Exemplo n.º 1
0
Arquivo: fdb.c Projeto: SamB/iproute2
int print_fdb(const struct sockaddr_nl *who, struct nlmsghdr *n, void *arg)
{
	FILE *fp = arg;
	struct ndmsg *r = NLMSG_DATA(n);
	int len = n->nlmsg_len;
	struct rtattr * tb[NDA_MAX+1];

	if (n->nlmsg_type != RTM_NEWNEIGH && n->nlmsg_type != RTM_DELNEIGH) {
		fprintf(stderr, "Not RTM_NEWNEIGH: %08x %08x %08x\n",
			n->nlmsg_len, n->nlmsg_type, n->nlmsg_flags);

		return 0;
	}

	len -= NLMSG_LENGTH(sizeof(*r));
	if (len < 0) {
		fprintf(stderr, "BUG: wrong nlmsg len %d\n", len);
		return -1;
	}

	if (r->ndm_family != AF_BRIDGE)
		return 0;

	if (filter_index && filter_index != r->ndm_ifindex)
		return 0;

	parse_rtattr(tb, NDA_MAX, NDA_RTA(r),
		     n->nlmsg_len - NLMSG_LENGTH(sizeof(*r)));

	if (n->nlmsg_type == RTM_DELNEIGH)
		fprintf(fp, "Deleted ");

	if (tb[NDA_LLADDR]) {
		SPRINT_BUF(b1);
		fprintf(fp, "%s ",
			ll_addr_n2a(RTA_DATA(tb[NDA_LLADDR]),
				    RTA_PAYLOAD(tb[NDA_LLADDR]),
				    ll_index_to_type(r->ndm_ifindex),
				    b1, sizeof(b1)));
	}

	if (!filter_index && r->ndm_ifindex)
		fprintf(fp, "dev %s ", ll_index_to_name(r->ndm_ifindex));

	if (tb[NDA_DST]) {
		SPRINT_BUF(abuf);
		fprintf(fp, "dst %s ",
			format_host(AF_INET,
				    RTA_PAYLOAD(tb[NDA_DST]),
				    RTA_DATA(tb[NDA_DST]),
				    abuf, sizeof(abuf)));
	}

	if (show_stats && tb[NDA_CACHEINFO]) {
		struct nda_cacheinfo *ci = RTA_DATA(tb[NDA_CACHEINFO]);
		int hz = get_user_hz();

		fprintf(fp, " used %d/%d", ci->ndm_used/hz,
		       ci->ndm_updated/hz);
	}
	if (r->ndm_flags & NTF_SELF)
		fprintf(fp, "self ");
	if (r->ndm_flags & NTF_MASTER)
		fprintf(fp, "master ");

	fprintf(fp, "%s\n", state_n2a(r->ndm_state));
	return 0;
}
Exemplo n.º 2
0
static void rtnl_print_neigh(struct nlmsghdr *hdr)
{
	struct ndmsg *ndm = NLMSG_DATA(hdr);
	uint32_t attrs_len = NDA_PAYLOAD(hdr);
	struct rtattr *attr = NDA_RTA(ndm);
	struct nda_cacheinfo *ci;
	int hz = get_user_hz();
	char addr_str[256];
	char hw_addr[30];
	char states[256];
	char flags[256];

	if (hdr->nlmsg_len < NLMSG_LENGTH(sizeof(*ndm)))
		return;

	tprintf(" [ Neigh Family %d (%s%s%s)", ndm->ndm_family,
			colorize_start(bold),
			addr_family2str(ndm->ndm_family),
			colorize_end());
	tprintf(", Link Index %d", ndm->ndm_ifindex);
	tprintf(", State %d (%s%s%s)", ndm->ndm_state,
			colorize_start(bold),
			flags2str(neigh_states, ndm->ndm_state, states,
				sizeof(states)),
			colorize_end());
	tprintf(", Flags %d (%s%s%s)", ndm->ndm_flags,
			colorize_start(bold),
			flags2str(neigh_flags, ndm->ndm_flags, flags,
				sizeof(flags)),
			colorize_end());
	tprintf(", Type %d (%s%s%s)", ndm->ndm_type,
			colorize_start(bold),
			route_type2str(ndm->ndm_type),
			colorize_end());
	tprintf(" ]\n");

	for (; RTA_OK(attr, attrs_len); attr = RTA_NEXT(attr, attrs_len)) {
		switch (attr->rta_type) {
		case NDA_DST:
			rta_fmt(attr, "Address %s", addr2str(ndm->ndm_family,
						RTA_DATA(attr), addr_str,
						sizeof(addr_str)));
			break;
		case NDA_LLADDR:
			rta_fmt(attr, "HW Address %s",
					device_addr2str(RTA_DATA(attr),
						RTA_LEN(attr), 0, hw_addr,
						sizeof(hw_addr)));
			break;
		case NDA_PROBES:
			rta_fmt(attr, "Probes %d", RTA_UINT32(attr));
			break;
		case NDA_CACHEINFO:
			ci = RTA_DATA(attr);
			tprintf("\tA: Cache (");
			tprintf("confirmed(%ds)", ci->ndm_confirmed / hz);
			tprintf(", used(%ds)", ci->ndm_used / hz);
			tprintf(", updated(%ds)", ci->ndm_updated / hz);
			tprintf(", refcnt(%d))", ci->ndm_refcnt);
			tprintf(", Len %d\n", RTA_LEN(attr));
			break;
		default:
			rta_fmt(attr, "0x%x", attr->rta_type);
			break;
		}
	}
}
Exemplo n.º 3
0
static int parse_v4_neighbor(
        orc_options_t * options,
        struct nlmsghdr * nl_msg,
        orc_v4_neighbor_t * neigh)
{
    struct ndmsg * nd_msg;
    struct rtattr * attr;
    int rtattr_len;
    int found_l3_addr = 0;

    nd_msg = (struct ndmsg *) NLMSG_DATA(nl_msg);
    /* extract first attribute */
    attr = (struct rtattr *) NDA_RTA(nd_msg);
    rtattr_len = NDA_PAYLOAD(nl_msg);

    if (nd_msg->ndm_family != AF_INET)
    {
        /* TODO: add IPv6 support */
        orc_debug("Ignoring IPv6 neighbor update: IPv6 unsupported\n");
        return 0;
    }

    neigh->if_index = nd_msg->ndm_ifindex;

    /** TODO: ignore neighbor updates on non-orc interfaces
     */

    if (nd_msg->ndm_state != NUD_STALE &&
            nd_msg->ndm_state != NUD_PERMANENT &&
            nd_msg->ndm_state != NUD_FAILED &&
            nd_msg->ndm_state != NUD_REACHABLE)
    {
        orc_trace("Ignoring irrelevant neighbor update:"
                    " not STALE/PERM/REACHABLE/FAILED\n");
        return 0;
    }

