Exemplo n.º 1
0
/* Assumes that the exponent range has already been extended and if y is
   an integer, then the result is not exact in unbounded exponent range. */
int
mpfr_pow_general (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y,
                  mpfr_rnd_t rnd_mode, int y_is_integer, mpfr_save_expo_t *expo)
{
  mpfr_t t, u, k, absx;
  int neg_result = 0;
  int k_non_zero = 0;
  int check_exact_case = 0;
  int inexact;
  /* Declaration of the size variable */
  mpfr_prec_t Nz = MPFR_PREC(z);               /* target precision */
  mpfr_prec_t Nt;                              /* working precision */
  mpfr_exp_t err;                              /* error */
  MPFR_ZIV_DECL (ziv_loop);


  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg y[%Pu]=%.*Rg rnd=%d",
      mpfr_get_prec (x), mpfr_log_prec, x,
      mpfr_get_prec (y), mpfr_log_prec, y, rnd_mode),
     ("z[%Pu]=%.*Rg inexact=%d",
      mpfr_get_prec (z), mpfr_log_prec, z, inexact));

  /* We put the absolute value of x in absx, pointing to the significand
     of x to avoid allocating memory for the significand of absx. */
  MPFR_ALIAS(absx, x, /*sign=*/ 1, /*EXP=*/ MPFR_EXP(x));

  /* We will compute the absolute value of the result. So, let's
     invert the rounding mode if the result is negative. */
  if (MPFR_IS_NEG (x) && is_odd (y))
    {
      neg_result = 1;
      rnd_mode = MPFR_INVERT_RND (rnd_mode);
    }

  /* compute the precision of intermediary variable */
  /* the optimal number of bits : see algorithms.tex */
  Nt = Nz + 5 + MPFR_INT_CEIL_LOG2 (Nz);

  /* initialise of intermediary variable */
  mpfr_init2 (t, Nt);

  MPFR_ZIV_INIT (ziv_loop, Nt);
  for (;;)
    {
      MPFR_BLOCK_DECL (flags1);

      /* compute exp(y*ln|x|), using MPFR_RNDU to get an upper bound, so
         that we can detect underflows. */
      mpfr_log (t, absx, MPFR_IS_NEG (y) ? MPFR_RNDD : MPFR_RNDU); /* ln|x| */
      mpfr_mul (t, y, t, MPFR_RNDU);                              /* y*ln|x| */
      if (k_non_zero)
        {
          MPFR_LOG_MSG (("subtract k * ln(2)\n", 0));
          mpfr_const_log2 (u, MPFR_RNDD);
          mpfr_mul (u, u, k, MPFR_RNDD);
          /* Error on u = k * log(2): < k * 2^(-Nt) < 1. */
          mpfr_sub (t, t, u, MPFR_RNDU);
          MPFR_LOG_MSG (("t = y * ln|x| - k * ln(2)\n", 0));
          MPFR_LOG_VAR (t);
        }
      /* estimate of the error -- see pow function in algorithms.tex.
         The error on t is at most 1/2 + 3*2^(EXP(t)+1) ulps, which is
         <= 2^(EXP(t)+3) for EXP(t) >= -1, and <= 2 ulps for EXP(t) <= -2.
         Additional error if k_no_zero: treal = t * errk, with
         1 - |k| * 2^(-Nt) <= exp(-|k| * 2^(-Nt)) <= errk <= 1,
         i.e., additional absolute error <= 2^(EXP(k)+EXP(t)-Nt).
         Total error <= 2^err1 + 2^err2 <= 2^(max(err1,err2)+1). */
      err = MPFR_NOTZERO (t) && MPFR_GET_EXP (t) >= -1 ?
        MPFR_GET_EXP (t) + 3 : 1;
      if (k_non_zero)
        {
          if (MPFR_GET_EXP (k) > err)
            err = MPFR_GET_EXP (k);
          err++;
        }
      MPFR_BLOCK (flags1, mpfr_exp (t, t, MPFR_RNDN));  /* exp(y*ln|x|)*/
      /* We need to test */
      if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (t) || MPFR_UNDERFLOW (flags1)))
        {
          mpfr_prec_t Ntmin;
          MPFR_BLOCK_DECL (flags2);

          MPFR_ASSERTN (!k_non_zero);
          MPFR_ASSERTN (!MPFR_IS_NAN (t));

