Exemplo n.º 1
0
/* Subroutine */ int PASTEF77(d,spr2)(character *uplo, integer *n, doublereal *alpha, doublereal *x, integer *incx, doublereal *y, integer *incy, doublereal *ap)
{
    /* System generated locals */
    integer i__1, i__2;

    /* Local variables */
    integer info;
    doublereal temp1, temp2;
    integer i__, j, k;
    extern logical PASTEF770(lsame)(character *, character *, ftnlen, ftnlen);
    integer kk, ix, iy, jx = 0, jy = 0, kx = 0, ky = 0;
    extern /* Subroutine */ int PASTEF770(xerbla)(character *, integer *, ftnlen);

/*     .. Scalar Arguments .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSPR2  performs the symmetric rank 2 operation */

/*     A := alpha*x*y' + alpha*y*x' + A, */

/*  where alpha is a scalar, x and y are n element vectors and A is an */
/*  n by n symmetric matrix, supplied in packed form. */

/*  Parameters */
/*  ========== */

/*  UPLO   - CHARACTER*1. */
/*           On entry, UPLO specifies whether the upper or lower */
/*           triangular part of the matrix A is supplied in the packed */
/*           array AP as follows: */

/*              UPLO = 'U' or 'u'   The upper triangular part of A is */
/*                                  supplied in AP. */

/*              UPLO = 'L' or 'l'   The lower triangular part of A is */
/*                                  supplied in AP. */

/*           Unchanged on exit. */

/*  N      - INTEGER. */
/*           On entry, N specifies the order of the matrix A. */
/*           N must be at least zero. */
/*           Unchanged on exit. */

/*  ALPHA  - DOUBLE PRECISION. */
/*           On entry, ALPHA specifies the scalar alpha. */
/*           Unchanged on exit. */

/*  X      - DOUBLE PRECISION array of dimension at least */
/*           ( 1 + ( n - 1 )*abs( INCX ) ). */
/*           Before entry, the incremented array X must contain the n */
/*           element vector x. */
/*           Unchanged on exit. */

/*  INCX   - INTEGER. */
/*           On entry, INCX specifies the increment for the elements of */
/*           X. INCX must not be zero. */
/*           Unchanged on exit. */

/*  Y      - DOUBLE PRECISION array of dimension at least */
/*           ( 1 + ( n - 1 )*abs( INCY ) ). */
/*           Before entry, the incremented array Y must contain the n */
/*           element vector y. */
/*           Unchanged on exit. */

/*  INCY   - INTEGER. */
/*           On entry, INCY specifies the increment for the elements of */
/*           Y. INCY must not be zero. */
/*           Unchanged on exit. */

/*  AP     - DOUBLE PRECISION array of DIMENSION at least */
/*           ( ( n*( n + 1 ) )/2 ). */
/*           Before entry with  UPLO = 'U' or 'u', the array AP must */
/*           contain the upper triangular part of the symmetric matrix */
/*           packed sequentially, column by column, so that AP( 1 ) */
/*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
/*           and a( 2, 2 ) respectively, and so on. On exit, the array */
/*           AP is overwritten by the upper triangular part of the */
/*           updated matrix. */
/*           Before entry with UPLO = 'L' or 'l', the array AP must */
/*           contain the lower triangular part of the symmetric matrix */
/*           packed sequentially, column by column, so that AP( 1 ) */
/*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
/*           and a( 3, 1 ) respectively, and so on. On exit, the array */
/*           AP is overwritten by the lower triangular part of the */
/*           updated matrix. */


/*  Level 2 Blas routine. */

/*  -- Written on 22-October-1986. */
/*     Jack Dongarra, Argonne National Lab. */
/*     Jeremy Du Croz, Nag Central Office. */
/*     Sven Hammarling, Nag Central Office. */
/*     Richard Hanson, Sandia National Labs. */


/*     .. Parameters .. */
/*     .. Local Scalars .. */
/*     .. External Functions .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    --y;
    --x;

    /* Function Body */
    info = 0;
    if (! PASTEF770(lsame)(uplo, "U", (ftnlen)1, (ftnlen)1) && ! PASTEF770(lsame)(uplo, "L", (
	    ftnlen)1, (ftnlen)1)) {
	info = 1;
    } else if (*n < 0) {
	info = 2;
    } else if (*incx == 0) {
	info = 5;
    } else if (*incy == 0) {
	info = 7;
    }
    if (info != 0) {
	PASTEF770(xerbla)("DSPR2 ", &info, (ftnlen)6);
	return 0;
    }