    /** note: the RTA_NEXT() macro decrements rtattr_len each time */
    for(; RTA_OK(attr, rtattr_len); attr = RTA_NEXT(attr, rtattr_len))
    {
        switch (attr->rta_type)
        {
            case NDA_DST:
                found_l3_addr = 1;
                memcpy(&neigh->ip, RTA_DATA(attr), sizeof(neigh->ip));
                orc_debug("Parsed IPv4 neighbor L3 addr: " IPV4_FORMAT "\n",
                        IPV4_ADDR_PRINT(neigh->ip));
                break;
            case NDA_LLADDR:
                neigh->mac_valid = 1;
                memcpy(neigh->mac, RTA_DATA(attr), 6);
                orc_debug("Parsed IPv4 neighbor L2 addr: " ETH_FORMAT "\n",
                        ETH_ADDR_PRINT(neigh->mac));
                break;
            case NDA_CACHEINFO:
                orc_trace("Ignoring irrelevant neighbor attr NDA_CACHEINFO\n");
                break;
            case NDA_PROBES:
                orc_trace("Ignoring irrelevant neighbor attr NDA_PROBES\n");
                break;
            default:
            /** TODO: decide if we actually need anything from here */
                orc_warn("Skipping unhandled ipv4 neighbor attr: %d\n", attr->rta_type);
        };
    }

    return found_l3_addr;
}
Exemplo n.º 4
0
int print_neigh(const struct sockaddr_nl *who, struct nlmsghdr *n, void *arg)
{
	FILE *fp = (FILE*)arg;
	struct ndmsg *r = NLMSG_DATA(n);
	int len = n->nlmsg_len;
	struct rtattr * tb[NDA_MAX+1];
	char abuf[256];

	if (n->nlmsg_type != RTM_NEWNEIGH && n->nlmsg_type != RTM_DELNEIGH &&
	    n->nlmsg_type != RTM_GETNEIGH) {
		fprintf(stderr, "Not RTM_NEWNEIGH: %08x %08x %08x\n",
			n->nlmsg_len, n->nlmsg_type, n->nlmsg_flags);

		return 0;
	}
	len -= NLMSG_LENGTH(sizeof(*r));
	if (len < 0) {
		fprintf(stderr, "BUG: wrong nlmsg len %d\n", len);
		return -1;
	}

	if (filter.flushb && n->nlmsg_type != RTM_NEWNEIGH)
		return 0;

	if (filter.family && filter.family != r->ndm_family)
		return 0;
	if (filter.index && filter.index != r->ndm_ifindex)
		return 0;
	if (!(filter.state&r->ndm_state) &&
	    !(r->ndm_flags & NTF_PROXY) &&
	    (r->ndm_state || !(filter.state&0x100)) &&
             (r->ndm_family != AF_DECnet))
		return 0;

	parse_rtattr(tb, NDA_MAX, NDA_RTA(r), n->nlmsg_len - NLMSG_LENGTH(sizeof(*r)));

	if (tb[NDA_DST]) {
		if (filter.pfx.family) {
			inet_prefix dst;
			memset(&dst, 0, sizeof(dst));
			dst.family = r->ndm_family;
			memcpy(&dst.data, RTA_DATA(tb[NDA_DST]), RTA_PAYLOAD(tb[NDA_DST]));
			if (inet_addr_match(&dst, &filter.pfx, filter.pfx.bitlen))
				return 0;
		}
	}
	if (filter.unused_only && tb[NDA_CACHEINFO]) {
		struct nda_cacheinfo *ci = RTA_DATA(tb[NDA_CACHEINFO]);
		if (ci->ndm_refcnt)
			return 0;
	}

	if (filter.flushb) {
		struct nlmsghdr *fn;
		if (NLMSG_ALIGN(filter.flushp) + n->nlmsg_len > filter.flushe) {
			if (flush_update())
				return -1;
		}
		fn = (struct nlmsghdr*)(filter.flushb + NLMSG_ALIGN(filter.flushp));
		memcpy(fn, n, n->nlmsg_len);
		fn->nlmsg_type = RTM_DELNEIGH;
		fn->nlmsg_flags = NLM_F_REQUEST;
		fn->nlmsg_seq = ++rth.seq;
		filter.flushp = (((char*)fn) + n->nlmsg_len) - filter.flushb;
		filter.flushed++;
		if (show_stats < 2)
			return 0;
	}

	if (n->nlmsg_type == RTM_DELNEIGH)
		fprintf(fp, "delete ");
	else if (n->nlmsg_type == RTM_GETNEIGH)
		fprintf(fp, "miss ");
	if (tb[NDA_DST]) {
		fprintf(fp, "%s ",
			format_host(r->ndm_family,
				    RTA_PAYLOAD(tb[NDA_DST]),
				    RTA_DATA(tb[NDA_DST]),
				    abuf, sizeof(abuf)));
	}
	if (!filter.index && r->ndm_ifindex)
		fprintf(fp, "dev %s ", ll_index_to_name(r->ndm_ifindex));
	if (tb[NDA_LLADDR]) {
		SPRINT_BUF(b1);
		fprintf(fp, "lladdr %s", ll_addr_n2a(RTA_DATA(tb[NDA_LLADDR]),
					      RTA_PAYLOAD(tb[NDA_LLADDR]),
					      ll_index_to_type(r->ndm_ifindex),
					      b1, sizeof(b1)));
	}
	if (r->ndm_flags & NTF_ROUTER) {
		fprintf(fp, " router");
	}
	if (r->ndm_flags & NTF_PROXY) {
		fprintf(fp, " proxy");
	}
	if (tb[NDA_CACHEINFO] && show_stats) {
		struct nda_cacheinfo *ci = RTA_DATA(tb[NDA_CACHEINFO]);
		int hz = get_user_hz();

		if (ci->ndm_refcnt)
			printf(" ref %d", ci->ndm_refcnt);
		fprintf(fp, " used %d/%d/%d", ci->ndm_used/hz,
		       ci->ndm_confirmed/hz, ci->ndm_updated/hz);
	}

	if (tb[NDA_PROBES] && show_stats) {
		__u32 p = rta_getattr_u32(tb[NDA_PROBES]);
		fprintf(fp, " probes %u", p);
	}

	if (r->ndm_state) {
		int nud = r->ndm_state;
		fprintf(fp, " ");

#define PRINT_FLAG(f) if (nud & NUD_##f) { \
	nud &= ~NUD_##f; fprintf(fp, #f "%s", nud ? "," : ""); }
		PRINT_FLAG(INCOMPLETE);
		PRINT_FLAG(REACHABLE);
		PRINT_FLAG(STALE);
		PRINT_FLAG(DELAY);
		PRINT_FLAG(PROBE);
		PRINT_FLAG(FAILED);
		PRINT_FLAG(NOARP);
		PRINT_FLAG(PERMANENT);
#undef PRINT_FLAG
	}
	fprintf(fp, "\n");

	fflush(fp);
	return 0;
}
Exemplo n.º 5
0
int print_neigh(struct nlmsghdr *n, void *arg)
{
	FILE *fp = (FILE *)arg;
	struct ndmsg *r = NLMSG_DATA(n);
	int len = n->nlmsg_len;
	struct rtattr *tb[NDA_MAX+1];
	static int logit = 1;
	__u8 protocol = 0;

	if (n->nlmsg_type != RTM_NEWNEIGH && n->nlmsg_type != RTM_DELNEIGH &&
	    n->nlmsg_type != RTM_GETNEIGH) {
		fprintf(stderr, "Not RTM_NEWNEIGH: %08x %08x %08x\n",
			n->nlmsg_len, n->nlmsg_type, n->nlmsg_flags);

		return 0;
	}
	len -= NLMSG_LENGTH(sizeof(*r));
	if (len < 0) {
		fprintf(stderr, "BUG: wrong nlmsg len %d\n", len);
		return -1;
	}

	if (filter.flushb && n->nlmsg_type != RTM_NEWNEIGH)
		return 0;

	if (filter.family && filter.family != r->ndm_family)
		return 0;
	if (filter.index && filter.index != r->ndm_ifindex)
		return 0;
	if (!(filter.state&r->ndm_state) &&
	    !(r->ndm_flags & NTF_PROXY) &&
	    !(r->ndm_flags & NTF_EXT_LEARNED) &&
	    (r->ndm_state || !(filter.state&0x100)) &&
	    (r->ndm_family != AF_DECnet))
		return 0;