          /* Real underflow? */
          if (MPFR_IS_ZERO (t))
            {
              /* Underflow. We computed rndn(exp(t)), where t >= y*ln|x|.
                 Therefore rndn(|x|^y) = 0, and we have a real underflow on
                 |x|^y. */
              inexact = mpfr_underflow (z, rnd_mode == MPFR_RNDN ? MPFR_RNDZ
                                        : rnd_mode, MPFR_SIGN_POS);
              if (expo != NULL)
                MPFR_SAVE_EXPO_UPDATE_FLAGS (*expo, MPFR_FLAGS_INEXACT
                                             | MPFR_FLAGS_UNDERFLOW);
              break;
            }

          /* Real overflow? */
          if (MPFR_IS_INF (t))
            {
              /* Note: we can probably use a low precision for this test. */
              mpfr_log (t, absx, MPFR_IS_NEG (y) ? MPFR_RNDU : MPFR_RNDD);
              mpfr_mul (t, y, t, MPFR_RNDD);            /* y * ln|x| */
              MPFR_BLOCK (flags2, mpfr_exp (t, t, MPFR_RNDD));
              /* t = lower bound on exp(y * ln|x|) */
              if (MPFR_OVERFLOW (flags2))
                {
                  /* We have computed a lower bound on |x|^y, and it
                     overflowed. Therefore we have a real overflow
                     on |x|^y. */
                  inexact = mpfr_overflow (z, rnd_mode, MPFR_SIGN_POS);
                  if (expo != NULL)
                    MPFR_SAVE_EXPO_UPDATE_FLAGS (*expo, MPFR_FLAGS_INEXACT
                                                 | MPFR_FLAGS_OVERFLOW);
                  break;
                }
            }

          k_non_zero = 1;
          Ntmin = sizeof(mpfr_exp_t) * CHAR_BIT;
          if (Ntmin > Nt)
            {
              Nt = Ntmin;
              mpfr_set_prec (t, Nt);
            }
          mpfr_init2 (u, Nt);
          mpfr_init2 (k, Ntmin);
          mpfr_log2 (k, absx, MPFR_RNDN);
          mpfr_mul (k, y, k, MPFR_RNDN);
          mpfr_round (k, k);
          MPFR_LOG_VAR (k);
          /* |y| < 2^Ntmin, therefore |k| < 2^Nt. */
          continue;
        }
      if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - err, Nz, rnd_mode)))
        {
          inexact = mpfr_set (z, t, rnd_mode);
          break;
        }

      /* check exact power, except when y is an integer (since the
         exact cases for y integer have already been filtered out) */
      if (check_exact_case == 0 && ! y_is_integer)
        {
          if (mpfr_pow_is_exact (z, absx, y, rnd_mode, &inexact))
            break;
          check_exact_case = 1;
        }

      /* reactualisation of the precision */
      MPFR_ZIV_NEXT (ziv_loop, Nt);
      mpfr_set_prec (t, Nt);
      if (k_non_zero)
        mpfr_set_prec (u, Nt);
    }
  MPFR_ZIV_FREE (ziv_loop);

  if (k_non_zero)
    {
      int inex2;
      long lk;

      /* The rounded result in an unbounded exponent range is z * 2^k. As
       * MPFR chooses underflow after rounding, the mpfr_mul_2si below will
       * correctly detect underflows and overflows. However, in rounding to
       * nearest, if z * 2^k = 2^(emin - 2), then the double rounding may
       * affect the result. We need to cope with that before overwriting z.
       * This can occur only if k < 0 (this test is necessary to avoid a
       * potential integer overflow).
       * If inexact >= 0, then the real result is <= 2^(emin - 2), so that
       * o(2^(emin - 2)) = +0 is correct. If inexact < 0, then the real
       * result is > 2^(emin - 2) and we need to round to 2^(emin - 1).
       */
      MPFR_ASSERTN (MPFR_EXP_MAX <= LONG_MAX);
      lk = mpfr_get_si (k, MPFR_RNDN);
      /* Due to early overflow detection, |k| should not be much larger than
       * MPFR_EMAX_MAX, and as MPFR_EMAX_MAX <= MPFR_EXP_MAX/2 <= LONG_MAX/2,
       * an overflow should not be possible in mpfr_get_si (and lk is exact).
       * And one even has the following assertion. TODO: complete proof.
       */
      MPFR_ASSERTD (lk > LONG_MIN && lk < LONG_MAX);
      /* Note: even in case of overflow (lk inexact), the code is correct.
       * Indeed, for the 3 occurrences of lk:
       *   - The test lk < 0 is correct as sign(lk) = sign(k).
       *   - In the test MPFR_GET_EXP (z) == __gmpfr_emin - 1 - lk,
       *     if lk is inexact, then lk = LONG_MIN <= MPFR_EXP_MIN
       *     (the minimum value of the mpfr_exp_t type), and
       *     __gmpfr_emin - 1 - lk >= MPFR_EMIN_MIN - 1 - 2 * MPFR_EMIN_MIN
       *     >= - MPFR_EMIN_MIN - 1 = MPFR_EMAX_MAX - 1. However, from the
       *     choice of k, z has been chosen to be around 1, so that the
       *     result of the test is false, as if lk were exact.
       *   - In the mpfr_mul_2si (z, z, lk, rnd_mode), if lk is inexact,
       *     then |lk| >= LONG_MAX >= MPFR_EXP_MAX, and as z is around 1,
       *     mpfr_mul_2si underflows or overflows in the same way as if
       *     lk were exact.
       * TODO: give a bound on |t|, then on |EXP(z)|.
       */
      if (rnd_mode == MPFR_RNDN && inexact < 0 && lk < 0 &&
          MPFR_GET_EXP (z) == __gmpfr_emin - 1 - lk && mpfr_powerof2_raw (z))
        {
          /* Rounding to nearest, real result > z * 2^k = 2^(emin - 2),
           * underflow case: as the minimum precision is > 1, we will
           * obtain the correct result and exceptions by replacing z by
           * nextabove(z).
           */
          MPFR_ASSERTN (MPFR_PREC_MIN > 1);
          mpfr_nextabove (z);
        }
      MPFR_CLEAR_FLAGS ();
      inex2 = mpfr_mul_2si (z, z, lk, rnd_mode);
      if (inex2)  /* underflow or overflow */
        {
          inexact = inex2;
          if (expo != NULL)
            MPFR_SAVE_EXPO_UPDATE_FLAGS (*expo, __gmpfr_flags);
        }
      mpfr_clears (u, k, (mpfr_ptr) 0);
    }
  mpfr_clear (t);