/*     Quick return if possible. */

    if (*n == 0 || *alpha == 0.) {
	return 0;
    }

/*     Set up the start points in X and Y if the increments are not both */
/*     unity. */

    if (*incx != 1 || *incy != 1) {
	if (*incx > 0) {
	    kx = 1;
	} else {
	    kx = 1 - (*n - 1) * *incx;
	}
	if (*incy > 0) {
	    ky = 1;
	} else {
	    ky = 1 - (*n - 1) * *incy;
	}
	jx = kx;
	jy = ky;
    }

/*     Start the operations. In this version the elements of the array AP */
/*     are accessed sequentially with one pass through AP. */

    kk = 1;
    if (PASTEF770(lsame)(uplo, "U", (ftnlen)1, (ftnlen)1)) {

/*        Form  A  when upper triangle is stored in AP. */

	if (*incx == 1 && *incy == 1) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (x[j] != 0. || y[j] != 0.) {
		    temp1 = *alpha * y[j];
		    temp2 = *alpha * x[j];
		    k = kk;
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			ap[k] = ap[k] + x[i__] * temp1 + y[i__] * temp2;
			++k;
/* L10: */
		    }
		}
		kk += j;
/* L20: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (x[jx] != 0. || y[jy] != 0.) {
		    temp1 = *alpha * y[jy];
		    temp2 = *alpha * x[jx];
		    ix = kx;
		    iy = ky;
		    i__2 = kk + j - 1;
		    for (k = kk; k <= i__2; ++k) {
			ap[k] = ap[k] + x[ix] * temp1 + y[iy] * temp2;
			ix += *incx;
			iy += *incy;
/* L30: */
		    }
		}
		jx += *incx;
		jy += *incy;
		kk += j;
/* L40: */
	    }
	}
    } else {

/*        Form  A  when lower triangle is stored in AP. */

	if (*incx == 1 && *incy == 1) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (x[j] != 0. || y[j] != 0.) {
		    temp1 = *alpha * y[j];
		    temp2 = *alpha * x[j];
		    k = kk;
		    i__2 = *n;
		    for (i__ = j; i__ <= i__2; ++i__) {
			ap[k] = ap[k] + x[i__] * temp1 + y[i__] * temp2;
			++k;
/* L50: */
		    }
		}
		kk = kk + *n - j + 1;
/* L60: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (x[jx] != 0. || y[jy] != 0.) {
		    temp1 = *alpha * y[jy];
		    temp2 = *alpha * x[jx];
		    ix = jx;
		    iy = jy;
		    i__2 = kk + *n - j;
		    for (k = kk; k <= i__2; ++k) {
			ap[k] = ap[k] + x[ix] * temp1 + y[iy] * temp2;
			ix += *incx;
			iy += *incy;
/* L70: */
		    }
		}
		jx += *incx;
		jy += *incy;
		kk = kk + *n - j + 1;
/* L80: */
	    }
	}
    }

    return 0;

/*     End of DSPR2 . */

} /* dspr2_ */
Exemplo n.º 2
0
/* Subroutine */ int PASTEF77(d,sbmv)(const bla_character *uplo, const bla_integer *n, const bla_integer *k, const bla_double *alpha, const bla_double *a, const bla_integer *lda, const bla_double *x, const bla_integer *incx, const bla_double *beta, bla_double *y, const bla_integer *incy)
{
    /* System generated locals */
    bla_integer a_dim1, a_offset, i__1, i__2, i__3, i__4;

    /* Local variables */
    bla_integer info;
    bla_double temp1, temp2;
    bla_integer i__, j, l;
    //extern bla_logical PASTEF770(lsame)(bla_character *, bla_character *, ftnlen, ftnlen);
    bla_integer kplus1, ix, iy, jx, jy, kx, ky;
    //extern /* Subroutine */ int PASTEF770(xerbla)(bla_character *, bla_integer *, ftnlen);

/*     .. Scalar Arguments .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSBMV  performs the matrix-vector  operation */

/*     y := alpha*A*x + beta*y, */

/*  where alpha and beta are scalars, x and y are n element vectors and */
/*  A is an n by n symmetric band matrix, with k super-diagonals. */

/*  Parameters */
/*  ========== */

/*  UPLO   - CHARACTER*1. */
/*           On entry, UPLO specifies whether the upper or lower */
/*           triangular part of the band matrix A is being supplied as */
/*           follows: */

/*              UPLO = 'U' or 'u'   The upper triangular part of A is */
/*                                  being supplied. */

