//----------------------------------------------------------------------------------
//! Handle field changes of the field \c field.
//----------------------------------------------------------------------------------
void WEMNodesToFile::handleNotification (Field *field)
{
  ML_TRACE_IN("WEMNodesToFile::handleNotification()")

  WEMInspector::handleNotification(field);
  if (field == _saveFld) {
    OutputNodes();
  }
}
Exemplo n.º 2
0
void
ScriptProcessorNode::UpdateConnectedStatus()
{
  bool isConnected = mHasPhantomInput ||
    !(OutputNodes().IsEmpty() && OutputParams().IsEmpty()
      && InputNodes().IsEmpty());

  // Events are queued even when there is no listener because a listener
  // may be added while events are in the queue.
  SendInt32ParameterToStream(ScriptProcessorNodeEngine::IS_CONNECTED,
                             isConnected);

  if (isConnected && HasListenersFor(nsGkAtoms::onaudioprocess)) {
    MarkActive();
  } else {
    MarkInactive();
  }
}
//---------------------------------------------------------
DMat& NDG2D::ConformingHrefine2D(IMat& edgerefineflag, const DMat& Qin)
//---------------------------------------------------------
{
#if (0)
  OutputNodes(false); // volume nodes
//OutputNodes(true);  // face nodes
#endif


  // function newQ = ConformingHrefine2D(edgerefineflag, Q)
  // Purpose: apply edge splits as requested by edgerefineflag

  IVec v1("v1"), v2("v2"), v3("v3"), tvi;
  DVec x1("x1"), x2("x2"), x3("x3"), y1("y1"), y2("y2"), y3("y3");
  DVec a1("a1"), a2("a2"), a3("a3");

  // count vertices
  assert (VX.size() == Nv);

  // find vertex triplets for elements to be refined
  v1 = EToV(All,1);  v2 = EToV(All,2);  v3 = EToV(All,3);
  x1 = VX(v1);       x2 = VX(v2);       x3 = VX(v3);
  y1 = VY(v1);       y2 = VY(v2);       y3 = VY(v3);

  // find angles at each element vertex (in radians)
  VertexAngles(x1,x2,x3,y1,y2,y3, a1,a2,a3);

  // absolute value of angle size
  a1.set_abs(); a2.set_abs(); a3.set_abs();

  int k=0,k1=0,f1=0,k2=0,f2=0, e1=0,e2=0,e3=0, b1=0,b2=0,b3=0, ref=0;
  IVec m1,m2,m3; DVec mx1, my1, mx2, my2, mx3, my3;

  // create new vertices at edge centers of marked elements 
  // (use unique numbering derived from unique edge number))
  m1 = max(IVec(Nv*(v1-1)+v2+1), IVec(Nv*(v2-1)+v1+1)); mx1=0.5*(x1+x2); my1=0.5*(y1+y2);
  m2 = max(IVec(Nv*(v2-1)+v3+1), IVec(Nv*(v3-1)+v2+1)); mx2=0.5*(x2+x3); my2=0.5*(y2+y3);
  m3 = max(IVec(Nv*(v1-1)+v3+1), IVec(Nv*(v3-1)+v1+1)); mx3=0.5*(x3+x1); my3=0.5*(y3+y1);

  // ensure that both elements sharing an edge are split
  for (k1=1; k1<=K; ++k1) {
    for (f1=1; f1<=Nfaces; ++f1) {
      if (edgerefineflag(k1,f1)) {
        k2 = EToE(k1,f1); 
        f2 = EToF(k1,f1);
        edgerefineflag(k2,f2) = 1;
      }
    }
  }

  // store old data
  IMat oldEToV = EToV;  DVec oldVX = VX, oldVY = VY; 

  // count the number of elements in the refined mesh
  int newK = countrefinefaces(edgerefineflag);
  EToV.resize(newK, Nfaces, true, 0);
  IMat newBCType(newK,3, "newBCType");
  
