NTL_CLIENT int main() { ZZ_p::init(conv<ZZ>(17)); // define GF(17) ZZ_pX P; BuildIrred(P, 10); // generate an irreducible polynomial P // of degree 10 over GF(17) ZZ_pE::init(P); // define GF(17^10) ZZ_pEX f, g, h; // declare polynomials over GF(17^10) random(f, 20); // f is a random, monic polynomial of degree 20 SetCoeff(f, 20); random(h, 20); // h is a random polynomial of degree less than 20 g = MinPolyMod(h, f); // compute the minimum polynomial of h modulo f if (g == 0) Error("oops (1)"); // check that g != 0 if (CompMod(g, h, f) != 0) // check that g(h) = 0 mod f Error("oops (2)"); }
NTL_CLIENT int main() { zz_p::init(17); zz_pX P; BuildIrred(P, 10); zz_pE::init(P); zz_pEX f, g, h; random(f, 20); SetCoeff(f, 20); random(h, 20); g = MinPolyMod(h, f); if (deg(g) < 0) Error("bad zz_pEXTest (1)"); if (CompMod(g, h, f) != 0) Error("bad zz_pEXTest (2)"); vec_pair_zz_pEX_long v; long i; for (i = 0; i < 5; i++) { long n = RandomBnd(20)+1; cerr << n << " "; random(f, n); SetCoeff(f, n); v = CanZass(f); g = mul(v); if (f != g) cerr << "oops1\n"; long i; for (i = 0; i < v.length(); i++) if (!DetIrredTest(v[i].a)) Error("bad zz_pEXTest (3)"); } cerr << "\n"; cerr << "zz_pEXTest OK\n"; }
void EDFSplit(vec_ZZ_pEX& v, const ZZ_pEX& f, const ZZ_pEX& b, long d) { ZZ_pEX a, g, h; ZZ_pEXModulus F; vec_ZZ_pE roots; build(F, f); long n = F.n; long r = n/d; random(a, n); TraceMap(g, a, d, F, b); MinPolyMod(h, g, F, r); FindRoots(roots, h); FindFactors(v, f, g, roots); }
void CharPolyMod(zz_pX& g, const zz_pX& a, const zz_pX& ff) { zz_pX f = ff; MakeMonic(f); long n = deg(f); if (n <= 0 || deg(a) >= n) Error("CharPoly: bad args"); if (IsZero(a)) { clear(g); SetCoeff(g, n); return; } if (n > 90 || (zz_p::PrimeCnt() <= 1 && n > 45)) { zz_pX h; MinPolyMod(h, a, f); if (deg(h) == n) { g = h; return; } } if (zz_p::modulus() < n+1) { HessCharPoly(g, a, f); return; } vec_zz_p u(INIT_SIZE, n+1), v(INIT_SIZE, n+1); zz_pX h, h1; negate(h, a); long i; for (i = 0; i <= n; i++) { u[i] = i; add(h1, h, u[i]); resultant(v[i], f, h1); } interpolate(g, u, v); }
static CYTHON_INLINE struct ZZX* ZZX_minpoly_mod(struct ZZX* x, struct ZZX* y) { ZZX* f = new ZZX(); MinPolyMod(*f, *x, *y); return f; }
NTL_CLOSE_NNS NTL_CLIENT int main() { GF2X p; BuildIrred(p, 200); GF2E::init(p); GF2EX f; SetCoeff(f, 41); SetCoeff(f, 1); SetCoeff(f, 0); GF2X a; SetCoeff(a, 117); SetCoeff(a, 10); SetCoeff(a, 0); GF2EX g, h; SetX(g); SetCoeff(g, 0, to_GF2E(a)); MinPolyMod(h, g, f); f = h; vec_pair_GF2EX_long u; CanZass(u, f, 1); cerr << "factorization pattern:"; long i; for (i = 0; i < u.length(); i++) { cerr << " "; long k = u[i].b; if (k > 1) cerr << k << "*"; cerr << deg(u[i].a); } cerr << "\n\n\n"; GF2EX ff; mul(ff, u); if (f != ff || u.length() != 11) { cerr << "GF2EXTest NOT OK\n"; return 1; } { cerr << "multiplication test...