Exemplo n.º 1
0
JNIEXPORT void JNICALL Java_mpi_File_setAtomicity(
        JNIEnv *env, jobject jthis, jlong fh, jboolean atomicity)
{
    int rc = MPI_File_set_atomicity((MPI_File)fh, atomicity);
    ompi_java_exceptionCheck(env, rc);
}
Exemplo n.º 2
0
int main(int argc, char** argv) {
  MPI_Init(&argc, &argv);

  setup_globals();

  /* Parse arguments. */
  int SCALE = 16;
  int edgefactor = 16; /* nedges / nvertices, i.e., 2*avg. degree */
  // if (argc >= 2) SCALE = atoi(argv[1]);
  // if (argc >= 3) edgefactor = atoi(argv[2]);
  char* name = argv[1];
  if (argc >= 3) SCALE = atoi(argv[2]);
  if (argc >= 4) edgefactor = atoi(argv[3]);
  // if (argc <= 1 || argc >= 4 || SCALE == 0 || edgefactor == 0) {
  //   if (rank == 0) {
  //     fprintf(stderr, "Usage: %s SCALE edgefactor\n  SCALE = log_2(# vertices) [integer, required]\n  edgefactor = (# edges) / (# vertices) = .5 * (average vertex degree) [integer, defaults to 16]\n(Random number seed and Kronecker initiator are in main.c)\n", argv[0]);
  //   }
  if (argc <= 2 || argc >= 5 || SCALE == 0 || edgefactor == 0) {
    if (rank == 0) {
      fprintf(stderr, "Usage: %s filename SCALE edgefactor\n  SCALE = log_2(# vertices) [integer, required]\n  edgefactor = (# edges) / (# vertices) = .5 * (average vertex degree) [integer, defaults to 16]\n(Random number seed and Kronecker initiator are in main.c)\n", argv[0]);
    }
    MPI_Abort(MPI_COMM_WORLD, 1);
  }
  uint64_t seed1 = 2, seed2 = 3;

  // const char* filename = getenv("TMPFILE");
  const char* filename = name;

  /* If filename is NULL, store data in memory */

  tuple_graph tg;
  tg.nglobaledges = (int64_t)(edgefactor) << SCALE;
  int64_t nglobalverts = (int64_t)(1) << SCALE;

  tg.data_in_file = (filename != NULL);

  if (tg.data_in_file) {
      printf("data in file \n");

    MPI_File_set_errhandler(MPI_FILE_NULL, MPI_ERRORS_ARE_FATAL);
    // MPI_File_open(MPI_COMM_WORLD, (char*)filename, MPI_MODE_RDWR | MPI_MODE_CREATE | MPI_MODE_EXCL | MPI_MODE_DELETE_ON_CLOSE | MPI_MODE_UNIQUE_OPEN, MPI_INFO_NULL, &tg.edgefile);
    MPI_File_open(MPI_COMM_WORLD, (char*)filename, MPI_MODE_RDWR | MPI_MODE_CREATE | MPI_MODE_EXCL | MPI_MODE_UNIQUE_OPEN, MPI_INFO_NULL, &tg.edgefile);
    MPI_File_set_size(tg.edgefile, tg.nglobaledges * sizeof(packed_edge));
    MPI_File_set_view(tg.edgefile, 0, packed_edge_mpi_type, packed_edge_mpi_type, "native", MPI_INFO_NULL);
    MPI_File_set_atomicity(tg.edgefile, 0);
  }

  /* Make the raw graph edges. */
  /* Get roots for BFS runs, plus maximum vertex with non-zero degree (used by
   * validator). */
  int num_bfs_roots = 64;
  int64_t* bfs_roots = (int64_t*)xmalloc(num_bfs_roots * sizeof(int64_t));
  int64_t max_used_vertex = 0;

  double make_graph_start = MPI_Wtime();
  {
    /* Spread the two 64-bit numbers into five nonzero values in the correct
     * range. */
    uint_fast32_t seed[5];
    make_mrg_seed(seed1, seed2, seed);

