))
                    bcp1 = 1;
                  else
                    {
                      /*kx += (sx==0);*/
                      /*If sx==0, tp[kx] hasn't been checked*/
                      do {
                        kx--;
                      } while (kx>=0 && tp[kx]==0);
                      bcp1 = (kx >= 0);
                    }
                }
            }
        }
      else /* sh == 0 */
        {
          /* Compute Cp and C'p+1 from C with sh=0 */
          mp_limb_t *tp = MPFR_MANT(c);
          /* Start from bit x=p-d in mantissa C */
          mpfr_prec_t  x = p-d;
          mp_size_t   kx = n-1 - (x / GMP_NUMB_BITS);
          mpfr_prec_t sx = GMP_NUMB_BITS-1-(x%GMP_NUMB_BITS);
          MPFR_ASSERTD(p >= d);
          bcp = tp[kx] & (MPFR_LIMB_ONE<<sx);
          /* Looks at the last bits of limb kx (If sx=0, does nothing)*/
          if (tp[kx]&MPFR_LIMB_MASK(sx))
            bcp1 = 1;
          else
            {
              do {
                kx--;
              } while (kx>=0 && tp[kx]==0);
              bcp1 = (kx>=0);
            }
        }
      DEBUG (printf("sh=%u Cp=%lu C'p+1=%lu\n", sh,
                    (unsigned long) bcp, (unsigned long) bcp1));

      /* Clean shifted C' */
      mask = ~MPFR_LIMB_MASK(sh);
      cp[0] &= mask;

      /* Add the mantissa c from b in a */
      ap = MPFR_MANT(a);
      limb = mpn_add_n (ap, MPFR_MANT(b), cp, n);
      DEBUG( mpfr_print_mant_binary("Add=  ", ap, p) );

      /* Check for overflow */
      if (MPFR_UNLIKELY (limb))
        {
          limb = ap[0] & (MPFR_LIMB_ONE<<sh); /* Get LSB */
          mpn_rshift (ap, ap, n, 1);          /* Shift mantissa*/
          bx++;                               /* Fix exponent */
          ap[n-1] |= MPFR_LIMB_HIGHBIT;       /* Set MSB */
          ap[0]   &= mask;                    /* Clear LSB bit */
          bcp1    |= bcp;                     /* Recompute C'p+1 */
          bcp      = limb;                    /* Recompute Cp */
          DEBUG (printf ("(Overflow) Cp=%lu C'p+1=%lu\n",
                         (unsigned long) bcp, (unsigned long) bcp1));
          DEBUG (mpfr_print_mant_binary ("Add=  ", ap, p));
        }

      /* Round:
          Zero: Truncate but could be exact.
          Away: Add 1 if Cp or C'p+1 !=0
          Nearest: Truncate but could be exact if Cp==0
                   Add 1 if C'p+1 !=0,
                   Even rule else */
      if (MPFR_LIKELY(rnd_mode == MPFR_RNDN))
        {
          if (MPFR_LIKELY(bcp == 0))
            { inexact = MPFR_LIKELY(bcp1) ? -1 : 0; goto set_exponent; }
          else if (MPFR_UNLIKELY(bcp1==0) && (ap[0]&(MPFR_LIMB_ONE<<sh))==0)
            { inexact = -1; goto set_exponent; }
          else
            goto add_one_ulp;
        }
      MPFR_UPDATE_RND_MODE(rnd_mode, MPFR_IS_NEG(b));
      if (rnd_mode == MPFR_RNDZ)
        {
          inexact = MPFR_LIKELY(bcp || bcp1) ? -1 : 0;
          goto set_exponent;
        }
      else
        {
          if (MPFR_UNLIKELY(bcp==0 && bcp1==0))
            { inexact = 0; goto set_exponent; }
          else
            goto add_one_ulp;
        }
    }
  MPFR_ASSERTN(0);

 add_one_ulp:
  /* add one unit in last place to a */
  DEBUG( printf("AddOneUlp\n") );
  if (MPFR_UNLIKELY( mpn_add_1(ap, ap, n, MPFR_LIMB_ONE<<sh) ))
    {
      /* Case 100000x0 = 0x1111x1 + 1*/
      DEBUG( printf("Pow of 2\n") );
      bx++;
      ap[n-1] = MPFR_LIMB_HIGHBIT;
    }
  inexact = 1;

 set_exponent:
  if (MPFR_UNLIKELY(bx > __gmpfr_emax)) /* Check for overflow */
    {
      DEBUG( printf("Overflow\n") );
      MPFR_TMP_FREE(marker);
      MPFR_SET_SAME_SIGN(a,b);
      return mpfr_overflow(a, rnd_mode, MPFR_SIGN(a));
    }
  MPFR_SET_EXP (a, bx);
  MPFR_SET_SAME_SIGN(a,b);