	if (filter.master && !(n->nlmsg_flags & NLM_F_DUMP_FILTERED)) {
		if (logit) {
			logit = 0;
			fprintf(fp,
				"\nWARNING: Kernel does not support filtering by master device\n\n");
		}
	}

	parse_rtattr(tb, NDA_MAX, NDA_RTA(r), n->nlmsg_len - NLMSG_LENGTH(sizeof(*r)));

	if (inet_addr_match_rta(&filter.pfx, tb[NDA_DST]))
		return 0;

	if (tb[NDA_PROTOCOL])
		protocol = rta_getattr_u8(tb[NDA_PROTOCOL]);

	if (filter.protocol && filter.protocol != protocol)
		return 0;

	if (filter.unused_only && tb[NDA_CACHEINFO]) {
		struct nda_cacheinfo *ci = RTA_DATA(tb[NDA_CACHEINFO]);

		if (ci->ndm_refcnt)
			return 0;
	}

	if (filter.flushb) {
		struct nlmsghdr *fn;

		if (NLMSG_ALIGN(filter.flushp) + n->nlmsg_len > filter.flushe) {
			if (flush_update())
				return -1;
		}
		fn = (struct nlmsghdr *)(filter.flushb + NLMSG_ALIGN(filter.flushp));
		memcpy(fn, n, n->nlmsg_len);
		fn->nlmsg_type = RTM_DELNEIGH;
		fn->nlmsg_flags = NLM_F_REQUEST;
		fn->nlmsg_seq = ++rth.seq;
		filter.flushp = (((char *)fn) + n->nlmsg_len) - filter.flushb;
		filter.flushed++;
		if (show_stats < 2)
			return 0;
	}

	open_json_object(NULL);
	if (n->nlmsg_type == RTM_DELNEIGH)
		print_bool(PRINT_ANY, "deleted", "Deleted ", true);
	else if (n->nlmsg_type == RTM_GETNEIGH)
		print_null(PRINT_ANY, "miss", "%s ", "miss");

	if (tb[NDA_DST]) {
		const char *dst;
		int family = r->ndm_family;

		if (family == AF_BRIDGE) {
			if (RTA_PAYLOAD(tb[NDA_DST]) == sizeof(struct in6_addr))
				family = AF_INET6;
			else
				family = AF_INET;
		}

		dst = format_host_rta(family, tb[NDA_DST]);
		print_color_string(PRINT_ANY,
				   ifa_family_color(family),
				   "dst", "%s ", dst);
	}

	if (!filter.index && r->ndm_ifindex) {
		if (!is_json_context())
			fprintf(fp, "dev ");

		print_color_string(PRINT_ANY, COLOR_IFNAME,
				   "dev", "%s ",
				   ll_index_to_name(r->ndm_ifindex));
	}

	if (tb[NDA_LLADDR]) {
		const char *lladdr;
		SPRINT_BUF(b1);

		lladdr = ll_addr_n2a(RTA_DATA(tb[NDA_LLADDR]),
				     RTA_PAYLOAD(tb[NDA_LLADDR]),
				     ll_index_to_type(r->ndm_ifindex),
				     b1, sizeof(b1));

		if (!is_json_context())
			fprintf(fp, "lladdr ");

		print_color_string(PRINT_ANY, COLOR_MAC,
				   "lladdr", "%s", lladdr);
	}

	if (r->ndm_flags & NTF_ROUTER)
		print_null(PRINT_ANY, "router", " %s", "router");

	if (r->ndm_flags & NTF_PROXY)
		print_null(PRINT_ANY, "proxy", " %s", "proxy");

	if (r->ndm_flags & NTF_EXT_LEARNED)
		print_null(PRINT_ANY, "extern_learn", " %s ", "extern_learn");

	if (show_stats) {
		if (tb[NDA_CACHEINFO])
			print_cacheinfo(RTA_DATA(tb[NDA_CACHEINFO]));

		if (tb[NDA_PROBES])
			print_uint(PRINT_ANY, "probes", " probes %u",
				   rta_getattr_u32(tb[NDA_PROBES]));
	}

	if (r->ndm_state)
		print_neigh_state(r->ndm_state);

	if (protocol) {
		SPRINT_BUF(b1);

		print_string(PRINT_ANY, "protocol", " proto %s ",
			     rtnl_rtprot_n2a(protocol, b1, sizeof(b1)));
	}

	print_string(PRINT_FP, NULL, "\n", "");
	close_json_object();
	fflush(stdout);

	return 0;
}
Exemplo n.º 6
0
static int neigh_msg_parser(struct sockaddr_nl *who, struct nlmsghdr *n,
			    void *arg)
{
	struct rtnl_neigh neigh = RTNL_INIT_NEIGH();
	struct rtattr *tb[NDA_MAX + 1];
	struct nl_parser_param *pp = arg;
	size_t len;
	struct ndmsg *nm;
	int err;

	if (n->nlmsg_type != RTM_NEWNEIGH)
		return P_IGNORE;

	len = n->nlmsg_len - NLMSG_LENGTH(sizeof(struct ndmsg));

	if (len < 0)
		return nl_error(EINVAL, "Message too short to be a " \
		    "neighbour message");

	nm = NLMSG_DATA(n);
	
	err = nl_parse_rtattr(tb, NDA_MAX, NDA_RTA(nm), len);
	if (err < 0)
		return err;

	neigh.n_family  = nm->ndm_family;
	neigh.n_ifindex = nm->ndm_ifindex;
	neigh.n_state   = nm->ndm_state;
	neigh.n_flags   = nm->ndm_flags;
	neigh.n_type    = nm->ndm_type;

	if (tb[NDA_LLADDR]) {
		nl_copy_addr(&neigh.n_lladdr, tb[NDA_LLADDR]);
		neigh.n_mask |= NEIGH_HAS_LLADDR;
	}

	if (tb[NDA_DST]) {
		nl_copy_addr(&neigh.n_dst, tb[NDA_DST]);
		neigh.n_dst.a_family = neigh.n_family;
		neigh.n_mask |= NEIGH_HAS_DST;
	}

	if (tb[NDA_CACHEINFO]) {
		struct nda_cacheinfo *ci;
		
		if (RTA_PAYLOAD(tb[NDA_CACHEINFO]) < sizeof(*ci))
			return nl_error(EINVAL, "cacheinfo TLV is too short");

		ci = (struct nda_cacheinfo *) RTA_DATA(tb[NDA_CACHEINFO]);

		neigh.n_cacheinfo.nci_confirmed = ci->ndm_confirmed;
		neigh.n_cacheinfo.nci_used = ci->ndm_used;
		neigh.n_cacheinfo.nci_updated = ci->ndm_updated;
		neigh.n_cacheinfo.nci_refcnt = ci->ndm_refcnt;
		
		neigh.n_mask |= NEIGH_HAS_CACHEINFO;
	}

	err = pp->pp_cb((struct nl_common *) &neigh, pp);
	if (err < 0)
		return err;

	return P_ACCEPT;
}
Exemplo n.º 7
0
int do_one_request(struct nlmsghdr *n)
{
	struct ndmsg *ndm = NLMSG_DATA(n);
	int len = n->nlmsg_len;
	struct rtattr * tb[NDA_MAX+1];
	struct dbkey key;
	DBT dbkey, dbdat;
	int do_acct = 0;

	if (n->nlmsg_type == NLMSG_DONE) {
		dbase->sync(dbase, 0);