    /* As the graph is being generated, also keep a bitmap of vertices with
     * incident edges.  We keep a grid of processes, each row of which has a
     * separate copy of the bitmap (distributed among the processes in the
     * row), and then do an allreduce at the end.  This scheme is used to avoid
     * non-local communication and reading the file separately just to find BFS
     * roots. */
    MPI_Offset nchunks_in_file = (tg.nglobaledges + FILE_CHUNKSIZE - 1) / FILE_CHUNKSIZE;
    int64_t bitmap_size_in_bytes = int64_min(BITMAPSIZE, (nglobalverts + CHAR_BIT - 1) / CHAR_BIT);
    if (bitmap_size_in_bytes * size * CHAR_BIT < nglobalverts) {
      bitmap_size_in_bytes = (nglobalverts + size * CHAR_BIT - 1) / (size * CHAR_BIT);
    }
    int ranks_per_row = ((nglobalverts + CHAR_BIT - 1) / CHAR_BIT + bitmap_size_in_bytes - 1) / bitmap_size_in_bytes;
    int nrows = size / ranks_per_row;
    int my_row = -1, my_col = -1;
    unsigned char* restrict has_edge = NULL;
    MPI_Comm cart_comm;
    {
      int dims[2] = {size / ranks_per_row, ranks_per_row};
      int periods[2] = {0, 0};
      MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 1, &cart_comm);
    }
    int in_generating_rectangle = 0;
    if (cart_comm != MPI_COMM_NULL) {
      in_generating_rectangle = 1;
      {
        int dims[2], periods[2], coords[2];
        MPI_Cart_get(cart_comm, 2, dims, periods, coords);
        my_row = coords[0];
        my_col = coords[1];
      }
      MPI_Comm this_col;
      MPI_Comm_split(cart_comm, my_col, my_row, &this_col);
      MPI_Comm_free(&cart_comm);
      has_edge = (unsigned char*)xMPI_Alloc_mem(bitmap_size_in_bytes);
      memset(has_edge, 0, bitmap_size_in_bytes);
      /* Every rank in a given row creates the same vertices (for updating the
       * bitmap); only one writes them to the file (or final memory buffer). */
      packed_edge* buf = (packed_edge*)xmalloc(FILE_CHUNKSIZE * sizeof(packed_edge));
      MPI_Offset block_limit = (nchunks_in_file + nrows - 1) / nrows;
      // fprintf(stderr, "%d: nchunks_in_file = %" PRId64 ", block_limit = %" PRId64 " in grid of %d rows, %d cols\n", rank, (int64_t)nchunks_in_file, (int64_t)block_limit, nrows, ranks_per_row);
      if (tg.data_in_file) {
        tg.edgememory_size = 0;
        tg.edgememory = NULL;
      } else {
        int my_pos = my_row + my_col * nrows;
        int last_pos = (tg.nglobaledges % ((int64_t)FILE_CHUNKSIZE * nrows * ranks_per_row) != 0) ?
                       (tg.nglobaledges / FILE_CHUNKSIZE) % (nrows * ranks_per_row) :
                       -1;
        int64_t edges_left = tg.nglobaledges % FILE_CHUNKSIZE;
        int64_t nedges = FILE_CHUNKSIZE * (tg.nglobaledges / ((int64_t)FILE_CHUNKSIZE * nrows * ranks_per_row)) +
                         FILE_CHUNKSIZE * (my_pos < (tg.nglobaledges / FILE_CHUNKSIZE) % (nrows * ranks_per_row)) +
                         (my_pos == last_pos ? edges_left : 0);
        /* fprintf(stderr, "%d: nedges = %" PRId64 " of %" PRId64 "\n", rank, (int64_t)nedges, (int64_t)tg.nglobaledges); */
        tg.edgememory_size = nedges;
        tg.edgememory = (packed_edge*)xmalloc(nedges * sizeof(packed_edge));
      }
      MPI_Offset block_idx;
      for (block_idx = 0; block_idx < block_limit; ++block_idx) {
        /* fprintf(stderr, "%d: On block %d of %d\n", rank, (int)block_idx, (int)block_limit); */
        MPI_Offset start_edge_index = int64_min(FILE_CHUNKSIZE * (block_idx * nrows + my_row), tg.nglobaledges);
        MPI_Offset edge_count = int64_min(tg.nglobaledges - start_edge_index, FILE_CHUNKSIZE);
        packed_edge* actual_buf = (!tg.data_in_file && block_idx % ranks_per_row == my_col) ?
                                  tg.edgememory + FILE_CHUNKSIZE * (block_idx / ranks_per_row) :
                                  buf;
        /* fprintf(stderr, "%d: My range is [%" PRId64 ", %" PRId64 ") %swriting into index %" PRId64 "\n", rank, (int64_t)start_edge_index, (int64_t)(start_edge_index + edge_count), (my_col == (block_idx % ranks_per_row)) ? "" : "not ", (int64_t)(FILE_CHUNKSIZE * (block_idx / ranks_per_row))); */
        if (!tg.data_in_file && block_idx % ranks_per_row == my_col) {
          assert (FILE_CHUNKSIZE * (block_idx / ranks_per_row) + edge_count <= tg.edgememory_size);
        }

	// debug
	char* wtxbuf = (char*)xmalloc(FILE_CHUNKSIZE * sizeof(packed_edge));

        // generate_kronecker_range(seed, SCALE, start_edge_index, start_edge_index + edge_count, actual_buf);
        generate_kronecker_range(seed, SCALE, start_edge_index, start_edge_index + edge_count, actual_buf);
        if (tg.data_in_file && my_col == (block_idx % ranks_per_row)) { /* Try to spread writes among ranks */
          // MPI_File_write_at(tg.edgefile, start_edge_index, actual_buf, edge_count, packed_edge_mpi_type, MPI_STATUS_IGNORE);


	    // debug
	    printf("%d: %d, %d\n", rank, start_edge_index, edge_count);
	    int i;
	    // for (i = start_edge_index; i < start_edge_index + 3; i++) {
	    // if(block_idx == 0) {
	    // 	for (i = 0; i < 3; i++) {
	    // 	    if (edge_count > 3)
	    // 		printf("%d: %d\t%d\n", rank, actual_buf[i].v0, actual_buf[i].v1);
	    // 	}

	    // }

	    
	    