/*              UPLO = 'L' or 'l'   The lower triangular part of A is */
/*                                  being supplied. */

/*           Unchanged on exit. */

/*  N      - INTEGER. */
/*           On entry, N specifies the order of the matrix A. */
/*           N must be at least zero. */
/*           Unchanged on exit. */

/*  K      - INTEGER. */
/*           On entry, K specifies the number of super-diagonals of the */
/*           matrix A. K must satisfy  0 .le. K. */
/*           Unchanged on exit. */

/*  ALPHA  - DOUBLE PRECISION. */
/*           On entry, ALPHA specifies the scalar alpha. */
/*           Unchanged on exit. */

/*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
/*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
/*           by n part of the array A must contain the upper triangular */
/*           band part of the symmetric matrix, supplied column by */
/*           column, with the leading diagonal of the matrix in row */
/*           ( k + 1 ) of the array, the first super-diagonal starting at */
/*           position 2 in row k, and so on. The top left k by k triangle */
/*           of the array A is not referenced. */
/*           The following program segment will transfer the upper */
/*           triangular part of a symmetric band matrix from conventional */
/*           full matrix storage to band storage: */

/*                 DO 20, J = 1, N */
/*                    M = K + 1 - J */
/*                    DO 10, I = MAX( 1, J - K ), J */
/*                       A( M + I, J ) = matrix( I, J ) */
/*              10    CONTINUE */
/*              20 CONTINUE */

/*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
/*           by n part of the array A must contain the lower triangular */
/*           band part of the symmetric matrix, supplied column by */
/*           column, with the leading diagonal of the matrix in row 1 of */
/*           the array, the first sub-diagonal starting at position 1 in */
/*           row 2, and so on. The bottom right k by k triangle of the */
/*           array A is not referenced. */
/*           The following program segment will transfer the lower */
/*           triangular part of a symmetric band matrix from conventional */
/*           full matrix storage to band storage: */

/*                 DO 20, J = 1, N */
/*                    M = 1 - J */
/*                    DO 10, I = J, MIN( N, J + K ) */
/*                       A( M + I, J ) = matrix( I, J ) */
/*              10    CONTINUE */
/*              20 CONTINUE */

/*           Unchanged on exit. */

/*  LDA    - INTEGER. */
/*           On entry, LDA specifies the first dimension of A as declared */
/*           in the calling (sub) program. LDA must be at least */
/*           ( k + 1 ). */
/*           Unchanged on exit. */

/*  X      - DOUBLE PRECISION array of DIMENSION at least */
/*           ( 1 + ( n - 1 )*abs( INCX ) ). */
/*           Before entry, the incremented array X must contain the */
/*           vector x. */
/*           Unchanged on exit. */

/*  INCX   - INTEGER. */
/*           On entry, INCX specifies the increment for the elements of */
/*           X. INCX must not be zero. */
/*           Unchanged on exit. */

/*  BETA   - DOUBLE PRECISION. */
/*           On entry, BETA specifies the scalar beta. */
/*           Unchanged on exit. */

/*  Y      - DOUBLE PRECISION array of DIMENSION at least */
/*           ( 1 + ( n - 1 )*abs( INCY ) ). */
/*           Before entry, the incremented array Y must contain the */
/*           vector y. On exit, Y is overwritten by the updated vector y. */

/*  INCY   - INTEGER. */
/*           On entry, INCY specifies the increment for the elements of */
/*           Y. INCY must not be zero. */
/*           Unchanged on exit. */


/*  Level 2 Blas routine. */

/*  -- Written on 22-October-1986. */
/*     Jack Dongarra, Argonne National Lab. */
/*     Jeremy Du Croz, Nag Central Office. */
/*     Sven Hammarling, Nag Central Office. */
/*     Richard Hanson, Sandia National Labs. */


/*     .. Parameters .. */
/*     .. Local Scalars .. */
/*     .. External Functions .. */
/*     .. External Subroutines .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --x;
    --y;

    /* Function Body */
    info = 0;
    if (! PASTEF770(lsame)(uplo, "U", (ftnlen)1, (ftnlen)1) && ! PASTEF770(lsame)(uplo, "L", (
	    ftnlen)1, (ftnlen)1)) {
	info = 1;
    } else if (*n < 0) {
	info = 2;
    } else if (*k < 0) {
	info = 3;
    } else if (*lda < *k + 1) {
	info = 6;
    } else if (*incx == 0) {
	info = 8;
    } else if (*incy == 0) {
	info = 11;
    }
    if (info != 0) {
	PASTEF770(xerbla)("DSBMV ", &info, (ftnlen)6);
	return 0;
    }