		/* Now we have at least mirror of kernel db, so that
		 * may start real resolution.
		 */
		do_sysctl_adjustments();
		return 0;
	}

	if (n->nlmsg_type != RTM_GETNEIGH && n->nlmsg_type != RTM_NEWNEIGH)
		return 0;

	len -= NLMSG_LENGTH(sizeof(*ndm));
	if (len < 0)
		return -1;

	if (ndm->ndm_family != AF_INET ||
	    (ifnum && !handle_if(ndm->ndm_ifindex)) ||
	    ndm->ndm_flags ||
	    ndm->ndm_type != RTN_UNICAST ||
	    !(ndm->ndm_state&~NUD_NOARP))
		return 0;

	parse_rtattr(tb, NDA_MAX, NDA_RTA(ndm), len);

	if (!tb[NDA_DST])
		return 0;

	key.iface = ndm->ndm_ifindex;
	memcpy(&key.addr, RTA_DATA(tb[NDA_DST]), 4);
	dbkey.data = &key;
	dbkey.size = sizeof(key);

	if (dbase->get(dbase, &dbkey, &dbdat, 0) != 0) {
		dbdat.data = 0;
		dbdat.size = 0;
	}

	if (n->nlmsg_type == RTM_GETNEIGH) {
		if (!(n->nlmsg_flags&NLM_F_REQUEST))
			return 0;

		if (!(ndm->ndm_state&(NUD_PROBE|NUD_INCOMPLETE))) {
			stats.app_bad++;
			return 0;
		}

		if (ndm->ndm_state&NUD_PROBE) {
			/* If we get this, kernel still has some valid
			 * address, but unicast probing failed and host
			 * is either dead or changed its mac address.
			 * Kernel is going to initiate broadcast resolution.
			 * OK, we invalidate our information as well.
			 */
			if (dbdat.data && !IS_NEG(dbdat.data))
				stats.app_neg++;

			dbase->del(dbase, &dbkey, 0);
		} else {
			/* If we get this kernel does not have any information.
			 * If we have something tell this to kernel. */
			stats.app_recv++;
			if (dbdat.data && !IS_NEG(dbdat.data)) {
				stats.app_success++;
				respond_to_kernel(key.iface, key.addr, dbdat.data, dbdat.size);
				return 0;
			}

			/* Sheeit! We have nothing to tell. */
			/* If we have recent negative entry, be silent. */
			if (dbdat.data && NEG_VALID(dbdat.data)) {
				if (NEG_CNT(dbdat.data) >= active_probing) {
					stats.app_suppressed++;
					return 0;
				}
				do_acct = 1;
			}
		}

		if (active_probing &&
		    queue_active_probe(ndm->ndm_ifindex, key.addr) == 0 &&
		    do_acct) {
			NEG_CNT(dbdat.data)++;
			dbase->put(dbase, &dbkey, &dbdat, 0);
		}
	} else if (n->nlmsg_type == RTM_NEWNEIGH) {
		if (n->nlmsg_flags&NLM_F_REQUEST)
			return 0;

		if (ndm->ndm_state&NUD_FAILED) {
			/* Kernel was not able to resolve. Host is dead.
			 * Create negative entry if it is not present
			 * or renew it if it is too old. */
			if (!dbdat.data ||
			    !IS_NEG(dbdat.data) ||
			    !NEG_VALID(dbdat.data)) {
				__u8 ndata[6];
				stats.kern_neg++;
				prepare_neg_entry(ndata, time(NULL));
				dbdat.data = ndata;
				dbdat.size = sizeof(ndata);
				dbase->put(dbase, &dbkey, &dbdat, 0);
			}
		} else if (tb[NDA_LLADDR]) {
			if (dbdat.data && !IS_NEG(dbdat.data)) {
				if (memcmp(RTA_DATA(tb[NDA_LLADDR]), dbdat.data, dbdat.size) == 0)
					return 0;
				stats.kern_change++;
			} else {
				stats.kern_new++;
			}
			dbdat.data = RTA_DATA(tb[NDA_LLADDR]);
			dbdat.size = RTA_PAYLOAD(tb[NDA_LLADDR]);
			dbase->put(dbase, &dbkey, &dbdat, 0);
		}
	}
	return 0;
}
Exemplo n.º 8
0
/* family = AF_UNSPEC finds ARP table entries.
   family = AF_LOCAL finds MAC addresses. */
int iface_enumerate(int family, void *parm, int (*callback)())
{
  struct sockaddr_nl addr;
  struct nlmsghdr *h;
  ssize_t len;
  static unsigned int seq = 0;
  int callback_ok = 1;

  struct {
    struct nlmsghdr nlh;
    struct rtgenmsg g; 
  } req;

  addr.nl_family = AF_NETLINK;
  addr.nl_pad = 0;
  addr.nl_groups = 0;
  addr.nl_pid = 0; /* address to kernel */
 
 again: 
  if (family == AF_UNSPEC)
    req.nlh.nlmsg_type = RTM_GETNEIGH;
  else if (family == AF_LOCAL)
    req.nlh.nlmsg_type = RTM_GETLINK;
  else
    req.nlh.nlmsg_type = RTM_GETADDR;

  req.nlh.nlmsg_len = sizeof(req);
  req.nlh.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST | NLM_F_ACK; 
  req.nlh.nlmsg_pid = 0;
  req.nlh.nlmsg_seq = ++seq;
  req.g.rtgen_family = family; 

  /* Don't block in recvfrom if send fails */
  while(retry_send(sendto(daemon->netlinkfd, (void *)&req, sizeof(req), 0, 
			  (struct sockaddr *)&addr, sizeof(addr))));

  if (errno != 0)
    return 0;
    
  while (1)
    {
      if ((len = netlink_recv()) == -1)
	{
	  if (errno == ENOBUFS)
	    {
	      sleep(1);
	      goto again;
	    }
	  return 0;
	}

      for (h = (struct nlmsghdr *)iov.iov_base; NLMSG_OK(h, (size_t)len); h = NLMSG_NEXT(h, len))
	if (h->nlmsg_pid != netlink_pid || h->nlmsg_type == NLMSG_ERROR)
	  {
	    /* May be multicast arriving async */
	    nl_async(h);
	  }
	else if (h->nlmsg_seq != seq)
	  {
	    /* May be part of incomplete response to previous request after
	       ENOBUFS. Drop it. */
	    continue;
	  }
	else if (h->nlmsg_type == NLMSG_DONE)
	  return callback_ok;
	else if (h->nlmsg_type == RTM_NEWADDR && family != AF_UNSPEC && family != AF_LOCAL)
	  {
	    struct ifaddrmsg *ifa = NLMSG_DATA(h);  
	    struct rtattr *rta = IFA_RTA(ifa);
	    unsigned int len1 = h->nlmsg_len - NLMSG_LENGTH(sizeof(*ifa));
	    
	    if (ifa->ifa_family == family)
	      {
		if (ifa->ifa_family == AF_INET)
		  {
		    struct in_addr netmask, addr, broadcast;
		    char *label = NULL;

		    netmask.s_addr = htonl(~(in_addr_t)0 << (32 - ifa->ifa_prefixlen));

		    addr.s_addr = 0;
		    broadcast.s_addr = 0;
		    