          MPI_File_write_at(tg.edgefile, start_edge_index, actual_buf, edge_count, packed_edge_mpi_type, MPI_STATUS_IGNORE);
        }
        ptrdiff_t i;
#ifdef _OPENMP
#pragma omp parallel for
#endif
        for (i = 0; i < edge_count; ++i) {
          int64_t src = get_v0_from_edge(&actual_buf[i]);
          int64_t tgt = get_v1_from_edge(&actual_buf[i]);
          if (src == tgt) continue;
          if (src / bitmap_size_in_bytes / CHAR_BIT == my_col) {
#ifdef _OPENMP
#pragma omp atomic
#endif
            has_edge[(src / CHAR_BIT) % bitmap_size_in_bytes] |= (1 << (src % CHAR_BIT));
          }
          if (tgt / bitmap_size_in_bytes / CHAR_BIT == my_col) {
#ifdef _OPENMP
#pragma omp atomic
#endif
            has_edge[(tgt / CHAR_BIT) % bitmap_size_in_bytes] |= (1 << (tgt % CHAR_BIT));
          }
        }
      }
      free(buf);
#if 0
      /* The allreduce for each root acts like we did this: */
      MPI_Allreduce(MPI_IN_PLACE, has_edge, bitmap_size_in_bytes, MPI_UNSIGNED_CHAR, MPI_BOR, this_col);
#endif
      MPI_Comm_free(&this_col);
    } else {
      tg.edgememory = NULL;
      tg.edgememory_size = 0;
    }
    MPI_Allreduce(&tg.edgememory_size, &tg.max_edgememory_size, 1, MPI_INT64_T, MPI_MAX, MPI_COMM_WORLD);

#ifndef GEN_ONLY
    /* Find roots and max used vertex */
    {
      uint64_t counter = 0;
      int bfs_root_idx;
      for (bfs_root_idx = 0; bfs_root_idx < num_bfs_roots; ++bfs_root_idx) {
        int64_t root;
        while (1) {
          double d[2];
          make_random_numbers(2, seed1, seed2, counter, d);
          root = (int64_t)((d[0] + d[1]) * nglobalverts) % nglobalverts;
          counter += 2;
          if (counter > 2 * nglobalverts) break;
          int is_duplicate = 0;
          int i;
          for (i = 0; i < bfs_root_idx; ++i) {
            if (root == bfs_roots[i]) {
              is_duplicate = 1;
              break;
            }
          }
          if (is_duplicate) continue; /* Everyone takes the same path here */
          int root_ok = 0;
          if (in_generating_rectangle && (root / CHAR_BIT / bitmap_size_in_bytes) == my_col) {
            root_ok = (has_edge[(root / CHAR_BIT) % bitmap_size_in_bytes] & (1 << (root % CHAR_BIT))) != 0;
          }
          MPI_Allreduce(MPI_IN_PLACE, &root_ok, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
          if (root_ok) break;
        }
        bfs_roots[bfs_root_idx] = root;
      }
      num_bfs_roots = bfs_root_idx;

      /* Find maximum non-zero-degree vertex. */
      {
        int64_t i;
        max_used_vertex = 0;
        if (in_generating_rectangle) {
          for (i = bitmap_size_in_bytes * CHAR_BIT; i > 0; --i) {
            if (i > nglobalverts) continue;
            if (has_edge[(i - 1) / CHAR_BIT] & (1 << ((i - 1) % CHAR_BIT))) {
              max_used_vertex = (i - 1) + my_col * CHAR_BIT * bitmap_size_in_bytes;
              break;
            }
          }
        }
        MPI_Allreduce(MPI_IN_PLACE, &max_used_vertex, 1, MPI_INT64_T, MPI_MAX, MPI_COMM_WORLD);
      }
    }
#endif

    if (in_generating_rectangle) {
      MPI_Free_mem(has_edge);
    }
    if (tg.data_in_file) {
      MPI_File_sync(tg.edgefile);
    }
  }

  double make_graph_stop = MPI_Wtime();
  double make_graph_time = make_graph_stop - make_graph_start;
  if (rank == 0) { /* Not an official part of the results */
    fprintf(stderr, "graph_generation:               %f s\n", make_graph_time);
  }


  //debug
#ifndef GEN_ONLY //!GEN_ONLY

  /* Make user's graph data structure. */
  double data_struct_start = MPI_Wtime();
  make_graph_data_structure(&tg);
  double data_struct_stop = MPI_Wtime();
  double data_struct_time = data_struct_stop - data_struct_start;
  if (rank == 0) { /* Not an official part of the results */
    fprintf(stderr, "construction_time:              %f s\n", data_struct_time);
  }

  /* Number of edges visited in each BFS; a double so get_statistics can be
   * used directly. */
  double* edge_counts = (double*)xmalloc(num_bfs_roots * sizeof(double));

  /* Run BFS. */
  int validation_passed = 1;
  double* bfs_times = (double*)xmalloc(num_bfs_roots * sizeof(double));
  double* validate_times = (double*)xmalloc(num_bfs_roots * sizeof(double));
  uint64_t nlocalverts = get_nlocalverts_for_pred();
  int64_t* pred = (int64_t*)xMPI_Alloc_mem(nlocalverts * sizeof(int64_t));

  int bfs_root_idx;
  for (bfs_root_idx = 0; bfs_root_idx < num_bfs_roots; ++bfs_root_idx) {
    int64_t root = bfs_roots[bfs_root_idx];

    if (rank == 0) fprintf(stderr, "Running BFS %d\n", bfs_root_idx);