/*     Quick return if possible. */

    if (*n == 0 || (*alpha == 0. && *beta == 1.)) {
	return 0;
    }

/*     Set up the start points in  X  and  Y. */

    if (*incx > 0) {
	kx = 1;
    } else {
	kx = 1 - (*n - 1) * *incx;
    }
    if (*incy > 0) {
	ky = 1;
    } else {
	ky = 1 - (*n - 1) * *incy;
    }

/*     Start the operations. In this version the elements of the array A */
/*     are accessed sequentially with one pass through A. */

/*     First form  y := beta*y. */

    if (*beta != 1.) {
	if (*incy == 1) {
	    if (*beta == 0.) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    y[i__] = 0.;
/* L10: */
		}
	    } else {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    y[i__] = *beta * y[i__];
/* L20: */
		}
	    }
	} else {
	    iy = ky;
	    if (*beta == 0.) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    y[iy] = 0.;
		    iy += *incy;
/* L30: */
		}
	    } else {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    y[iy] = *beta * y[iy];
		    iy += *incy;
/* L40: */
		}
	    }
	}
    }
    if (*alpha == 0.) {
	return 0;
    }
    if (PASTEF770(lsame)(uplo, "U", (ftnlen)1, (ftnlen)1)) {

/*        Form  y  when upper triangle of A is stored. */

	kplus1 = *k + 1;
	if (*incx == 1 && *incy == 1) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		temp1 = *alpha * x[j];
		temp2 = 0.;
		l = kplus1 - j;
/* Computing MAX */
		i__2 = 1, i__3 = j - *k;
		i__4 = j - 1;
		for (i__ = f2c_max(i__2,i__3); i__ <= i__4; ++i__) {
		    y[i__] += temp1 * a[l + i__ + j * a_dim1];
		    temp2 += a[l + i__ + j * a_dim1] * x[i__];
/* L50: */
		}
		y[j] = y[j] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2;
/* L60: */
	    }
	} else {
	    jx = kx;
	    jy = ky;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		temp1 = *alpha * x[jx];
		temp2 = 0.;
		ix = kx;
		iy = ky;
		l = kplus1 - j;
/* Computing MAX */
		i__4 = 1, i__2 = j - *k;
		i__3 = j - 1;
		for (i__ = f2c_max(i__4,i__2); i__ <= i__3; ++i__) {
		    y[iy] += temp1 * a[l + i__ + j * a_dim1];
		    temp2 += a[l + i__ + j * a_dim1] * x[ix];
		    ix += *incx;
		    iy += *incy;
/* L70: */
		}
		y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha * 
			temp2;
		jx += *incx;
		jy += *incy;
		if (j > *k) {
		    kx += *incx;
		    ky += *incy;
		}
/* L80: */
	    }
	}
    } else {

/*        Form  y  when lower triangle of A is stored. */

	if (*incx == 1 && *incy == 1) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		temp1 = *alpha * x[j];
		temp2 = 0.;
		y[j] += temp1 * a[j * a_dim1 + 1];
		l = 1 - j;
/* Computing MIN */
		i__4 = *n, i__2 = j + *k;
		i__3 = f2c_min(i__4,i__2);
		for (i__ = j + 1; i__ <= i__3; ++i__) {
		    y[i__] += temp1 * a[l + i__ + j * a_dim1];
		    temp2 += a[l + i__ + j * a_dim1] * x[i__];
/* L90: */
		}
		y[j] += *alpha * temp2;
/* L100: */
	    }
	} else {
	    jx = kx;
	    jy = ky;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		temp1 = *alpha * x[jx];
		temp2 = 0.;
		y[jy] += temp1 * a[j * a_dim1 + 1];
		l = 1 - j;
		ix = jx;
		iy = jy;
/* Computing MIN */
		i__4 = *n, i__2 = j + *k;
		i__3 = f2c_min(i__4,i__2);
		for (i__ = j + 1; i__ <= i__3; ++i__) {
		    ix += *incx;
		    iy += *incy;
		    y[iy] += temp1 * a[l + i__ + j * a_dim1];
		    temp2 += a[l + i__ + j * a_dim1] * x[ix];
/* L110: */
		}
		y[jy] += *alpha * temp2;
		jx += *incx;
		jy += *incy;
/* L120: */
	    }
	}
    }

    return 0;

/*     End of DSBMV . */

} /* dsbmv_ */