		    while (RTA_OK(rta, len1))
		      {
			if (rta->rta_type == IFA_LOCAL)
			  addr = *((struct in_addr *)(rta+1));
			else if (rta->rta_type == IFA_BROADCAST)
			  broadcast = *((struct in_addr *)(rta+1));
			else if (rta->rta_type == IFA_LABEL)
			  label = RTA_DATA(rta);
			
			rta = RTA_NEXT(rta, len1);
		      }
		    
		    if (addr.s_addr && callback_ok)
		      if (!((*callback)(addr, ifa->ifa_index, label,  netmask, broadcast, parm)))
			callback_ok = 0;
		  }
#ifdef HAVE_IPV6
		else if (ifa->ifa_family == AF_INET6)
		  {
		    struct in6_addr *addrp = NULL;
		    u32 valid = 0, preferred = 0;
		    int flags = 0;
		    
		    while (RTA_OK(rta, len1))
		      {
			if (rta->rta_type == IFA_ADDRESS)
			  addrp = ((struct in6_addr *)(rta+1)); 
			else if (rta->rta_type == IFA_CACHEINFO)
			  {
			    struct ifa_cacheinfo *ifc = (struct ifa_cacheinfo *)(rta+1);
			    preferred = ifc->ifa_prefered;
			    valid = ifc->ifa_valid;
			  }
			rta = RTA_NEXT(rta, len1);
		      }
		    
		    if (ifa->ifa_flags & IFA_F_TENTATIVE)
		      flags |= IFACE_TENTATIVE;
		    
		    if (ifa->ifa_flags & IFA_F_DEPRECATED)
		      flags |= IFACE_DEPRECATED;
		    
		    if (!(ifa->ifa_flags & IFA_F_TEMPORARY))
		      flags |= IFACE_PERMANENT;
    		    
		    if (addrp && callback_ok)
		      if (!((*callback)(addrp, (int)(ifa->ifa_prefixlen), (int)(ifa->ifa_scope), 
					(int)(ifa->ifa_index), flags, 
					(int) preferred, (int)valid, parm)))
			callback_ok = 0;
		  }
#endif
	      }
	  }
	else if (h->nlmsg_type == RTM_NEWNEIGH && family == AF_UNSPEC)
	  {
	    struct ndmsg *neigh = NLMSG_DATA(h);  
	    struct rtattr *rta = NDA_RTA(neigh);
	    unsigned int len1 = h->nlmsg_len - NLMSG_LENGTH(sizeof(*neigh));
	    size_t maclen = 0;
	    char *inaddr = NULL, *mac = NULL;
	    
	    while (RTA_OK(rta, len1))
	      {
		if (rta->rta_type == NDA_DST)
		  inaddr = (char *)(rta+1);
		else if (rta->rta_type == NDA_LLADDR)
		  {
		    maclen = rta->rta_len - sizeof(struct rtattr);
		    mac = (char *)(rta+1);
		  }
		
		rta = RTA_NEXT(rta, len1);
	      }

	    if (!(neigh->ndm_state & (NUD_NOARP | NUD_INCOMPLETE | NUD_FAILED)) &&
		inaddr && mac && callback_ok)
	      if (!((*callback)(neigh->ndm_family, inaddr, mac, maclen, parm)))
		callback_ok = 0;
	  }
#ifdef HAVE_DHCP6
	else if (h->nlmsg_type == RTM_NEWLINK && family == AF_LOCAL)
	  {
	    struct ifinfomsg *link =  NLMSG_DATA(h);
	    struct rtattr *rta = IFLA_RTA(link);
	    unsigned int len1 = h->nlmsg_len - NLMSG_LENGTH(sizeof(*link));
	    char *mac = NULL;
	    size_t maclen = 0;

	    while (RTA_OK(rta, len1))
	      {
		if (rta->rta_type == IFLA_ADDRESS)
		  {
		    maclen = rta->rta_len - sizeof(struct rtattr);
		    mac = (char *)(rta+1);
		  }
		
		rta = RTA_NEXT(rta, len1);
	      }

	    if (mac && callback_ok && !((link->ifi_flags & (IFF_LOOPBACK | IFF_POINTOPOINT))) && 
		!((*callback)((int)link->ifi_index, (unsigned int)link->ifi_type, mac, maclen, parm)))
	      callback_ok = 0;
	  }
#endif
    }
}
Exemplo n.º 9
0
int print_neigh(struct sockaddr_nl *who, struct nlmsghdr *n, void *arg)
{
	FILE *fp = (FILE*)arg;
	struct ndmsg *r = NLMSG_DATA(n);
	int len = n->nlmsg_len;
	struct rtattr * tb[NDA_MAX+1];
	char abuf[256];

	if (n->nlmsg_type != RTM_NEWNEIGH && n->nlmsg_type != RTM_DELNEIGH) {
		fprintf(stderr, "Not RTM_NEWNEIGH: %08x %08x %08x\n",
			n->nlmsg_len, n->nlmsg_type, n->nlmsg_flags);
		
		return 0;
	}
	len -= NLMSG_LENGTH(sizeof(*r));
	if (len < 0) {
		fprintf(stderr, "BUG: wrong nlmsg len %d\n", len);
		return -1;
	}

	if (filter.flushb && n->nlmsg_type != RTM_NEWNEIGH)
		return 0;

	if (filter.family && filter.family != r->ndm_family)
		return 0;
	if (filter.index && filter.index != r->ndm_ifindex)
		return 0;
	if (!(filter.state&r->ndm_state) &&
	    (r->ndm_state || !(filter.state&0x100)) &&
             (r->ndm_family != AF_DECnet))
		return 0;

	memset(tb, 0, sizeof(tb));
	parse_rtattr(tb, NDA_MAX, NDA_RTA(r), n->nlmsg_len - NLMSG_LENGTH(sizeof(*r)));

	if (tb[NDA_DST]) {
		if (filter.pfx.family) {
			inet_prefix dst;
			memset(&dst, 0, sizeof(dst));
			dst.family = r->ndm_family;
			memcpy(&dst.data, RTA_DATA(tb[NDA_DST]), RTA_PAYLOAD(tb[NDA_DST]));
			if (inet_addr_match(&dst, &filter.pfx, filter.pfx.bitlen))
				return 0;
		}
	}
	if (filter.unused_only && tb[NDA_CACHEINFO]) {
		struct nda_cacheinfo *ci = RTA_DATA(tb[NDA_CACHEINFO]);
		if (ci->ndm_refcnt)
			return 0;
	}

	if (filter.flushb) {
		struct nlmsghdr *fn;
		if (NLMSG_ALIGN(filter.flushp) + n->nlmsg_len > filter.flushe) {
			if (flush_update())
				return -1;
		}
		fn = (struct nlmsghdr*)(filter.flushb + NLMSG_ALIGN(filter.flushp));
		memcpy(fn, n, n->nlmsg_len);
		fn->nlmsg_type = RTM_DELNEIGH;
		fn->nlmsg_flags = NLM_F_REQUEST;
		fn->nlmsg_seq = ++filter.rth->seq;
		filter.flushp = (((char*)fn) + n->nlmsg_len) - filter.flushb;
		filter.flushed++;
		if (show_stats < 2)
			return 0;
	}