    /* Clear the pred array. */
    memset(pred, 0, nlocalverts * sizeof(int64_t));

    /* Do the actual BFS. */
    double bfs_start = MPI_Wtime();
    run_bfs(root, &pred[0]);
    double bfs_stop = MPI_Wtime();
    bfs_times[bfs_root_idx] = bfs_stop - bfs_start;
    if (rank == 0) fprintf(stderr, "Time for BFS %d is %f\n", bfs_root_idx, bfs_times[bfs_root_idx]);

    /* Validate result. */
    if (rank == 0) fprintf(stderr, "Validating BFS %d\n", bfs_root_idx);

    double validate_start = MPI_Wtime();
    int64_t edge_visit_count;
    int validation_passed_one = validate_bfs_result(&tg, max_used_vertex + 1, nlocalverts, root, pred, &edge_visit_count);
    double validate_stop = MPI_Wtime();
    validate_times[bfs_root_idx] = validate_stop - validate_start;
    if (rank == 0) fprintf(stderr, "Validate time for BFS %d is %f\n", bfs_root_idx, validate_times[bfs_root_idx]);
    edge_counts[bfs_root_idx] = (double)edge_visit_count;
    if (rank == 0) fprintf(stderr, "TEPS for BFS %d is %g\n", bfs_root_idx, edge_visit_count / bfs_times[bfs_root_idx]);

    if (!validation_passed_one) {
      validation_passed = 0;
      if (rank == 0) fprintf(stderr, "Validation failed for this BFS root; skipping rest.\n");
      break;
    }
  }

  MPI_Free_mem(pred);
  free(bfs_roots);
  free_graph_data_structure();

#endif //!GEN_ONLY

  if (tg.data_in_file) {
    MPI_File_close(&tg.edgefile);
  } else {
    free(tg.edgememory); tg.edgememory = NULL;
  }

#ifndef GEN_ONLY
  /* Print results. */
  if (rank == 0) {
    if (!validation_passed) {
      fprintf(stdout, "No results printed for invalid run.\n");
    } else {
      int i;
      fprintf(stdout, "SCALE:                          %d\n", SCALE);
      fprintf(stdout, "edgefactor:                     %d\n", edgefactor);
      fprintf(stdout, "NBFS:                           %d\n", num_bfs_roots);
      fprintf(stdout, "graph_generation:               %g\n", make_graph_time);
      fprintf(stdout, "num_mpi_processes:              %d\n", size);
      fprintf(stdout, "construction_time:              %g\n", data_struct_time);
      double stats[s_LAST];
      get_statistics(bfs_times, num_bfs_roots, stats);
      fprintf(stdout, "min_time:                       %g\n", stats[s_minimum]);
      fprintf(stdout, "firstquartile_time:             %g\n", stats[s_firstquartile]);
      fprintf(stdout, "median_time:                    %g\n", stats[s_median]);
      fprintf(stdout, "thirdquartile_time:             %g\n", stats[s_thirdquartile]);
      fprintf(stdout, "max_time:                       %g\n", stats[s_maximum]);
      fprintf(stdout, "mean_time:                      %g\n", stats[s_mean]);
      fprintf(stdout, "stddev_time:                    %g\n", stats[s_std]);
      get_statistics(edge_counts, num_bfs_roots, stats);
      fprintf(stdout, "min_nedge:                      %.11g\n", stats[s_minimum]);
      fprintf(stdout, "firstquartile_nedge:            %.11g\n", stats[s_firstquartile]);
      fprintf(stdout, "median_nedge:                   %.11g\n", stats[s_median]);
      fprintf(stdout, "thirdquartile_nedge:            %.11g\n", stats[s_thirdquartile]);
      fprintf(stdout, "max_nedge:                      %.11g\n", stats[s_maximum]);
      fprintf(stdout, "mean_nedge:                     %.11g\n", stats[s_mean]);
      fprintf(stdout, "stddev_nedge:                   %.11g\n", stats[s_std]);
      double* secs_per_edge = (double*)xmalloc(num_bfs_roots * sizeof(double));
      for (i = 0; i < num_bfs_roots; ++i) secs_per_edge[i] = bfs_times[i] / edge_counts[i];
      get_statistics(secs_per_edge, num_bfs_roots, stats);
      fprintf(stdout, "min_TEPS:                       %g\n", 1. / stats[s_maximum]);
      fprintf(stdout, "firstquartile_TEPS:             %g\n", 1. / stats[s_thirdquartile]);
      fprintf(stdout, "median_TEPS:                    %g\n", 1. / stats[s_median]);
      fprintf(stdout, "thirdquartile_TEPS:             %g\n", 1. / stats[s_firstquartile]);
      fprintf(stdout, "max_TEPS:                       %g\n", 1. / stats[s_minimum]);
      fprintf(stdout, "harmonic_mean_TEPS:             %g\n", 1. / stats[s_mean]);
      /* Formula from:
       * Title: The Standard Errors of the Geometric and Harmonic Means and
       *        Their Application to Index Numbers
       * Author(s): Nilan Norris
       * Source: The Annals of Mathematical Statistics, Vol. 11, No. 4 (Dec., 1940), pp. 445-448
       * Publisher(s): Institute of Mathematical Statistics
       * Stable URL: http://www.jstor.org/stable/2235723
       * (same source as in specification). */
      fprintf(stdout, "harmonic_stddev_TEPS:           %g\n", stats[s_std] / (stats[s_mean] * stats[s_mean] * sqrt(num_bfs_roots - 1)));
      free(secs_per_edge); secs_per_edge = NULL;
      free(edge_counts); edge_counts = NULL;
      get_statistics(validate_times, num_bfs_roots, stats);
      fprintf(stdout, "min_validate:                   %g\n", stats[s_minimum]);
      fprintf(stdout, "firstquartile_validate:         %g\n", stats[s_firstquartile]);
      fprintf(stdout, "median_validate:                %g\n", stats[s_median]);
      fprintf(stdout, "thirdquartile_validate:         %g\n", stats[s_thirdquartile]);
      fprintf(stdout, "max_validate:                   %g\n", stats[s_maximum]);
      fprintf(stdout, "mean_validate:                  %g\n", stats[s_mean]);
      fprintf(stdout, "stddev_validate:                %g\n", stats[s_std]);
#if 0
      for (i = 0; i < num_bfs_roots; ++i) {
        fprintf(stdout, "Run %3d:                        %g s, validation %g s\n", i + 1, bfs_times[i], validate_times[i]);
      }
#endif
    }
  }
  free(bfs_times);
  free(validate_times);