  /* update the sign of the result if x was negative */
  if (neg_result)
    {
      MPFR_SET_NEG(z);
      inexact = -inexact;
    }

  return inexact;
}
Exemplo n.º 2
0
Arquivo: pow_si.c Projeto: Kirija/XPIR
int
mpfr_pow_si (mpfr_ptr y, mpfr_srcptr x, long int n, mpfr_rnd_t rnd)
{
  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg n=%ld rnd=%d",
      mpfr_get_prec (x), mpfr_log_prec, x, n, rnd),
     ("y[%Pu]=%.*Rg", mpfr_get_prec (y), mpfr_log_prec, y));

  if (n >= 0)
    return mpfr_pow_ui (y, x, n, rnd);
  else
    {
      if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
        {
          if (MPFR_IS_NAN (x))
            {
              MPFR_SET_NAN (y);
              MPFR_RET_NAN;
            }
          else
            {
              int positive = MPFR_IS_POS (x) || ((unsigned long) n & 1) == 0;
              if (MPFR_IS_INF (x))
                MPFR_SET_ZERO (y);
              else /* x is zero */
                {
                  MPFR_ASSERTD (MPFR_IS_ZERO (x));
                  MPFR_SET_INF (y);
                  mpfr_set_divby0 ();
                }
              if (positive)
                MPFR_SET_POS (y);
              else
                MPFR_SET_NEG (y);
              MPFR_RET (0);
            }
        }