	if (tb[NDA_DST]) {
		fprintf(fp, "%s ", 
			format_host(r->ndm_family,
				    RTA_PAYLOAD(tb[NDA_DST]),
				    RTA_DATA(tb[NDA_DST]),
				    abuf, sizeof(abuf)));
	}
	if (!filter.index && r->ndm_ifindex)
		fprintf(fp, "dev %s ", ll_index_to_name(r->ndm_ifindex));
	if (tb[NDA_LLADDR]) {
		SPRINT_BUF(b1);
		fprintf(fp, "lladdr %s", ll_addr_n2a(RTA_DATA(tb[NDA_LLADDR]),
					      RTA_PAYLOAD(tb[NDA_LLADDR]),
					      ll_index_to_type(r->ndm_ifindex),
					      b1, sizeof(b1)));
	}
	if (r->ndm_flags & NTF_ROUTER) {
		fprintf(fp, " router");
	}
	if (tb[NDA_CACHEINFO] && show_stats) {
		static int hz;
		struct nda_cacheinfo *ci = RTA_DATA(tb[NDA_CACHEINFO]);
		if (!hz)
			hz = get_hz();
		if (ci->ndm_refcnt)
			printf(" ref %d", ci->ndm_refcnt);
		fprintf(fp, " used %d/%d/%d", ci->ndm_used/hz,
		       ci->ndm_confirmed/hz, ci->ndm_updated/hz);
	}

	if (r->ndm_state) {
		SPRINT_BUF(b1);
		fprintf(fp, " nud %s", nud_state_n2a(r->ndm_state, b1, sizeof(b1)));
	}
	fprintf(fp, "\n");

	fflush(fp);
	return 0;
}
Exemplo n.º 10
0
/* family = AF_UNSPEC finds ARP table entries.
   family = AF_LOCAL finds MAC addresses. */
int iface_enumerate(int family, void *parm, int (*callback)())
{
  struct sockaddr_nl addr;
  struct nlmsghdr *h;
  ssize_t len;
  static unsigned int seq = 0;
  int callback_ok = 1, newaddr = 0;

  struct {
    struct nlmsghdr nlh;
    struct rtgenmsg g; 
  } req;

  addr.nl_family = AF_NETLINK;
  addr.nl_pad = 0;
  addr.nl_groups = 0;
  addr.nl_pid = 0; /* address to kernel */
 
 again: 
  if (family == AF_UNSPEC)
    req.nlh.nlmsg_type = RTM_GETNEIGH;
  else if (family == AF_LOCAL)
    req.nlh.nlmsg_type = RTM_GETLINK;
  else
    req.nlh.nlmsg_type = RTM_GETADDR;

  req.nlh.nlmsg_len = sizeof(req);
  req.nlh.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST | NLM_F_ACK; 
  req.nlh.nlmsg_pid = 0;
  req.nlh.nlmsg_seq = ++seq;
  req.g.rtgen_family = family; 

  /* Don't block in recvfrom if send fails */
  while((len = sendto(daemon->netlinkfd, (void *)&req, sizeof(req), 0, 
		      (struct sockaddr *)&addr, sizeof(addr))) == -1 && retry_send());
  
  if (len == -1)
    return 0;
    
  while (1)
    {
      if ((len = netlink_recv()) == -1)
	{
	  if (errno == ENOBUFS)
	    {
	      sleep(1);
	      goto again;
	    }
	  return 0;
	}

      for (h = (struct nlmsghdr *)iov.iov_base; NLMSG_OK(h, (size_t)len); h = NLMSG_NEXT(h, len))
	if (h->nlmsg_seq != seq || h->nlmsg_pid != netlink_pid || h->nlmsg_type == NLMSG_ERROR)
	  {
	    /* May be multicast arriving async */
	    if (nl_async(h) && option_bool(OPT_CLEVERBIND))
	      newaddr = 1; 
	  }
	else if (h->nlmsg_type == NLMSG_DONE)
	  {
	    /* handle async new interface address arrivals, these have to be done
	       after we complete as we're not re-entrant */
	    if (newaddr) 
	      {
		enumerate_interfaces();
		create_bound_listeners(0);
	      }
	    
	    return callback_ok;
	  }
	else if (h->nlmsg_type == RTM_NEWADDR && family != AF_UNSPEC && family != AF_LOCAL)
	  {
	    struct ifaddrmsg *ifa = NLMSG_DATA(h);  
	    struct rtattr *rta = IFA_RTA(ifa);
	    unsigned int len1 = h->nlmsg_len - NLMSG_LENGTH(sizeof(*ifa));
	    
	    if (ifa->ifa_family == family)
	      {
		if (ifa->ifa_family == AF_INET)
		  {
		    struct in_addr netmask, addr, broadcast;
		    
		    netmask.s_addr = htonl(0xffffffff << (32 - ifa->ifa_prefixlen));
		    addr.s_addr = 0;
		    broadcast.s_addr = 0;
		    
		    while (RTA_OK(rta, len1))
		      {
			if (rta->rta_type == IFA_LOCAL)
			  addr = *((struct in_addr *)(rta+1));
			else if (rta->rta_type == IFA_BROADCAST)
			  broadcast = *((struct in_addr *)(rta+1));
			
			rta = RTA_NEXT(rta, len1);
		      }
		    
		    if (addr.s_addr && callback_ok)
		      if (!((*callback)(addr, ifa->ifa_index, netmask, broadcast, parm)))
			callback_ok = 0;
		  }
#ifdef HAVE_IPV6
		else if (ifa->ifa_family == AF_INET6)
		  {
		    struct in6_addr *addrp = NULL;
		    while (RTA_OK(rta, len1))
		      {
			if (rta->rta_type == IFA_ADDRESS)
			  addrp = ((struct in6_addr *)(rta+1)); 
			
			rta = RTA_NEXT(rta, len1);
		      }
		    
		    if (addrp && callback_ok)
		      if (!((*callback)(addrp, (int)(ifa->ifa_prefixlen), (int)(ifa->ifa_scope), 
					(int)(ifa->ifa_index), (int)(ifa->ifa_flags & IFA_F_TENTATIVE), parm)))
			callback_ok = 0;
		  }
#endif
	      }
	  }
	else if (h->nlmsg_type == RTM_NEWNEIGH && family == AF_UNSPEC)
	  {
	    struct ndmsg *neigh = NLMSG_DATA(h);  
	    struct rtattr *rta = NDA_RTA(neigh);
	    unsigned int len1 = h->nlmsg_len - NLMSG_LENGTH(sizeof(*neigh));
	    size_t maclen = 0;
	    char *inaddr = NULL, *mac = NULL;
	    
	    while (RTA_OK(rta, len1))
	      {
		if (rta->rta_type == NDA_DST)
		  inaddr = (char *)(rta+1);
		else if (rta->rta_type == NDA_LLADDR)
		  {
		    maclen = rta->rta_len - sizeof(struct rtattr);
		    mac = (char *)(rta+1);
		  }
		
		rta = RTA_NEXT(rta, len1);
	      }

	    if (inaddr && mac && callback_ok)
	      if (!((*callback)(neigh->ndm_family, inaddr, mac, maclen, parm)))
		callback_ok = 0;
	  }
#ifdef HAVE_DHCP6
	else if (h->nlmsg_type == RTM_NEWLINK && family == AF_LOCAL)
	  {
	    struct ifinfomsg *link =  NLMSG_DATA(h);
	    struct rtattr *rta = IFLA_RTA(link);
	    unsigned int len1 = h->nlmsg_len - NLMSG_LENGTH(sizeof(*link));
	    char *mac = NULL;
	    size_t maclen = 0;

	    while (RTA_OK(rta, len1))
	      {
		if (rta->rta_type == IFLA_ADDRESS)
		  {
		    maclen = rta->rta_len - sizeof(struct rtattr);
		    mac = (char *)(rta+1);
		  }
		