#endif
  cleanup_globals();
  MPI_Finalize();
  return 0;
}
Exemplo n.º 3
0
int main(int argc, char **argv)
{
    int *writebuf, *readbuf, i, mynod, nprocs, len, err;
    char *filename;
    MPI_Datatype newtype;
    MPI_File fh;
    MPI_Status status;
    MPI_Info info;

    MPI_Init(&argc,&argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &mynod);
    MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

/* process 0 takes the file name as a command-line argument and 
   broadcasts it to other processes */
    if (!mynod) {
	i = 1;
	while ((i < argc) && strcmp("-fname", *argv)) {
	    i++;
	    argv++;
	}
	if (i >= argc) {
	    printf("\n*#  Usage: atmoicity <mpiparameter> -- -fname filename\n\n");
	    MPI_Abort(MPI_COMM_WORLD, 1);
	}
	argv++;
	len = strlen(*argv);
	filename = (char *) malloc(len+1);
	strcpy(filename, *argv);
	MPI_Bcast(&len, 1, MPI_INT, 0, MPI_COMM_WORLD);
	MPI_Bcast(filename, len+1, MPI_CHAR, 0, MPI_COMM_WORLD);
    }
    else {
	MPI_Bcast(&len, 1, MPI_INT, 0, MPI_COMM_WORLD);
	filename = (char *) malloc(len+1);
	MPI_Bcast(filename, len+1, MPI_CHAR, 0, MPI_COMM_WORLD);
    }

    writebuf = (int *) malloc(BUFSIZE*sizeof(int));
    readbuf = (int *) malloc(BUFSIZE*sizeof(int));

/* test atomicity of contiguous accesses */

/* initialize file to all zeros */
    if (!mynod) {
	MPI_File_delete(filename, MPI_INFO_NULL);
	MPI_File_open(MPI_COMM_SELF, filename, MPI_MODE_CREATE | 
             MPI_MODE_RDWR, MPI_INFO_NULL, &fh);
	for (i=0; i<BUFSIZE; i++) writebuf[i] = 0;
	MPI_File_write(fh, writebuf, BUFSIZE, MPI_INT, &status);
	MPI_File_close(&fh);
	printf("\ntesting contiguous accesses\n");
	fflush(stdout);
    }
    MPI_Barrier(MPI_COMM_WORLD);

    for (i=0; i<BUFSIZE; i++) writebuf[i] = 10;
    for (i=0; i<BUFSIZE; i++) readbuf[i] = 20;

    MPI_File_open(MPI_COMM_WORLD, filename, MPI_MODE_CREATE | 
             MPI_MODE_RDWR, MPI_INFO_NULL, &fh);

/* set atomicity to true */
    err = MPI_File_set_atomicity(fh, 1);
    if (err != MPI_SUCCESS) {
	printf("Atomic mode not supported on this file system.\n");
	MPI_Abort(MPI_COMM_WORLD, 1);
    }

    MPI_Barrier(MPI_COMM_WORLD);
    
/* process 0 writes and others concurrently read. In atomic mode, 
   the data read must be either all old values or all new values; nothing
   in between. */ 

    if (!mynod) MPI_File_write(fh, writebuf, BUFSIZE, MPI_INT, &status);
    else {
	err = MPI_File_read(fh, readbuf, BUFSIZE, MPI_INT, &status);
	if (err == MPI_SUCCESS) {
	    if (readbuf[0] == 0) { /* the rest must also be 0 */
		for (i=1; i<BUFSIZE; i++) 
		    if (readbuf[i] != 0) {
			printf("Process %d: readbuf[%d] is %d, should be 0\n", mynod, i, readbuf[i]);
			MPI_Abort(MPI_COMM_WORLD, 1);
		    }
	    }
	    else if (readbuf[0] == 10) { /* the rest must also be 10 */
		for (i=1; i<BUFSIZE; i++) 
		    if (readbuf[i] != 10) {
			printf("Process %d: readbuf[%d] is %d, should be 10\n", mynod, i, readbuf[i]);
			MPI_Abort(MPI_COMM_WORLD, 1);
		    }
	    }
	    else printf("Process %d: readbuf[0] is %d, should be either 0 or 10\n", mynod, readbuf[0]); 	    
	}
    }