      /* detect exact powers: x^(-n) is exact iff x is a power of 2 */
      if (mpfr_cmp_si_2exp (x, MPFR_SIGN(x), MPFR_EXP(x) - 1) == 0)
        {
          mpfr_exp_t expx = MPFR_EXP (x) - 1, expy;
          MPFR_ASSERTD (n < 0);
          /* Warning: n * expx may overflow!
           *
           * Some systems (apparently alpha-freebsd) abort with
           * LONG_MIN / 1, and LONG_MIN / -1 is undefined.
           * http://www.freebsd.org/cgi/query-pr.cgi?pr=72024
           *
           * Proof of the overflow checking. The expressions below are
           * assumed to be on the rational numbers, but the word "overflow"
           * still has its own meaning in the C context. / still denotes
           * the integer (truncated) division, and // denotes the exact
           * division.
           * - First, (__gmpfr_emin - 1) / n and (__gmpfr_emax - 1) / n
           *   cannot overflow due to the constraints on the exponents of
           *   MPFR numbers.
           * - If n = -1, then n * expx = - expx, which is representable
           *   because of the constraints on the exponents of MPFR numbers.
           * - If expx = 0, then n * expx = 0, which is representable.
           * - If n < -1 and expx > 0:
           *   + If expx > (__gmpfr_emin - 1) / n, then
           *           expx >= (__gmpfr_emin - 1) / n + 1
           *                > (__gmpfr_emin - 1) // n,
           *     and
           *           n * expx < __gmpfr_emin - 1,
           *     i.e.
           *           n * expx <= __gmpfr_emin - 2.
           *     This corresponds to an underflow, with a null result in
           *     the rounding-to-nearest mode.
           *   + If expx <= (__gmpfr_emin - 1) / n, then n * expx cannot
           *     overflow since 0 < expx <= (__gmpfr_emin - 1) / n and
           *           0 > n * expx >= n * ((__gmpfr_emin - 1) / n)
           *                        >= __gmpfr_emin - 1.
           * - If n < -1 and expx < 0:
           *   + If expx < (__gmpfr_emax - 1) / n, then
           *           expx <= (__gmpfr_emax - 1) / n - 1
           *                < (__gmpfr_emax - 1) // n,
           *     and
           *           n * expx > __gmpfr_emax - 1,
           *     i.e.
           *           n * expx >= __gmpfr_emax.
           *     This corresponds to an overflow (2^(n * expx) has an
           *     exponent > __gmpfr_emax).
           *   + If expx >= (__gmpfr_emax - 1) / n, then n * expx cannot
           *     overflow since 0 > expx >= (__gmpfr_emax - 1) / n and
           *           0 < n * expx <= n * ((__gmpfr_emax - 1) / n)
           *                        <= __gmpfr_emax - 1.
           * Note: one could use expx bounds based on MPFR_EXP_MIN and
           * MPFR_EXP_MAX instead of __gmpfr_emin and __gmpfr_emax. The
           * current bounds do not lead to noticeably slower code and
           * allow us to avoid a bug in Sun's compiler for Solaris/x86
           * (when optimizations are enabled); known affected versions:
           *   cc: Sun C 5.8 2005/10/13
           *   cc: Sun C 5.8 Patch 121016-02 2006/03/31
           *   cc: Sun C 5.8 Patch 121016-04 2006/10/18
           */
          expy =
            n != -1 && expx > 0 && expx > (__gmpfr_emin - 1) / n ?
            MPFR_EMIN_MIN - 2 /* Underflow */ :
            n != -1 && expx < 0 && expx < (__gmpfr_emax - 1) / n ?
            MPFR_EMAX_MAX /* Overflow */ : n * expx;
          return mpfr_set_si_2exp (y, n % 2 ? MPFR_INT_SIGN (x) : 1,
                                   expy, rnd);
        }

      /* General case */
      {
        /* Declaration of the intermediary variable */
        mpfr_t t;
        /* Declaration of the size variable */
        mpfr_prec_t Ny;                              /* target precision */
        mpfr_prec_t Nt;                              /* working precision */
        mpfr_rnd_t rnd1;
        int size_n;
        int inexact;
        unsigned long abs_n;
        MPFR_SAVE_EXPO_DECL (expo);
        MPFR_ZIV_DECL (loop);

        abs_n = - (unsigned long) n;
        count_leading_zeros (size_n, (mp_limb_t) abs_n);
        size_n = GMP_NUMB_BITS - size_n;

        /* initial working precision */
        Ny = MPFR_PREC (y);
        Nt = Ny + size_n + 3 + MPFR_INT_CEIL_LOG2 (Ny);

        MPFR_SAVE_EXPO_MARK (expo);

        /* initialise of intermediary   variable */
        mpfr_init2 (t, Nt);

        /* We will compute rnd(rnd1(1/x) ^ |n|), where rnd1 is the rounding
           toward sign(x), to avoid spurious overflow or underflow, as in
           mpfr_pow_z. */
        rnd1 = MPFR_EXP (x) < 1 ? MPFR_RNDZ :
          (MPFR_SIGN (x) > 0 ? MPFR_RNDU : MPFR_RNDD);

        MPFR_ZIV_INIT (loop, Nt);
        for (;;)
          {
            MPFR_BLOCK_DECL (flags);