		rta = RTA_NEXT(rta, len1);
	      }

	    if (mac && callback_ok && !((link->ifi_flags & (IFF_LOOPBACK | IFF_POINTOPOINT))) && 
		!((*callback)((int)link->ifi_index, (unsigned int)link->ifi_type, mac, maclen, parm)))
	      callback_ok = 0;
	  }
#endif
    }
}
Exemplo n.º 11
0
static int addr2mac_init_linux()
{
  struct nlmsghdr   *nlmsg;
  struct ndmsg      *ndmsg;
  struct rtattr     *rta, *tb[NDA_MAX];
  struct sockaddr_nl snl;
  struct msghdr      msg;
  struct iovec       iov;
  struct timeval     tv;
  pid_t              pid;
  uint8_t            buf[16384];
  ssize_t            ssize;
  ssize_t            len;
  int                rlen;
  int                fd = -1;
  void              *ip, *mac;
  int                iptype;

  pid = getpid();

  memset(buf, 0, sizeof(buf));
  nlmsg = (struct nlmsghdr *)buf;
  nlmsg->nlmsg_len   = NLMSG_LENGTH(sizeof(struct ndmsg));
  nlmsg->nlmsg_type  = RTM_GETNEIGH;
  nlmsg->nlmsg_flags = NLM_F_REQUEST | NLM_F_ROOT | NLM_F_MATCH;
  nlmsg->nlmsg_seq   = 0;
  nlmsg->nlmsg_pid   = pid;

  ndmsg = NLMSG_DATA(nlmsg);
  ndmsg->ndm_family = AF_UNSPEC;

  if((fd = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_ROUTE)) == -1)
    {
      printerror(errno, strerror, __func__, "could not open netlink");
      goto err;
    }

  len = nlmsg->nlmsg_len;
  if((ssize = send(fd, buf, len, 0)) < len)
    {
      if(ssize == -1)
	{
	  printerror(errno, strerror, __func__, "could not send netlink");
	}
      goto err;
    }

  for(;;)
    {
      iov.iov_base = buf;
      iov.iov_len = sizeof(buf);

      msg.msg_name = &snl;
      msg.msg_namelen = sizeof(snl);
      msg.msg_iov = &iov;
      msg.msg_iovlen = 1;
      msg.msg_control = NULL;
      msg.msg_controllen = 0;
      msg.msg_flags = 0;

      if((len = recvmsg(fd, &msg, 0)) == -1)
	{
	  if(errno == EINTR) continue;
	  printerror(errno, strerror, __func__, "could not recvmsg");
	  goto err;
	}

      gettimeofday_wrap(&tv);

      nlmsg = (struct nlmsghdr *)buf;
      while(NLMSG_OK(nlmsg, len))
	{
	  if(nlmsg->nlmsg_pid != pid || nlmsg->nlmsg_seq != 0)
	    {
	      goto skip;
	    }

	  if(nlmsg->nlmsg_type == NLMSG_DONE)
	    {
	      goto done;
	    }

	  if(nlmsg->nlmsg_type == NLMSG_ERROR)
	    {
	      scamper_debug(__func__, "nlmsg error");
	      goto err;
	    }

	  /* get current neighbour entries only */
	  if(nlmsg->nlmsg_type != RTM_NEWNEIGH)
	    {
	      goto skip;
	    }

	  /* make sure the address is reachable */
	  ndmsg = NLMSG_DATA(nlmsg);
	  if((ndmsg->ndm_state & NUD_REACHABLE) == 0)
	    {
	      goto skip;
	    }

	  /* make sure we can process this address type */
	  switch(ndmsg->ndm_family)
	    {
	    case AF_INET:
	      iptype = SCAMPER_ADDR_TYPE_IPV4;
	      break;

	    case AF_INET6:
	      iptype = SCAMPER_ADDR_TYPE_IPV6;
	      break;

	    default:
	      goto skip;
	    }

	  /* fill a table with parameters from the payload */
	  memset(tb, 0, sizeof(tb));
	  rlen = nlmsg->nlmsg_len - NLMSG_LENGTH(sizeof(struct ndmsg));
	  for(rta = NDA_RTA(ndmsg); RTA_OK(rta,rlen); rta = RTA_NEXT(rta,rlen))
	    {
	      if(rta->rta_type >= NDA_MAX)
		continue;
	      tb[rta->rta_type] = rta;
	    }

	  /*
	   * skip if we don't have a destination IP address, or if
	   * we don't have an ethernet mac address
	   */
	  if(tb[NDA_DST] == NULL ||
	     tb[NDA_LLADDR] == NULL || RTA_PAYLOAD(tb[NDA_LLADDR]) != 6)
	    {
	      goto skip;
	    }

	  ip = RTA_DATA(tb[NDA_DST]);
	  mac = RTA_DATA(tb[NDA_LLADDR]);

	  addr2mac_add(ndmsg->ndm_ifindex, iptype, ip, mac, tv.tv_sec+600);

	skip:
	  nlmsg = NLMSG_NEXT(nlmsg, len);
	}
    }

 done:
  close(fd);
  return 0;

 err:
  close(fd);
  return -1;
}
Exemplo n.º 12
0
static int send_probe(int ifindex, __u32 addr)
{
	struct ifreq ifr = { .ifr_ifindex = ifindex };
	struct sockaddr_in dst = {
		.sin_family = AF_INET,
		.sin_port = htons(1025),
		.sin_addr.s_addr = addr,
	};
	socklen_t len;
	unsigned char buf[256];
	struct arphdr *ah = (struct arphdr *)buf;
	unsigned char *p = (unsigned char *)(ah+1);
	struct sockaddr_ll sll = {
		.sll_family = AF_PACKET,
		.sll_ifindex = ifindex,
		.sll_protocol = htons(ETH_P_ARP),
	};

	if (ioctl(udp_sock, SIOCGIFNAME, &ifr))
		return -1;
	if (ioctl(udp_sock, SIOCGIFHWADDR, &ifr))
		return -1;
	if (ifr.ifr_hwaddr.sa_family != ARPHRD_ETHER)
		return -1;
	if (setsockopt(udp_sock, SOL_SOCKET, SO_BINDTODEVICE, ifr.ifr_name, strlen(ifr.ifr_name)+1) < 0)
		return -1;

	if (connect(udp_sock, (struct sockaddr *)&dst, sizeof(dst)) < 0)
		return -1;
	len = sizeof(dst);
	if (getsockname(udp_sock, (struct sockaddr *)&dst, &len) < 0)
		return -1;

	ah->ar_hrd = htons(ifr.ifr_hwaddr.sa_family);
	ah->ar_pro = htons(ETH_P_IP);
	ah->ar_hln = 6;
	ah->ar_pln = 4;
	ah->ar_op  = htons(ARPOP_REQUEST);

	memcpy(p, ifr.ifr_hwaddr.sa_data, ah->ar_hln);
	p += ah->ar_hln;

	memcpy(p, &dst.sin_addr, 4);
	p += 4;

	memset(sll.sll_addr, 0xFF, sizeof(sll.sll_addr));
	memcpy(p, &sll.sll_addr, ah->ar_hln);
	p += ah->ar_hln;

	memcpy(p, &addr, 4);
	p += 4;

	if (sendto(pset[0].fd, buf, p-buf, 0, (struct sockaddr *)&sll, sizeof(sll)) < 0)
		return -1;
	stats.probes_sent++;
	return 0;
}