    MPI_File_close(&fh);
	
    MPI_Barrier(MPI_COMM_WORLD);


/* repeat the same test with a noncontiguous filetype */

    MPI_Type_vector(BUFSIZE, 1, 2, MPI_INT, &newtype);
    MPI_Type_commit(&newtype);

    MPI_Info_create(&info);
    /* I am setting these info values for testing purposes only. It is
       better to use the default values in practice. */
    MPI_Info_set(info, "ind_rd_buffer_size", "1209");
    MPI_Info_set(info, "ind_wr_buffer_size", "1107");
    
    if (!mynod) {
	MPI_File_delete(filename, MPI_INFO_NULL);
	MPI_File_open(MPI_COMM_SELF, filename, MPI_MODE_CREATE | 
             MPI_MODE_RDWR, info, &fh);
	for (i=0; i<BUFSIZE; i++) writebuf[i] = 0;
	MPI_File_set_view(fh, 0, MPI_INT, newtype, "native", info);
	MPI_File_write(fh, writebuf, BUFSIZE, MPI_INT, &status);
	MPI_File_close(&fh);
	printf("\ntesting noncontiguous accesses\n");
	fflush(stdout);
    }
    MPI_Barrier(MPI_COMM_WORLD);

    for (i=0; i<BUFSIZE; i++) writebuf[i] = 10;
    for (i=0; i<BUFSIZE; i++) readbuf[i] = 20;

    MPI_File_open(MPI_COMM_WORLD, filename, MPI_MODE_CREATE | 
             MPI_MODE_RDWR, info, &fh);
    MPI_File_set_atomicity(fh, 1);
    MPI_File_set_view(fh, 0, MPI_INT, newtype, "native", info);
    MPI_Barrier(MPI_COMM_WORLD);
    
    if (!mynod) MPI_File_write(fh, writebuf, BUFSIZE, MPI_INT, &status);
    else {
	err = MPI_File_read(fh, readbuf, BUFSIZE, MPI_INT, &status);
	if (err == MPI_SUCCESS) {
	    if (readbuf[0] == 0) {
		for (i=1; i<BUFSIZE; i++) 
		    if (readbuf[i] != 0) {
			printf("Process %d: readbuf[%d] is %d, should be 0\n", mynod, i, readbuf[i]);
			MPI_Abort(MPI_COMM_WORLD, 1);
		    }
	    }
	    else if (readbuf[0] == 10) {
		for (i=1; i<BUFSIZE; i++) 
		    if (readbuf[i] != 10) {
			printf("Process %d: readbuf[%d] is %d, should be 10\n", mynod, i, readbuf[i]);
			MPI_Abort(MPI_COMM_WORLD, 1);
		    }
	    }
	    else printf("Process %d: readbuf[0] is %d, should be either 0 or 10\n", mynod, readbuf[0]); 	    
	}
    }

    MPI_File_close(&fh);
	
    MPI_Barrier(MPI_COMM_WORLD);

    MPI_Type_free(&newtype);
    MPI_Info_free(&info);
    free(writebuf);
    free(readbuf);
    free(filename);

    MPI_Finalize();
    return 0;
}
Exemplo n.º 4
0
int main(int argc, char **argv)
{
    int buf[1024], amode, flag, mynod, len, i;
    MPI_File fh;
    MPI_Status status;
    MPI_Datatype newtype;
    MPI_Offset disp, offset;
    MPI_Group group;
    MPI_Datatype etype, filetype;
    char datarep[25], *filename;

    MPI_Init(&argc,&argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &mynod);

/* process 0 takes the file name as a command-line argument and 
   broadcasts it to other processes */
    if (!mynod) {
	i = 1;
	while ((i < argc) && strcmp("-fname", *argv)) {
	    i++;
	    argv++;
	}
	if (i >= argc) {
	    printf("\n*#  Usage: misc  <mpiparameter> -- -fname filename\n\n");
	    MPI_Abort(MPI_COMM_WORLD, 1);
	}
	argv++;
	len = strlen(*argv);
	filename = (char *) malloc(len+1);
	strcpy(filename, *argv);
	MPI_Bcast(&len, 1, MPI_INT, 0, MPI_COMM_WORLD);
	MPI_Bcast(filename, len+1, MPI_CHAR, 0, MPI_COMM_WORLD);
    }
    else {
	MPI_Bcast(&len, 1, MPI_INT, 0, MPI_COMM_WORLD);
	filename = (char *) malloc(len+1);
	MPI_Bcast(filename, len+1, MPI_CHAR, 0, MPI_COMM_WORLD);
    }


    MPI_File_open(MPI_COMM_WORLD, filename, MPI_MODE_CREATE | MPI_MODE_RDWR,
                  MPI_INFO_NULL, &fh);