            /* compute (1/x)^|n| */
            MPFR_BLOCK (flags, mpfr_ui_div (t, 1, x, rnd1));
            MPFR_ASSERTD (! MPFR_UNDERFLOW (flags));
            /* t = (1/x)*(1+theta) where |theta| <= 2^(-Nt) */
            if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
              goto overflow;
            MPFR_BLOCK (flags, mpfr_pow_ui (t, t, abs_n, rnd));
            /* t = (1/x)^|n|*(1+theta')^(|n|+1) where |theta'| <= 2^(-Nt).
               If (|n|+1)*2^(-Nt) <= 1/2, which is satisfied as soon as
               Nt >= bits(n)+2, then we can use Lemma \ref{lemma_graillat}
               from algorithms.tex, which yields x^n*(1+theta) with
               |theta| <= 2(|n|+1)*2^(-Nt), thus the error is bounded by
               2(|n|+1) ulps <= 2^(bits(n)+2) ulps. */
            if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
              {
              overflow:
                MPFR_ZIV_FREE (loop);
                mpfr_clear (t);
                MPFR_SAVE_EXPO_FREE (expo);
                MPFR_LOG_MSG (("overflow\n", 0));
                return mpfr_overflow (y, rnd, abs_n & 1 ?
                                      MPFR_SIGN (x) : MPFR_SIGN_POS);
              }
            if (MPFR_UNLIKELY (MPFR_UNDERFLOW (flags)))
              {
                MPFR_ZIV_FREE (loop);
                mpfr_clear (t);
                MPFR_LOG_MSG (("underflow\n", 0));
                if (rnd == MPFR_RNDN)
                  {
                    mpfr_t y2, nn;

                    /* We cannot decide now whether the result should be
                       rounded toward zero or away from zero. So, like
                       in mpfr_pow_pos_z, let's use the general case of
                       mpfr_pow in precision 2. */
                    MPFR_ASSERTD (mpfr_cmp_si_2exp (x, MPFR_SIGN (x),
                                                    MPFR_EXP (x) - 1) != 0);
                    mpfr_init2 (y2, 2);
                    mpfr_init2 (nn, sizeof (long) * CHAR_BIT);
                    inexact = mpfr_set_si (nn, n, MPFR_RNDN);
                    MPFR_ASSERTN (inexact == 0);
                    inexact = mpfr_pow_general (y2, x, nn, rnd, 1,
                                                (mpfr_save_expo_t *) NULL);
                    mpfr_clear (nn);
                    mpfr_set (y, y2, MPFR_RNDN);
                    mpfr_clear (y2);
                    MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_UNDERFLOW);
                    goto end;
                  }
                else
                  {
                    MPFR_SAVE_EXPO_FREE (expo);
                    return mpfr_underflow (y, rnd, abs_n & 1 ?
                                           MPFR_SIGN (x) : MPFR_SIGN_POS);
                  }
              }
            /* error estimate -- see pow function in algorithms.ps */
            if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - size_n - 2, Ny, rnd)))
              break;

            /* actualisation of the precision */
            MPFR_ZIV_NEXT (loop, Nt);
            mpfr_set_prec (t, Nt);
          }
        MPFR_ZIV_FREE (loop);

        inexact = mpfr_set (y, t, rnd);
        mpfr_clear (t);

      end:
        MPFR_SAVE_EXPO_FREE (expo);
        return mpfr_check_range (y, inexact, rnd);
      }
    }
}
Exemplo n.º 3
0
int
mpfr_exp_3 (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
  mpfr_t t, x_copy, tmp;
  mpz_t uk;
  mp_exp_t ttt, shift_x;
  unsigned long twopoweri;
  mpz_t *P;
  mp_prec_t *mult;
  int i, k, loop;
  int prec_x;
  mp_prec_t realprec, Prec;
  int iter;
  int inexact = 0;
  MPFR_SAVE_EXPO_DECL (expo);
  MPFR_ZIV_DECL (ziv_loop);

  MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
                 ("y[%#R]=%R inexact=%d", y, y, inexact));

  MPFR_SAVE_EXPO_MARK (expo);

  /* decompose x */
  /* we first write x = 1.xxxxxxxxxxxxx
     ----- k bits -- */
  prec_x = MPFR_INT_CEIL_LOG2 (MPFR_PREC (x)) - MPFR_LOG2_BITS_PER_MP_LIMB;
  if (prec_x < 0)
    prec_x = 0;

  ttt = MPFR_GET_EXP (x);
  mpfr_init2 (x_copy, MPFR_PREC(x));
  mpfr_set (x_copy, x, GMP_RNDD);

  /* we shift to get a number less than 1 */
  if (ttt > 0)
    {
      shift_x = ttt;
      mpfr_div_2ui (x_copy, x, ttt, GMP_RNDN);
      ttt = MPFR_GET_EXP (x_copy);
    }
  else
    shift_x = 0;
  MPFR_ASSERTD (ttt <= 0);

  /* Init prec and vars */
  realprec = MPFR_PREC (y) + MPFR_INT_CEIL_LOG2 (prec_x + MPFR_PREC (y));
  Prec = realprec + shift + 2 + shift_x;
  mpfr_init2 (t, Prec);
  mpfr_init2 (tmp, Prec);
  mpz_init (uk);