  //   kold = [];
  IVec kold(newK, "kold");  Index1D KI,KIo;

  int sk=1, skstart=0, skend=0;

  for (k=1; k<=K; ++k)
  {
    skstart = sk;

    e1 = edgerefineflag(k,1); b1 = BCType(k,1);
    e2 = edgerefineflag(k,2); b2 = BCType(k,2);
    e3 = edgerefineflag(k,3); b3 = BCType(k,3);
    ref = e1 + 2*e2 + 4*e3;
    
    switch (ref) {

    case 0: 
      EToV(sk, All) = IVec(v1(k),v2(k),v3(k));    newBCType(sk,All) = IVec(b1, b2, b3); ++sk;
      break;

    case 1:
      EToV(sk, All) = IVec(v1(k),m1(k),v3(k));    newBCType(sk,All) = IVec(b1,  0, b3); ++sk;
      EToV(sk, All) = IVec(m1(k),v2(k),v3(k));    newBCType(sk,All) = IVec(b1, b2,  0); ++sk;
      break;

    case 2:
      EToV(sk, All) = IVec(v2(k),m2(k),v1(k));    newBCType(sk,All) = IVec(b2,  0, b1); ++sk;
      EToV(sk, All) = IVec(m2(k),v3(k),v1(k));    newBCType(sk,All) = IVec(b2, b3,  0); ++sk;
      break;

    case 4:
      EToV(sk, All) = IVec(v3(k),m3(k),v2(k));    newBCType(sk,All) = IVec(b3,  0, b2); ++sk;
      EToV(sk, All) = IVec(m3(k),v1(k),v2(k));    newBCType(sk,All) = IVec(b3, b1,  0); ++sk;
      break;

    case 3:
      EToV(sk, All) = IVec(m1(k),v2(k),m2(k));    newBCType(sk,All) = IVec(b1, b2,  0); ++sk;
      if (a1(k) > a3(k)) { // split largest angle
        EToV(sk, All) = IVec(v1(k),m1(k),m2(k));  newBCType(sk,All) = IVec(b1,  0,  0); ++sk;
        EToV(sk, All) = IVec(v1(k),m2(k),v3(k));  newBCType(sk,All) = IVec( 0, b2, b3); ++sk;
      } else {
        EToV(sk, All) = IVec(v3(k),m1(k),m2(k));  newBCType(sk,All) = IVec( 0,  0, b2); ++sk;
        EToV(sk, All) = IVec(v3(k),v1(k),m1(k));  newBCType(sk,All) = IVec(b3, b1,  0); ++sk;
      }
      break;

    case 5:
      EToV(sk, All) = IVec(v1(k),m1(k),m3(k));    newBCType(sk,All) = IVec(b1,  0, b3); ++sk;
      if (a2(k) > a3(k)) { 
        // split largest angle
        EToV(sk, All) = IVec(v2(k),m3(k),m1(k));  newBCType(sk,All) = IVec( 0,  0, b1); ++sk;
        EToV(sk, All) = IVec(v2(k),v3(k),m3(k));  newBCType(sk,All) = IVec(b2, b3,  0); ++sk;
      } else {
        EToV(sk, All) = IVec(v3(k),m3(k),m1(k));  newBCType(sk,All) = IVec(b3,  0,  0); ++sk;
        EToV(sk, All) = IVec(v3(k),m1(k),v2(k));  newBCType(sk,All) = IVec( 0, b1, b2); ++sk;
      }
      break;

    case 6:
      EToV(sk, All) = IVec(v3(k),m3(k),m2(k));    newBCType(sk,All) = IVec(b3,  0, b2); ++sk;
      if (a1(k) > a2(k)) { 
        // split largest angle
        EToV(sk, All) = IVec(v1(k),m2(k),m3(k));  newBCType(sk,All) = IVec( 0, 0, b3); ++sk;
        EToV(sk, All) = IVec(v1(k),v2(k),m2(k));  newBCType(sk,All) = IVec(b1, b2,  0); ++sk;
      } else {
        EToV(sk, All) = IVec(v2(k),m2(k),m3(k));  newBCType(sk,All) = IVec(b2,  0,  0); ++sk;
        EToV(sk, All) = IVec(v2(k),m3(k),v1(k));  newBCType(sk,All) = IVec( 0 , b3, b1); ++sk;
      }
      break;