    MPI_File_write(fh, buf, 1024, MPI_INT, &status);

    MPI_File_sync(fh);

    MPI_File_get_amode(fh, &amode);
    if (!mynod) printf("testing MPI_File_get_amode\n");
    if (amode != (MPI_MODE_CREATE | MPI_MODE_RDWR))
	printf("amode is %d, should be %d\n\n", amode, MPI_MODE_CREATE |
                      MPI_MODE_RDWR);

    MPI_File_get_atomicity(fh, &flag);
    if (flag) printf("atomicity is %d, should be 0\n", flag);
    if (!mynod) printf("setting atomic mode\n");
    MPI_File_set_atomicity(fh, 1);
    MPI_File_get_atomicity(fh, &flag);
    if (!flag) printf("atomicity is %d, should be 1\n", flag);
    MPI_File_set_atomicity(fh, 0);
    if (!mynod) printf("reverting back to nonatomic mode\n");

    MPI_Type_vector(10, 10, 20, MPI_INT, &newtype);
    MPI_Type_commit(&newtype);

    MPI_File_set_view(fh, 1000, MPI_INT, newtype, "native", MPI_INFO_NULL);
    if (!mynod) printf("testing MPI_File_get_view\n");
    MPI_File_get_view(fh, &disp, &etype, &filetype, datarep);
    if ((disp != 1000) || strcmp(datarep, "native"))
	printf("disp = %I64, datarep = %s, should be 1000, native\n\n", disp, datarep);

    if (!mynod) printf("testing MPI_File_get_byte_offset\n");
    MPI_File_get_byte_offset(fh, 10, &disp);
    if (disp != (1000+20*sizeof(int))) printf("byte offset = %I64, should be %d\n\n", disp, (int) (1000+20*sizeof(int)));

    MPI_File_get_group(fh, &group);

    if (!mynod) printf("testing MPI_File_set_size\n");
    MPI_File_set_size(fh, 1000+15*sizeof(int));
    MPI_Barrier(MPI_COMM_WORLD);
    MPI_File_sync(fh);
    MPI_File_get_size(fh, &disp);
    if (disp != 1000+15*sizeof(int)) printf("file size = %I64, should be %d\n\n", disp, (int) (1000+15*sizeof(int)));
 
    if (!mynod) printf("seeking to eof and testing MPI_File_get_position\n");
    MPI_File_seek(fh, 0, MPI_SEEK_END);
    MPI_File_get_position(fh, &disp);
    if (disp != 10) printf("file pointer posn = %I64, should be 10\n\n", disp);

    if (!mynod) printf("testing MPI_File_get_byte_offset\n");
    MPI_File_get_byte_offset(fh, disp, &offset);
    if (offset != (1000+20*sizeof(int))) printf("byte offset = %I64, should be %d\n\n", offset, (int) (1000+20*sizeof(int)));
    MPI_Barrier(MPI_COMM_WORLD);

    if (!mynod) printf("testing MPI_File_seek with MPI_SEEK_CUR\n");
    MPI_File_seek(fh, -10, MPI_SEEK_CUR);
    MPI_File_get_position(fh, &disp);
    MPI_File_get_byte_offset(fh, disp, &offset);
    if (offset != 1000)
	printf("file pointer posn in bytes = %I64, should be 1000\n\n", offset);

    if (!mynod) printf("preallocating disk space up to 8192 bytes\n");
    MPI_File_preallocate(fh, 8192);

    if (!mynod) printf("closing the file and deleting it\n");
    MPI_File_close(&fh);
    
    MPI_Barrier(MPI_COMM_WORLD);
    if (!mynod) MPI_File_delete(filename, MPI_INFO_NULL);

    MPI_Type_free(&newtype);
    MPI_Type_free(&filetype);
    MPI_Group_free(&group);
    free(filename);
    MPI_Finalize(); 
    return 0;
}
Exemplo n.º 5
0
static int
test_mpio_1wMr(char *filename, int special_request)
{
    char hostname[128];
    int  mpi_size, mpi_rank;
    MPI_File fh;
    char mpi_err_str[MPI_MAX_ERROR_STRING];
    int  mpi_err_strlen;
    int  mpi_err;
    unsigned char writedata[DIMSIZE], readdata[DIMSIZE];
    unsigned char expect_val;
    int  i, irank;
    int  nerrs = 0;    /* number of errors */
    int  atomicity;
    MPI_Offset  mpi_off;
    MPI_Status  mpi_stat;

    MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
    MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);

    if (MAINPROCESS && VERBOSE_MED){
        printf("Testing one process writes, all processes read.\n");
  printf("Using %d processes accessing file %s\n", mpi_size, filename);
        printf("    (Filename can be specified via program argument)\n");
    }

    /* show the hostname so that we can tell where the processes are running */
    if (VERBOSE_DEF){
  if (gethostname(hostname, 128) < 0){
      PRINTID;
      printf("gethostname failed\n");
      return 1;
  }
  PRINTID;
  printf("hostname=%s\n", hostname);
    }