\n"; BuildIrred(p, 512); GF2E::init(p); GF2EX A, B, C, C1; random(A, 512); random(B, 512); double t; long i; t = GetTime(); for (i = 0; i < 10; i++) PlainMul(C, A, B); t = GetTime() - t; cerr << "time for plain mul of degree 511 over GF(2^512): " << (t/10) << "s\n"; t = GetTime(); for (i = 0; i < 10; i++) mul(C1, A, B); t = GetTime() - t; cerr << "time for karatsuba mul of degree 511 over GF(2^512): " << (t/10) << "s\n"; if (C != C1) { cerr << "GF2EXTest NOT OK\n"; return 1; } } { cerr << "multiplication test...\n"; BuildIrred(p, 16); GF2E::init(p); GF2EX A, B, C, C1; random(A, 512); random(B, 512); double t; t = GetTime(); for (i = 0; i < 10; i++) PlainMul(C, A, B); t = GetTime() - t; cerr << "time for plain mul of degree 511 over GF(2^16): " << (t/10) << "s\n"; t = GetTime(); for (i = 0; i < 10; i++) mul(C1, A, B); t = GetTime() - t; cerr << "time for karatsuba mul of degree 511 over GF(2^16): " << (t/10) << "s\n"; if (C != C1) { cerr << "GF2EXTest NOT OK\n"; return 1; } } cerr << "GF2EXTest OK\n"; return 0; }
void SFBerlekamp(vec_ZZ_pX& factors, const ZZ_pX& ff, long verbose) { ZZ_pX f = ff; if (!IsOne(LeadCoeff(f))) Error("SFBerlekamp: bad args"); if (deg(f) == 0) { factors.SetLength(0); return; } if (deg(f) == 1) { factors.SetLength(1); factors[0] = f; return; } double t; const ZZ& p = ZZ_p::modulus(); long n = deg(f); ZZ_pXModulus F; build(F, f); ZZ_pX g, h; if (verbose) { cerr << "computing X^p..."; t = GetTime(); } PowerXMod(g, p, F); if (verbose) { cerr << (GetTime()-t) << "\n"; } vec_long D; long r; vec_ZZVec M; if (verbose) { cerr << "building matrix..."; t = GetTime(); } BuildMatrix(M, n, g, F, verbose); if (verbose) { cerr << (GetTime()-t) << "\n"; } if (verbose) { cerr << "diagonalizing..."; t = GetTime(); } NullSpace(r, D, M, verbose); if (verbose) { cerr << (GetTime()-t) << "\n"; } if (verbose) cerr << "number of factors = " << r << "\n"; if (r == 1) { factors.SetLength(1); factors[0] = f; return; } if (verbose) { cerr << "factor extraction..."; t = GetTime(); } vec_ZZ_p roots; RandomBasisElt(g, D, M); MinPolyMod(h, g, F, r); if (deg(h) == r) M.kill(); FindRoots(roots, h); FindFactors(factors, f, g, roots); ZZ_pX g1; vec_ZZ_pX S, S1; long i; while (factors.length() < r) { if (verbose) cerr << "+"; RandomBasisElt(g, D, M); S.kill(); for (i = 0; i < factors.length(); i++) { const ZZ_pX& f = factors[i]; if (deg(f) == 1) { append(S, f); continue; } build(F, f); rem(g1, g, F); if (deg(g1) <= 0) { append(S, f); continue; } MinPolyMod(h, g1, F, min(deg(f), r-factors.length()+1)); FindRoots(roots, h); S1.kill(); FindFactors(S1, f, g1, roots); append(S, S1); } swap(factors, S); } if (verbose) { cerr << (GetTime()-t) << "\n"; } if (verbose) { cerr << "degrees:"; long i; for (i = 0; i < factors.length(); i++) cerr << " " << deg(factors[i]); cerr << "\n"; } }