    default:
      // split all 
      EToV(sk, All) = IVec(m1(k),m2(k),m3(k)); newBCType(sk, All) = IVec( 0, 0,  0); ++sk;
      EToV(sk, All) = IVec(v1(k),m1(k),m3(k)); newBCType(sk, All) = IVec(b1, 0, b3); ++sk;
      EToV(sk, All) = IVec(v2(k),m2(k),m1(k)); newBCType(sk, All) = IVec(b2, 0, b1); ++sk;
      EToV(sk, All) = IVec(v3(k),m3(k),m2(k)); newBCType(sk, All) = IVec(b3, 0, b2); ++sk;
      break;
    }
    
    skend = sk;

    // kold = [kold; k*ones(skend-skstart, 1)];

    // element k is to be refined into (1:4) child elements.
    // store parent element numbers in array "kold" to help 
    // with accessing parent vertex data during refinement.

    KI.reset(skstart, skend-1); // ids of child elements
    kold(KI) = k;               // mark as children of element k
  }

  // Finished with edgerefineflag.  Delete if OBJ_temp
  if (edgerefineflag.get_mode() == OBJ_temp) { 
    delete (&edgerefineflag); 
  }


  // renumber new nodes contiguously
  // ids = unique([v1;v2;v3;m1;m2;m3]);
  bool unique=true; IVec IDS, ids;
  IDS = concat( concat(v1,v2,v3), concat(m1,m2,m3) );
  ids = sort(IDS, unique);
  Nv = ids.size();

  int max_id = EToV.max_val();
  umMSG(1, "max id in EToV is %d\n", max_id);

  //         M     N   nnz vals triplet
  CSi newids(max_id,1, Nv,  1,    1  );
  //  newids = sparse(max(max(EToV)),1);

  int i=0, j=1;
  for (i=1; i<=Nv; ++i) {
  //     newids(ids)= (1:Nv);
    newids.set1(ids(i),j, i);   // load 1-based triplets
  }          // row   col x
  newids.compress();            // convert to csc form


  // Matlab -----------------------------------------------
  // v1 = newids(v1); v2 = newids(v2); v3 = newids(v3);
  // m1 = newids(m1); m2 = newids(m2); m3 = newids(m3);
  //-------------------------------------------------------

  int KVi=v1.size(), KMi=m1.size();
  // read from copies, overwrite originals 
  
  // 1. reload ids for new vertices
  tvi = v1;  for (i=1;i<=KVi;++i) {v1(i) = newids(tvi(i), 1);}
  tvi = v2;  for (i=1;i<=KVi;++i) {v2(i) = newids(tvi(i), 1);}
  tvi = v3;  for (i=1;i<=KVi;++i) {v3(i) = newids(tvi(i), 1);}

  // 2. load ids for new (midpoint) vertices
  tvi = m1;  for (i=1;i<=KMi;++i) {m1(i) = newids(tvi(i), 1);}
  tvi = m2;  for (i=1;i<=KMi;++i) {m2(i) = newids(tvi(i), 1);}
  tvi = m3;  for (i=1;i<=KMi;++i) {m3(i) = newids(tvi(i), 1);}

  VX.resize(Nv); VY.resize(Nv);
  VX(v1) =  x1; VX(v2) =  x2; VX(v3) =  x3;
  VY(v1) =  y1; VY(v2) =  y2; VY(v3) =  y3;
  VX(m1) = mx1; VX(m2) = mx2; VX(m3) = mx3;
  VY(m1) = my1; VY(m2) = my2; VY(m3) = my3;


  if (newK != (sk-1)) {
    umERROR("NDG2D::ConformingHrefine2D", "Inconsistent element count: expect %d, but sk = %d", newK, (sk-1));
  } else {
    K = newK; // sk-1;
  }