  MPFR_TMP_FREE(marker);
  MPFR_RET (inexact * MPFR_INT_SIGN (a));
}
Exemplo n.º 10
0
/* Compute the first 2^m terms from the hypergeometric series
   with x = p / 2^r */
static int
GENERIC (mpfr_ptr y, mpz_srcptr p, long r, int m)
{
  unsigned long n,i,k,j,l;
  int is_p_one;
  mpz_t* P,*S;
#ifdef A
  mpz_t *T;
#endif
  mpz_t* ptoj;
#ifdef R_IS_RATIONAL
  mpz_t* qtoj;
  mpfr_t tmp;
#endif
  mp_exp_t diff, expo;
  mp_prec_t precy = MPFR_PREC(y);
  MPFR_TMP_DECL(marker);

  MPFR_TMP_MARK(marker);
  MPFR_CLEAR_FLAGS(y);
  n = 1UL << m;
  P = (mpz_t*) MPFR_TMP_ALLOC ((m+1) * sizeof(mpz_t));
  S = (mpz_t*) MPFR_TMP_ALLOC ((m+1) * sizeof(mpz_t));
  ptoj = (mpz_t*) MPFR_TMP_ALLOC ((m+1) * sizeof(mpz_t)); /* ptoj[i] = mantissa^(2^i) */
#ifdef A
  T = (mpz_t*) MPFR_TMP_ALLOC ((m+1) * sizeof(mpz_t));
#endif
#ifdef R_IS_RATIONAL
  qtoj = (mpz_t*) MPFR_TMP_ALLOC ((m+1) * sizeof(mpz_t));
#endif
  for (i = 0 ; i <= m ; i++)
    {
      mpz_init (P[i]);
      mpz_init (S[i]);
      mpz_init (ptoj[i]);
#ifdef R_IS_RATIONAL
      mpz_init (qtoj[i]);
#endif
#ifdef A
      mpz_init (T[i]);
#endif
    }
  mpz_set (ptoj[0], p);
#ifdef C
#  if C2 != 1
  mpz_mul_ui (ptoj[0], ptoj[0], C2);
#  endif
#endif
  is_p_one = mpz_cmp_ui(ptoj[0], 1) == 0;
#ifdef A
#  ifdef B
  mpz_set_ui (T[0], A1 * B1);
#  else
  mpz_set_ui (T[0], A1);
#  endif
#endif
  if (!is_p_one)
    for (i = 1 ; i < m ; i++)
      mpz_mul (ptoj[i], ptoj[i-1], ptoj[i-1]);
#ifdef R_IS_RATIONAL
  mpz_set_si (qtoj[0], r);
  for (i = 1 ; i <= m ; i++)
    mpz_mul(qtoj[i], qtoj[i-1], qtoj[i-1]);
#endif
  mpz_set_ui (P[0], 1);
  mpz_set_ui (S[0], 1);

  k = 0;
  for (i = 1 ; i < n ; i++) {
    k++;

#ifdef A
#  ifdef B
    mpz_set_ui (T[k], (A1 + A2*i)*(B1+B2*i));
#  else
    mpz_set_ui (T[k], A1 + A2*i);
#  endif
#endif

#ifdef C
#  ifdef NO_FACTORIAL
    mpz_set_ui (P[k], (C1 + C2 * (i-1)));
    mpz_set_ui (S[k], 1);
#  else
    mpz_set_ui (P[k], (i+1) * (C1 + C2 * (i-1)));
    mpz_set_ui (S[k], i+1);
#  endif
#else
#  ifdef NO_FACTORIAL
    mpz_set_ui (P[k], 1);
#  else
    mpz_set_ui (P[k], i+1);
#  endif
    mpz_set (S[k], P[k]);
#endif

    for (j = i+1, l = 0 ; (j & 1) == 0 ; l++, j>>=1, k--) {
      if (!is_p_one)
        mpz_mul (S[k], S[k], ptoj[l]);
#ifdef A
#  ifdef B
#    if (A2*B2) != 1
      mpz_mul_ui (P[k], P[k], A2*B2);
#    endif
#  else
#    if A2 != 1
      mpz_mul_ui (P[k], P[k], A2);
#  endif
#endif
      mpz_mul (S[k], S[k], T[k-1]);
#endif
      mpz_mul (S[k-1], S[k-1], P[k]);
#ifdef R_IS_RATIONAL
      mpz_mul (S[k-1], S[k-1], qtoj[l]);
#else
      mpz_mul_2exp (S[k-1], S[k-1], r*(1<<l));
#endif
      mpz_add (S[k-1], S[k-1], S[k]);
      mpz_mul (P[k-1], P[k-1], P[k]);
#ifdef A
      mpz_mul (T[k-1], T[k-1], T[k]);
#endif
    }
  }

  diff = mpz_sizeinbase(S[0],2) - 2*precy;
  expo = diff;
  if (diff >= 0)
    mpz_div_2exp(S[0],S[0],diff);
  else
    mpz_mul_2exp(S[0],S[0],-diff);
  diff = mpz_sizeinbase(P[0],2) - precy;
  expo -= diff;
  if (diff >=0)
    mpz_div_2exp(P[0],P[0],diff);
  else
    mpz_mul_2exp(P[0],P[0],-diff);

  mpz_tdiv_q(S[0], S[0], P[0]);
  mpfr_set_z(y, S[0], GMP_RNDD);
  MPFR_SET_EXP (y, MPFR_GET_EXP (y) + expo);