/* Be very tough on sending probes: 1 per second with burst of 3. */

static int queue_active_probe(int ifindex, __u32 addr)
{
	static struct timeval prev;
	static int buckets;
	struct timeval now;

	gettimeofday(&now, NULL);
	if (prev.tv_sec) {
		int diff = (now.tv_sec-prev.tv_sec)*1000+(now.tv_usec-prev.tv_usec)/1000;

		buckets += diff;
	} else {
		buckets = broadcast_burst;
	}
	if (buckets > broadcast_burst)
		buckets = broadcast_burst;
	if (buckets >= broadcast_rate && !send_probe(ifindex, addr)) {
		buckets -= broadcast_rate;
		prev = now;
		return 0;
	}
	stats.probes_suppressed++;
	return -1;
}

static int respond_to_kernel(int ifindex, __u32 addr, char *lla, int llalen)
{
	struct {
		struct nlmsghdr	n;
		struct ndmsg		ndm;
		char			buf[256];
	} req = {
		.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg)),
		.n.nlmsg_flags = NLM_F_REQUEST,
		.n.nlmsg_type = RTM_NEWNEIGH,
		.ndm.ndm_family = AF_INET,
		.ndm.ndm_state = NUD_STALE,
		.ndm.ndm_ifindex = ifindex,
		.ndm.ndm_type = RTN_UNICAST,
	};

	addattr_l(&req.n, sizeof(req), NDA_DST, &addr, 4);
	addattr_l(&req.n, sizeof(req), NDA_LLADDR, lla, llalen);
	return rtnl_send(&rth, &req, req.n.nlmsg_len) <= 0;
}

static void prepare_neg_entry(__u8 *ndata, __u32 stamp)
{
	ndata[0] = 0xFF;
	ndata[1] = 0;
	ndata[2] = stamp>>24;
	ndata[3] = stamp>>16;
	ndata[4] = stamp>>8;
	ndata[5] = stamp;
}


static int do_one_request(struct nlmsghdr *n)
{
	struct ndmsg *ndm = NLMSG_DATA(n);
	int len = n->nlmsg_len;
	struct rtattr *tb[NDA_MAX+1];
	struct dbkey key;
	DBT dbkey, dbdat;
	int do_acct = 0;

	if (n->nlmsg_type == NLMSG_DONE) {
		dbase->sync(dbase, 0);

		/* Now we have at least mirror of kernel db, so that
		 * may start real resolution.
		 */
		do_sysctl_adjustments();
		return 0;
	}

	if (n->nlmsg_type != RTM_GETNEIGH && n->nlmsg_type != RTM_NEWNEIGH)
		return 0;

	len -= NLMSG_LENGTH(sizeof(*ndm));
	if (len < 0)
		return -1;

	if (ndm->ndm_family != AF_INET ||
	    (ifnum && !handle_if(ndm->ndm_ifindex)) ||
	    ndm->ndm_flags ||
	    ndm->ndm_type != RTN_UNICAST ||
	    !(ndm->ndm_state&~NUD_NOARP))
		return 0;

	parse_rtattr(tb, NDA_MAX, NDA_RTA(ndm), len);

	if (!tb[NDA_DST])
		return 0;

	key.iface = ndm->ndm_ifindex;
	memcpy(&key.addr, RTA_DATA(tb[NDA_DST]), 4);
	dbkey.data = &key;
	dbkey.size = sizeof(key);

	if (dbase->get(dbase, &dbkey, &dbdat, 0) != 0) {
		dbdat.data = 0;
		dbdat.size = 0;
	}

	if (n->nlmsg_type == RTM_GETNEIGH) {
		if (!(n->nlmsg_flags&NLM_F_REQUEST))
			return 0;

		if (!(ndm->ndm_state&(NUD_PROBE|NUD_INCOMPLETE))) {
			stats.app_bad++;
			return 0;
		}

		if (ndm->ndm_state&NUD_PROBE) {
			/* If we get this, kernel still has some valid
			 * address, but unicast probing failed and host
			 * is either dead or changed its mac address.
			 * Kernel is going to initiate broadcast resolution.
			 * OK, we invalidate our information as well.
			 */
			if (dbdat.data && !IS_NEG(dbdat.data))
				stats.app_neg++;

			dbase->del(dbase, &dbkey, 0);
		} else {
			/* If we get this kernel does not have any information.
			 * If we have something tell this to kernel. */
			stats.app_recv++;
			if (dbdat.data && !IS_NEG(dbdat.data)) {
				stats.app_success++;
				respond_to_kernel(key.iface, key.addr, dbdat.data, dbdat.size);
				return 0;
			}

			/* Sheeit! We have nothing to tell. */
			/* If we have recent negative entry, be silent. */
			if (dbdat.data && NEG_VALID(dbdat.data)) {
				if (NEG_CNT(dbdat.data) >= active_probing) {
					stats.app_suppressed++;
					return 0;
				}
				do_acct = 1;
			}
		}

		if (active_probing &&
		    queue_active_probe(ndm->ndm_ifindex, key.addr) == 0 &&
		    do_acct) {
			NEG_CNT(dbdat.data)++;
			dbase->put(dbase, &dbkey, &dbdat, 0);
		}
	} else if (n->nlmsg_type == RTM_NEWNEIGH) {
		if (n->nlmsg_flags&NLM_F_REQUEST)
			return 0;

		if (ndm->ndm_state&NUD_FAILED) {
			/* Kernel was not able to resolve. Host is dead.
			 * Create negative entry if it is not present
			 * or renew it if it is too old. */
			if (!dbdat.data ||
			    !IS_NEG(dbdat.data) ||
			    !NEG_VALID(dbdat.data)) {
				__u8 ndata[6];

				stats.kern_neg++;
				prepare_neg_entry(ndata, time(NULL));
				dbdat.data = ndata;
				dbdat.size = sizeof(ndata);
				dbase->put(dbase, &dbkey, &dbdat, 0);
			}
		} else if (tb[NDA_LLADDR]) {
			if (dbdat.data && !IS_NEG(dbdat.data)) {
				if (memcmp(RTA_DATA(tb[NDA_LLADDR]), dbdat.data, dbdat.size) == 0)
					return 0;
				stats.kern_change++;
			} else {
				stats.kern_new++;
			}
			dbdat.data = RTA_DATA(tb[NDA_LLADDR]);
			dbdat.size = RTA_PAYLOAD(tb[NDA_LLADDR]);
			dbase->put(dbase, &dbkey, &dbdat, 0);
		}
	}
	return 0;
}

static void load_initial_table(void)
{
	if (rtnl_wilddump_request(&rth, AF_INET, RTM_GETNEIGH) < 0) {
		perror("dump request failed");
		exit(1);
	}

}

static void get_kern_msg(void)
{
	int status;
	struct nlmsghdr *h;
	struct sockaddr_nl nladdr = {};
	struct iovec iov;
	char   buf[8192];
	struct msghdr msg = {
		(void *)&nladdr, sizeof(nladdr),
		&iov,	1,
		NULL,	0,
		0
	};

	iov.iov_base = buf;
	iov.iov_len = sizeof(buf);

	status = recvmsg(rth.fd, &msg, MSG_DONTWAIT);

	if (status <= 0)
		return;

	if (msg.msg_namelen != sizeof(nladdr))
		return;

	if (nladdr.nl_pid)
		return;

	for (h = (struct nlmsghdr *)buf; status >= sizeof(*h); ) {
		int len = h->nlmsg_len;
		int l = len - sizeof(*h);

		if (l < 0 || len > status)
			return;

		if (do_one_request(h) < 0)
			return;

		status -= NLMSG_ALIGN(len);
		h = (struct nlmsghdr *)((char *)h + NLMSG_ALIGN(len));
	}
}