  /* Main loop */
  MPFR_ZIV_INIT (ziv_loop, realprec);
  for (;;)
    {
      int scaled = 0;
      MPFR_BLOCK_DECL (flags);

      k = MPFR_INT_CEIL_LOG2 (Prec) - MPFR_LOG2_BITS_PER_MP_LIMB;

      /* now we have to extract */
      twopoweri = BITS_PER_MP_LIMB;

      /* Allocate tables */
      P    = (mpz_t*) (*__gmp_allocate_func) (3*(k+2)*sizeof(mpz_t));
      for (i = 0; i < 3*(k+2); i++)
        mpz_init (P[i]);
      mult = (mp_prec_t*) (*__gmp_allocate_func) (2*(k+2)*sizeof(mp_prec_t));

      /* Particular case for i==0 */
      mpfr_extract (uk, x_copy, 0);
      MPFR_ASSERTD (mpz_cmp_ui (uk, 0) != 0);
      mpfr_exp_rational (tmp, uk, shift + twopoweri - ttt, k + 1, P, mult);
      for (loop = 0; loop < shift; loop++)
        mpfr_sqr (tmp, tmp, GMP_RNDD);
      twopoweri *= 2;

      /* General case */
      iter = (k <= prec_x) ? k : prec_x;
      for (i = 1; i <= iter; i++)
        {
          mpfr_extract (uk, x_copy, i);
          if (MPFR_LIKELY (mpz_cmp_ui (uk, 0) != 0))
            {
              mpfr_exp_rational (t, uk, twopoweri - ttt, k  - i + 1, P, mult);
              mpfr_mul (tmp, tmp, t, GMP_RNDD);
            }
          MPFR_ASSERTN (twopoweri <= LONG_MAX/2);
          twopoweri *=2;
        }

      /* Clear tables */
      for (i = 0; i < 3*(k+2); i++)
        mpz_clear (P[i]);
      (*__gmp_free_func) (P, 3*(k+2)*sizeof(mpz_t));
      (*__gmp_free_func) (mult, 2*(k+2)*sizeof(mp_prec_t));

      if (shift_x > 0)
        {
          MPFR_BLOCK (flags, {
              for (loop = 0; loop < shift_x - 1; loop++)
                mpfr_sqr (tmp, tmp, GMP_RNDD);
              mpfr_sqr (t, tmp, GMP_RNDD);
            } );

          if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
            {
              /* tmp <= exact result, so that it is a real overflow. */
              inexact = mpfr_overflow (y, rnd_mode, 1);
              MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
              break;
            }

          if (MPFR_UNLIKELY (MPFR_UNDERFLOW (flags)))
            {
              /* This may be a spurious underflow. So, let's scale
                 the result. */
              mpfr_mul_2ui (tmp, tmp, 1, GMP_RNDD);  /* no overflow, exact */
              mpfr_sqr (t, tmp, GMP_RNDD);
              if (MPFR_IS_ZERO (t))
                {
                  /* approximate result < 2^(emin - 3), thus
                     exact result < 2^(emin - 2). */
                  inexact = mpfr_underflow (y, (rnd_mode == GMP_RNDN) ?
                                            GMP_RNDZ : rnd_mode, 1);
                  MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_UNDERFLOW);
                  break;
                }
              scaled = 1;
            }
        }
Exemplo n.º 4
0
int
mpfr_atan2 (mpfr_ptr dest, mpfr_srcptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
  mpfr_t tmp, pi;
  int inexact;
  mpfr_prec_t prec;
  mpfr_exp_t e;
  MPFR_SAVE_EXPO_DECL (expo);
  MPFR_ZIV_DECL (loop);

  MPFR_LOG_FUNC
    (("y[%Pu]=%.*Rg x[%Pu]=%.*Rg rnd=%d",
      mpfr_get_prec (y), mpfr_log_prec, y,
      mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
     ("atan[%Pu]=%.*Rg inexact=%d",
      mpfr_get_prec (dest), mpfr_log_prec, dest, inexact));