    /* Delete any old file in order to start anew. */
    /* Must delete because MPI_File_open does not have a Truncate mode. */
    /* Don't care if it has error. */
    MPI_File_delete(filename, MPI_INFO_NULL);
    MPI_Barrier(MPI_COMM_WORLD);  /* prevent racing condition */

    if ((mpi_err = MPI_File_open(MPI_COMM_WORLD, filename,
      MPI_MODE_RDWR | MPI_MODE_CREATE ,
      MPI_INFO_NULL, &fh))
      != MPI_SUCCESS){
  MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen);
  PRINTID;
  printf("MPI_File_open failed (%s)\n", mpi_err_str);
  return 1;
    }

if (special_request & USEATOM){
    /* ==================================================
     * Set atomcity to true (1).  A POSIX compliant filesystem
     * should not need this.
     * ==================================================*/
    if ((mpi_err = MPI_File_get_atomicity(fh, &atomicity)) != MPI_SUCCESS){
  MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen);
  PRINTID;
  printf("MPI_File_get_atomicity failed (%s)\n", mpi_err_str);
    }
    if (VERBOSE_HI)
  printf("Initial atomicity = %d\n", atomicity);
    if ((mpi_err = MPI_File_set_atomicity(fh, 1)) != MPI_SUCCESS){
  MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen);
  PRINTID;
  printf("MPI_File_set_atomicity failed (%s)\n", mpi_err_str);
    }
    if ((mpi_err = MPI_File_get_atomicity(fh, &atomicity)) != MPI_SUCCESS){
  MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen);
  PRINTID;
  printf("MPI_File_get_atomicity failed (%s)\n", mpi_err_str);
    }
    if (VERBOSE_HI)
  printf("After set_atomicity atomicity = %d\n", atomicity);
}

    /* This barrier is not necessary but do it anyway. */
    MPI_Barrier(MPI_COMM_WORLD);
    if (VERBOSE_HI){
  PRINTID;
  printf("between MPI_Barrier and MPI_File_write_at\n");
    }

    /* ==================================================
     * Each process calculates what to write but
     * only process irank(0) writes.
     * ==================================================*/
    irank=0;
    for (i=0; i < DIMSIZE; i++)
  writedata[i] = irank*DIMSIZE + i;
    mpi_off = irank*DIMSIZE;

    /* Only one process writes */
    if (mpi_rank==irank){
  if (VERBOSE_HI){
      PRINTID; printf("wrote %d bytes at %ld\n", DIMSIZE, (long)mpi_off);
  }
  if ((mpi_err = MPI_File_write_at(fh, mpi_off, writedata, DIMSIZE,
      MPI_BYTE, &mpi_stat))
    != MPI_SUCCESS){
      MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen);
      PRINTID;
      printf("MPI_File_write_at offset(%ld), bytes (%d), failed (%s)\n",
        (long) mpi_off, DIMSIZE, mpi_err_str);
      return 1;
  };
    };

    /* Bcast the return code and */
    /* make sure all writing are done before reading. */
    MPI_Bcast(&mpi_err, 1, MPI_INT, irank, MPI_COMM_WORLD);
    if (VERBOSE_HI){
  PRINTID;
  printf("MPI_Bcast: mpi_err = %d\n", mpi_err);
    }

if (special_request & USEFSYNC){
    /* ==================================================
     * Do a file sync.  A POSIX compliant filesystem
     * should not need this.
     * ==================================================*/
    if (VERBOSE_HI)
  printf("Apply MPI_File_sync\n");
    /* call file_sync to force the write out */
    if ((mpi_err = MPI_File_sync(fh)) != MPI_SUCCESS){
  MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen);
  PRINTID;
  printf("MPI_File_sync failed (%s)\n", mpi_err_str);
    }
    MPI_Barrier(MPI_COMM_WORLD);
    /* call file_sync to force the write out */
    if ((mpi_err = MPI_File_sync(fh)) != MPI_SUCCESS){
  MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen);
  PRINTID;
  printf("MPI_File_sync failed (%s)\n", mpi_err_str);
    }
}

    /* This barrier is not necessary because the Bcase or File_sync above */
    /* should take care of it.  Do it anyway. */
    MPI_Barrier(MPI_COMM_WORLD);
    if (VERBOSE_HI){
  PRINTID;
  printf("after MPI_Barrier\n");
    }

    /* ==================================================
     * Each process reads what process 0 wrote and verify.
     * ==================================================*/
    irank=0;
    mpi_off = irank*DIMSIZE;
    if ((mpi_err = MPI_File_read_at(fh, mpi_off, readdata, DIMSIZE, MPI_BYTE,
      &mpi_stat))
      != MPI_SUCCESS){
  MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen);
  PRINTID;
  printf("MPI_File_read_at offset(%ld), bytes (%d), failed (%s)\n",
    (long) mpi_off, DIMSIZE, mpi_err_str);
  return 1;
    };
    for (i=0; i < DIMSIZE; i++){
  expect_val = irank*DIMSIZE + i;
  if (readdata[i] != expect_val){
      PRINTID;
      printf("read data[%d:%d] got %02x, expect %02x\n", irank, i,
        readdata[i], expect_val);
      nerrs++;
  }
    }

    MPI_File_close(&fh);

    if (VERBOSE_HI){
  PRINTID;
  printf("%d data errors detected\n", nerrs);
    }

    mpi_err = MPI_Barrier(MPI_COMM_WORLD);
    return nerrs;
}