  // dumpIMat(EToV, "EToV (before)");

  // EToV = newids(EToV);
  for (j=1; j<=3; ++j) {
    for (k=1; k<=K; ++k) {
      EToV(k,j) = newids(EToV(k,j), 1);
    }
  }

#if (0)
  dumpIMat(EToV, "EToV (after)");
  // umERROR("Checking ids", "Nigel, check EToV");
#endif


  BCType = newBCType;

  Nv = VX.size();
  // xold = x; yold = y;

  StartUp2D();


#if (1)
  OutputNodes(false); // volume nodes
//OutputNodes(true);  // face nodes
//umERROR("Exiting early", "Check adapted {volume,face} nodes");
#endif


  // allocate return object
  int Nfields = Qin.num_cols();
  DMat* tmpQ = new DMat(Np*K, Nfields, "newQ", OBJ_temp);
  DMat& newQ = *tmpQ;  // use a reference for syntax

  // quick return, if no interpolation is required
  if (Qin.size()<1) {
    return newQ;
  }

  
  DVec rOUT(Np),sOUT(Np),xout,yout,xy1(2),xy2(2),xy3(2),tmp(2),rhs;
  int ko=0,kv1=0,kv2=0,kv3=0,n=0;  DMat A(2,2), interp;
  DMat oldQ = const_cast<DMat&>(Qin);

  for (k=1; k<=K; ++k)
  {
    ko = kold(k); xout = x(All,k); yout = y(All,k);
    kv1=oldEToV(ko,1); kv2=oldEToV(ko,2); kv3=oldEToV(ko,3);
    xy1.set(oldVX(kv1), oldVY(kv1));
    xy2.set(oldVX(kv2), oldVY(kv2));
    xy3.set(oldVX(kv3), oldVY(kv3));
    A.set_col(1, xy2-xy1); A.set_col(2, xy3-xy1);
    
    for (i=1; i<=Np; ++i) {
      tmp.set(xout(i), yout(i));
      rhs = 2.0*tmp - xy2 - xy3;
      tmp = A|rhs;
      rOUT(i) = tmp(1);
      sOUT(i) = tmp(2);
    }

    KI.reset (Np*(k -1)+1, Np*k );  // nodes in new element k
    KIo.reset(Np*(ko-1)+1, Np*ko);  // nodes in old element ko

    interp = Vandermonde2D(N, rOUT, sOUT)*invV;

    for (n=1; n<=Nfields; ++n) 
    {
    //newQ(:,k,n)= interp*  Q(:,ko,n);
      //DVec tm1 = interp*oldQ(KIo,n);
      //dumpDVec(tm1, "tm1");
      newQ(KI,n) = interp*oldQ(KIo,n);
    }
  }
    
  return newQ;
}
Exemplo n.º 4
0
//---------------------------------------------------------
void EulerShock2D::Run()
//---------------------------------------------------------
{
  // function Q = EulerShock2D(Q,FinalTime, ExactSolution, ExactSolutionBC, fluxtype)
  // Purpose  : Integrate 2D Euler equations using a 2nd order SSP Runge-Kutta time integrator

  InitRun();

  // choose order to integrate exactly
  CubatureOrder = (int)floor(2.0*(N+1)*3.0/2.0);
  NGauss        = (int)floor(2.0*(N+1));

  // build cubature node data for all elements
  CubatureVolumeMesh2D(CubatureOrder);

  // build Gauss node data for all element faces
  GaussFaceMesh2D(NGauss);

  Resize_cub();         // resize cubature arrays
//MapGaussFaceData();   // {nx = gauss.nx}, etc.
  ti0=timer.read();     // time simulation loop

#if (0)
  //-------------------------------------
  // check all node sets
  //-------------------------------------
  OutputNodes(false);   // volume nodes
  OutputNodes(true);    // face nodes
  OutputNodes_cub();    // cubature
  OutputNodes_gauss();  // quadrature
  Report(true);         // show initial conditions
  umLOG(1, "\n*** Exiting after Cub, Gauss\n\n");
  return;
#endif