  /* Special cases */
  if (MPFR_ARE_SINGULAR (x, y))
    {
      /* atan2(0, 0) does not raise the "invalid" floating-point
         exception, nor does atan2(y, 0) raise the "divide-by-zero"
         floating-point exception.
         -- atan2(±0, -0) returns ±pi.313)
         -- atan2(±0, +0) returns ±0.
         -- atan2(±0, x) returns ±pi, for x < 0.
         -- atan2(±0, x) returns ±0, for x > 0.
         -- atan2(y, ±0) returns -pi/2 for y < 0.
         -- atan2(y, ±0) returns pi/2 for y > 0.
         -- atan2(±oo, -oo) returns ±3pi/4.
         -- atan2(±oo, +oo) returns ±pi/4.
         -- atan2(±oo, x) returns ±pi/2, for finite x.
         -- atan2(±y, -oo) returns ±pi, for finite y > 0.
         -- atan2(±y, +oo) returns ±0, for finite y > 0.
      */
      if (MPFR_IS_NAN (x) || MPFR_IS_NAN (y))
        {
          MPFR_SET_NAN (dest);
          MPFR_RET_NAN;
        }
      if (MPFR_IS_ZERO (y))
        {
          if (MPFR_IS_NEG (x)) /* +/- PI */
            {
            set_pi:
              if (MPFR_IS_NEG (y))
                {
                  inexact =  mpfr_const_pi (dest, MPFR_INVERT_RND (rnd_mode));
                  MPFR_CHANGE_SIGN (dest);
                  return -inexact;
                }
              else
                return mpfr_const_pi (dest, rnd_mode);
            }
          else /* +/- 0 */
            {
            set_zero:
              MPFR_SET_ZERO (dest);
              MPFR_SET_SAME_SIGN (dest, y);
              return 0;
            }
        }
      if (MPFR_IS_ZERO (x))
        {
          return pi_div_2ui (dest, 1, MPFR_IS_NEG (y), rnd_mode);
        }
      if (MPFR_IS_INF (y))
        {
          if (!MPFR_IS_INF (x)) /* +/- PI/2 */
            return pi_div_2ui (dest, 1, MPFR_IS_NEG (y), rnd_mode);
          else if (MPFR_IS_POS (x)) /* +/- PI/4 */
            return pi_div_2ui (dest, 2, MPFR_IS_NEG (y), rnd_mode);
          else /* +/- 3*PI/4: Ugly since we have to round properly */
            {
              mpfr_t tmp2;
              MPFR_ZIV_DECL (loop2);
              mpfr_prec_t prec2 = MPFR_PREC (dest) + 10;

              MPFR_SAVE_EXPO_MARK (expo);
              mpfr_init2 (tmp2, prec2);
              MPFR_ZIV_INIT (loop2, prec2);
              for (;;)
                {
                  mpfr_const_pi (tmp2, MPFR_RNDN);
                  mpfr_mul_ui (tmp2, tmp2, 3, MPFR_RNDN); /* Error <= 2  */
                  mpfr_div_2ui (tmp2, tmp2, 2, MPFR_RNDN);
                  if (mpfr_round_p (MPFR_MANT (tmp2), MPFR_LIMB_SIZE (tmp2),
                                    MPFR_PREC (tmp2) - 2,
                                    MPFR_PREC (dest) + (rnd_mode == MPFR_RNDN)))
                    break;
                  MPFR_ZIV_NEXT (loop2, prec2);
                  mpfr_set_prec (tmp2, prec2);
                }
              MPFR_ZIV_FREE (loop2);
              if (MPFR_IS_NEG (y))
                MPFR_CHANGE_SIGN (tmp2);
              inexact = mpfr_set (dest, tmp2, rnd_mode);
              mpfr_clear (tmp2);
              MPFR_SAVE_EXPO_FREE (expo);
              return mpfr_check_range (dest, inexact, rnd_mode);
            }
        }
      MPFR_ASSERTD (MPFR_IS_INF (x));
      if (MPFR_IS_NEG (x))
        goto set_pi;
      else
        goto set_zero;
    }

  /* When x is a power of two, we call directly atan(y/x) since y/x is
     exact. */
  if (MPFR_UNLIKELY (MPFR_IS_POWER_OF_2 (x)))
    {
      int r;
      mpfr_t yoverx;
      unsigned int saved_flags = __gmpfr_flags;

      mpfr_init2 (yoverx, MPFR_PREC (y));
      if (MPFR_LIKELY (mpfr_div_2si (yoverx, y, MPFR_GET_EXP (x) - 1,
                                     MPFR_RNDN) == 0))
        {
          /* Here the flags have not changed due to mpfr_div_2si. */
          r = mpfr_atan (dest, yoverx, rnd_mode);
          mpfr_clear (yoverx);
          return r;
        }
      else
        {
          /* Division is inexact because of a small exponent range */
          mpfr_clear (yoverx);
          __gmpfr_flags = saved_flags;
        }
    }

  MPFR_SAVE_EXPO_MARK (expo);

  /* Set up initial prec */
  prec = MPFR_PREC (dest) + 3 + MPFR_INT_CEIL_LOG2 (MPFR_PREC (dest));
  mpfr_init2 (tmp, prec);

  MPFR_ZIV_INIT (loop, prec);
  if (MPFR_IS_POS (x))
    /* use atan2(y,x) = atan(y/x) */
    for (;;)
      {
        int div_inex;
        MPFR_BLOCK_DECL (flags);