#ifdef R_IS_RATIONAL
  /* exact division */
  mpz_div_ui (qtoj[m], qtoj[m], r);
  mpfr_init2 (tmp, MPFR_PREC(y));
  mpfr_set_z (tmp, qtoj[m] , GMP_RNDD);
  mpfr_div (y, y, tmp, GMP_RNDD);
  mpfr_clear (tmp);
#else
  mpfr_div_2ui(y, y, r*(i-1), GMP_RNDN);
#endif
  for (i = 0 ; i <= m ; i++)
    {
      mpz_clear (P[i]);
      mpz_clear (S[i]);
      mpz_clear (ptoj[i]);
#ifdef R_IS_RATIONAL
      mpz_clear (qtoj[i]);
#endif
#ifdef A
      mpz_clear (T[i]);
#endif
    }
  MPFR_TMP_FREE (marker);
  return 0;
}
Exemplo n.º 11
0
int
mpfr_set_f (mpfr_ptr y, mpf_srcptr x, mpfr_rnd_t rnd_mode)
{
  mp_limb_t *my, *mx, *tmp;
  unsigned long cnt, sx, sy;
  int inexact, carry = 0;
  MPFR_TMP_DECL(marker);

  sx = ABS(SIZ(x)); /* number of limbs of the mantissa of x */

  if (sx == 0) /* x is zero */
    {
      MPFR_SET_ZERO(y);
      MPFR_SET_POS(y);
      return 0; /* 0 is exact */
    }

  if (SIZ(x) * MPFR_FROM_SIGN_TO_INT(MPFR_SIGN(y)) < 0)
    MPFR_CHANGE_SIGN (y);

  sy = MPFR_LIMB_SIZE (y);
  my = MPFR_MANT(y);
  mx = PTR(x);

  count_leading_zeros(cnt, mx[sx - 1]);

  if (sy <= sx) /* we may have to round even when sy = sx */
    {
      unsigned long xprec = sx * GMP_NUMB_BITS;

      MPFR_TMP_MARK(marker);
      tmp = MPFR_TMP_LIMBS_ALLOC (sx);
      if (cnt)
        mpn_lshift (tmp, mx, sx, cnt);
      else
        /* FIXME: we may avoid the copy here, and directly call mpfr_round_raw
           on mx instead of tmp */
        MPN_COPY (tmp, mx, sx);
      carry = mpfr_round_raw (my, tmp, xprec, (SIZ(x) < 0), MPFR_PREC(y),
                              rnd_mode, &inexact);
      if (MPFR_UNLIKELY(carry)) /* result is a power of two */
        my[sy - 1] = MPFR_LIMB_HIGHBIT;
      MPFR_TMP_FREE(marker);
    }
  else
    {
      if (cnt)
        mpn_lshift (my + sy - sx, mx, sx, cnt);
      else
        MPN_COPY (my + sy - sx, mx, sx);
      MPN_ZERO(my, sy - sx);
      /* no rounding necessary, since y has a larger mantissa */
      inexact = 0;
    }

  /* warning: EXP(x) * GMP_NUMB_BITS may exceed the maximal exponent */
  if (EXP(x) > 1 + (__gmpfr_emax - 1) / GMP_NUMB_BITS)
    {
      /* EXP(x) >= 2 + floor((__gmpfr_emax-1)/GMP_NUMB_BITS)
         EXP(x) >= 2 + (__gmpfr_emax - GMP_NUMB_BITS) / GMP_NUMB_BITS
                >= 1 + __gmpfr_emax / GMP_NUMB_BITS
         EXP(x) * GMP_NUMB_BITS >= __gmpfr_emax + GMP_NUMB_BITS
         Since 0 <= cnt <= GMP_NUMB_BITS-1, and 0 <= carry <= 1,
         we have then EXP(x) * GMP_NUMB_BITS - cnt + carry > __gmpfr_emax */
      return mpfr_overflow (y, rnd_mode, MPFR_SIGN (y));
    }
  else
    {
      /* Do not use MPFR_SET_EXP as the exponent may be out of range. */
      MPFR_EXP (y) = EXP (x) * GMP_NUMB_BITS - (mpfr_exp_t) cnt + carry;
    }

  return mpfr_check_range (y, inexact, rnd_mode);
}