  // limit initial condition
  Q = EulerLimiter2D(Q, time);

  // outer time step loop 
  while (time<FinalTime) {

    if (time+dt > FinalTime) {dt=FinalTime-time;}
    tw1=timer.read();   // time NDG work
    oldQ = Q;           // store solutuion from previous step

    // 2nd order SSP Runge-Kutta
    this->RHS(Q,  time, BCSolution); Q1 =  Q +      dt*rhsQ;      Q1 = EulerLimiter2D(Q1, time);
    this->RHS(Q1, time, BCSolution); Q  = (Q + Q1 + dt*rhsQ)/2.0; Q  = EulerLimiter2D(Q,  time);
    
    time += dt;         // increment time 
    SetStepSize();      // compute new timestep
    time_work += timer.read() - tw1;  // accumulate cost of NDG work
    Report();           // optional reporting
    ++tstep;            // increment timestep

    // if (tstep>=10) break;      // testing
  }

  time_total = timer.read()-ti0;  // stop timing
  FinalReport();                  // final report
}
Exemplo n.º 5
0
//---------------------------------------------------------
void EulerShock2D::InitRun()
//---------------------------------------------------------
{
  // base class performs usual startup sequence
  // CurvedEuler2D::InitRun();

  //-------------------------------------
  // construct grid and metric
  //-------------------------------------
  StartUp2D();

  //-------------------------------------
  // refine default mesh
  //-------------------------------------
  if (Nrefine>=1) {
    umLOG(1, "before refinement K = %6d\n", K);
    for (int i=1; i<=Nrefine; ++i) {
      DMat Qtmp(Np*K, 1);  IMat refineflag;
      refineflag = Ones(K,Nfaces); Qtmp = ConformingHrefine2D(refineflag, Qtmp);
      umLOG(1, "after h-refine %d: K = %6d\n", i,K);
    }
  }

  // store original BC types before adjusting, 
  // (e.g. BC_Cyl faces may be set to BC_Wall)
  saveBCType = BCType;

  //-------------------------------------
  // Adjust faces on circular boundaries
  //-------------------------------------
  switch (sim_type) {

  case eForwardStep:
    // no cylinder faces
    straight.range(1,K); curved.resize(0);
    break;

  case eScramInlet:
    // no cylinder faces
    straight.range(1,K); curved.resize(0);
    break;
  
  default:
    // set default maps for {straight,curved} elements
    straight.range(1,K); curved.resize(0);
    break;
  }

  BuildBCMaps2D();  // map faces subject to boundary conditions
  Resize();         // allocate arrays
  SetIC();          // set initial conditions

#if (1)
  OutputNodes(false); // volume nodes
#endif


#if (0)
  tstep = -1;
  Report(true);
#endif

  SetStepSize();    // compute initial timestep (using IC's)

  // storage for residual at each time-step,
  // allowing for variable step size
  resid.resize(2*Nsteps);

  // base class version sets counters and flags
  NDG2D::InitRun();   

  // pre-calculate constant data for limiter routine
  precalc_limiter_data();

  //---------------------------------------------
  // Adjust reporting and render frequencies
  //---------------------------------------------

  switch (sim_type) {

  case eForwardStep:
    Nreport     = 100;    // frequency of reporting
    Nrender     = 300;    // frequency of rendering
    NvtkInterp  = 3;      // resolution of vtk output
    break;

  case eScramInlet:
    NvtkInterp = 2;
    switch (mesh_level) {
    case 1:   Nreport =  100;  Nrender =  100;   break;
    case 2:   Nreport =  250;  Nrender =  250;   break;
    case 3:   Nreport =  500;  Nrender =  500;   break;
    case 4:   Nreport = 1000;  Nrender = 1000;   break;
    default:  Nreport = 1000;  Nrender = 1000;   break;
    }
    break;
  }

  // Show simulation details
  Summary();
}