        MPFR_BLOCK (flags, div_inex = mpfr_div (tmp, y, x, MPFR_RNDN));
        if (div_inex == 0)
          {
            /* Result is exact. */
            inexact = mpfr_atan (dest, tmp, rnd_mode);
            goto end;
          }

        /* Error <= ulp (tmp) except in case of underflow or overflow. */

        /* If the division underflowed, since |atan(z)/z| < 1, we have
           an underflow. */
        if (MPFR_UNDERFLOW (flags))
          {
            int sign;

            /* In the case MPFR_RNDN with 2^(emin-2) < |y/x| < 2^(emin-1):
               The smallest significand value S > 1 of |y/x| is:
                 * 1 / (1 - 2^(-px))                        if py <= px,
                 * (1 - 2^(-px) + 2^(-py)) / (1 - 2^(-px))  if py >= px.
               Therefore S - 1 > 2^(-pz), where pz = max(px,py). We have:
               atan(|y/x|) > atan(z), where z = 2^(emin-2) * (1 + 2^(-pz)).
                           > z - z^3 / 3.
                           > 2^(emin-2) * (1 + 2^(-pz) - 2^(2 emin - 5))
               Assuming pz <= -2 emin + 5, we can round away from zero
               (this is what mpfr_underflow always does on MPFR_RNDN).
               In the case MPFR_RNDN with |y/x| <= 2^(emin-2), we round
               toward zero, as |atan(z)/z| < 1. */
            MPFR_ASSERTN (MPFR_PREC_MAX <=
                          2 * (mpfr_uexp_t) - MPFR_EMIN_MIN + 5);
            if (rnd_mode == MPFR_RNDN && MPFR_IS_ZERO (tmp))
              rnd_mode = MPFR_RNDZ;
            sign = MPFR_SIGN (tmp);
            mpfr_clear (tmp);
            MPFR_SAVE_EXPO_FREE (expo);
            return mpfr_underflow (dest, rnd_mode, sign);
          }

        mpfr_atan (tmp, tmp, MPFR_RNDN);   /* Error <= 2*ulp (tmp) since
                                             abs(D(arctan)) <= 1 */
        /* TODO: check that the error bound is correct in case of overflow. */
        /* FIXME: Error <= ulp(tmp) ? */
        if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - 2, MPFR_PREC (dest),
                                         rnd_mode)))
          break;
        MPFR_ZIV_NEXT (loop, prec);
        mpfr_set_prec (tmp, prec);
      }
  else /* x < 0 */
    /*  Use sign(y)*(PI - atan (|y/x|)) */
    {
      mpfr_init2 (pi, prec);
      for (;;)
        {
          mpfr_div (tmp, y, x, MPFR_RNDN);   /* Error <= ulp (tmp) */
          /* If tmp is 0, we have |y/x| <= 2^(-emin-2), thus
             atan|y/x| < 2^(-emin-2). */
          MPFR_SET_POS (tmp);               /* no error */
          mpfr_atan (tmp, tmp, MPFR_RNDN);   /* Error <= 2*ulp (tmp) since
                                               abs(D(arctan)) <= 1 */
          mpfr_const_pi (pi, MPFR_RNDN);     /* Error <= ulp(pi) /2 */
          e = MPFR_NOTZERO(tmp) ? MPFR_GET_EXP (tmp) : __gmpfr_emin - 1;
          mpfr_sub (tmp, pi, tmp, MPFR_RNDN);          /* see above */
          if (MPFR_IS_NEG (y))
            MPFR_CHANGE_SIGN (tmp);
          /* Error(tmp) <= (1/2+2^(EXP(pi)-EXP(tmp)-1)+2^(e-EXP(tmp)+1))*ulp
                        <= 2^(MAX (MAX (EXP(PI)-EXP(tmp)-1, e-EXP(tmp)+1),
                                        -1)+2)*ulp(tmp) */
          e = MAX (MAX (MPFR_GET_EXP (pi)-MPFR_GET_EXP (tmp) - 1,
                        e - MPFR_GET_EXP (tmp) + 1), -1) + 2;
          if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - e, MPFR_PREC (dest),
                                           rnd_mode)))
            break;
          MPFR_ZIV_NEXT (loop, prec);
          mpfr_set_prec (tmp, prec);
          mpfr_set_prec (pi, prec);
        }
      mpfr_clear (pi);
    }
  inexact = mpfr_set (dest, tmp, rnd_mode);

 end:
  MPFR_ZIV_FREE (loop);
  mpfr_clear (tmp);
  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (dest, inexact, rnd_mode);
}