Exemplo n.º 1
0
int main(int argc,char **args)
{
  Mat            C,A;
  PetscInt       i,j;
  PetscErrorCode ierr;
  PetscScalar    v;
  PC             pc;
  Vec            xtmp;

  ierr = PetscInitialize(&argc,&args,(char*)0,help);if (ierr) return ierr;
  ierr = MatCreate(PETSC_COMM_WORLD,&C);CHKERRQ(ierr);
  ierr = MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,3,3);CHKERRQ(ierr);
  ierr = MatSetFromOptions(C);CHKERRQ(ierr);
  ierr = MatSetUp(C);CHKERRQ(ierr);
  ierr = VecCreateSeq(PETSC_COMM_WORLD,3,&xtmp);CHKERRQ(ierr);
  i    = 0; j = 0; v = 4;
  ierr = MatSetValues(C,1,&i,1,&j,&v,INSERT_VALUES);CHKERRQ(ierr);
  i    = 0; j = 2; v = 1;
  ierr = MatSetValues(C,1,&i,1,&j,&v,INSERT_VALUES);CHKERRQ(ierr);
  i    = 1; j = 0; v = 1;
  ierr = MatSetValues(C,1,&i,1,&j,&v,INSERT_VALUES);CHKERRQ(ierr);
  i    = 1; j = 1; v = 4;
  ierr = MatSetValues(C,1,&i,1,&j,&v,INSERT_VALUES);CHKERRQ(ierr);
  i    = 2; j = 1; v = 1;
  ierr = MatSetValues(C,1,&i,1,&j,&v,INSERT_VALUES);CHKERRQ(ierr);

  ierr = MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  ierr = MatView(C,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = PCCreate(PETSC_COMM_WORLD,&pc);CHKERRQ(ierr);
  ierr = PCSetFromOptions(pc);CHKERRQ(ierr);
  ierr = PCSetOperators(pc,C,C);CHKERRQ(ierr);
  ierr = PCSetUp(pc);CHKERRQ(ierr);
  ierr = PCFactorGetMatrix(pc,&A);CHKERRQ(ierr);
  ierr = MatView(A,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

  ierr = PCDestroy(&pc);CHKERRQ(ierr);
  ierr = VecDestroy(&xtmp);CHKERRQ(ierr);
  ierr = MatDestroy(&C);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
Exemplo n.º 2
0
int main(int argc,char **argv)
{
  KSP                ksp;
  PC                 pc;
  Mat                A,M;
  Vec                X,B,D;
  MPI_Comm           comm;
  PetscScalar        v;
  KSPConvergedReason reason;
  PetscInt           i,j,its;
  PetscErrorCode     ierr;

  PetscFunctionBegin;
  ierr = PetscInitialize(&argc,&argv,0,help);CHKERRQ(ierr);
  ierr = PetscOptionsSetValue("-options_left",PETSC_NULL);CHKERRQ(ierr);
  comm = MPI_COMM_SELF;

  /*
   * Construct the Kershaw matrix
   * and a suitable rhs / initial guess
   */
  ierr = MatCreateSeqAIJ(comm,4,4,4,0,&A);CHKERRQ(ierr);
  ierr = VecCreateSeq(comm,4,&B);CHKERRQ(ierr);
  ierr = VecDuplicate(B,&X);CHKERRQ(ierr);
  for (i=0; i<4; i++) {
    v=3;
    ierr = MatSetValues(A,1,&i,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
    v=1;
    ierr = VecSetValues(B,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
    ierr = VecSetValues(X,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
  }

  i=0; v=0;
  ierr = VecSetValues(X,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);

  for (i=0; i<3; i++) {
    v=-2; j=i+1;
    ierr = MatSetValues(A,1,&i,1,&j,&v,INSERT_VALUES);CHKERRQ(ierr);
    ierr = MatSetValues(A,1,&j,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
  }
  i=0; j=3; v=2;
  ierr = MatSetValues(A,1,&i,1,&j,&v,INSERT_VALUES);CHKERRQ(ierr);
  ierr = MatSetValues(A,1,&j,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = VecAssemblyBegin(B);CHKERRQ(ierr);
  ierr = VecAssemblyEnd(B);CHKERRQ(ierr);
  printf("\nThe Kershaw matrix:\n\n"); MatView(A,0);

  /*
   * A Conjugate Gradient method
   * with ILU(0) preconditioning
   */
  ierr = KSPCreate(comm,&ksp);CHKERRQ(ierr);
  ierr = KSPSetOperators(ksp,A,A,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);

  ierr = KSPSetType(ksp,KSPCG);CHKERRQ(ierr);
  ierr = KSPSetInitialGuessNonzero(ksp,PETSC_TRUE);CHKERRQ(ierr);

  /*
   * ILU preconditioner;
   * The iterative method will break down unless you comment in the SetShift
   * line below, or use the -pc_factor_shift_positive_definite option.
   * Run the code twice: once as given to see the negative pivot and the
   * divergence behaviour, then comment in the Shift line, or add the
   * command line option, and see that the pivots are all positive and
   * the method converges.
   */
  ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
  ierr = PCSetType(pc,PCICC);CHKERRQ(ierr);
  /* ierr = PCFactorSetShiftType(prec,MAT_SHIFT_POSITIVE_DEFINITE);CHKERRQ(ierr); */

  ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);
  ierr = KSPSetUp(ksp);CHKERRQ(ierr);

  /*
   * Now that the factorisation is done, show the pivots;
   * note that the last one is negative. This in itself is not an error,
   * but it will make the iterative method diverge.
   */
  ierr = PCFactorGetMatrix(pc,&M);CHKERRQ(ierr);
  ierr = VecDuplicate(B,&D);CHKERRQ(ierr);
  ierr = MatGetDiagonal(M,D);CHKERRQ(ierr);
  printf("\nPivots:\n\n"); VecView(D,0);

  /*
   * Solve the system;
   * without the shift this will diverge with
   * an indefinite preconditioner
   */
  ierr = KSPSolve(ksp,B,X);CHKERRQ(ierr);
  ierr = KSPGetConvergedReason(ksp,&reason);CHKERRQ(ierr);
  if (reason==KSP_DIVERGED_INDEFINITE_PC) {
    printf("\nDivergence because of indefinite preconditioner;\n");
    printf("Run the executable again but with -pc_factor_shift_positive_definite option.\n");
  } else if (reason<0) {
    printf("\nOther kind of divergence: this should not happen.\n");
  } else {
    ierr = KSPGetIterationNumber(ksp,&its);CHKERRQ(ierr);
    printf("\nConvergence in %d iterations.\n",(int)its);
  }
  printf("\n");

  ierr = KSPDestroy(&ksp);CHKERRQ(ierr);
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = VecDestroy(&B);CHKERRQ(ierr);
  ierr = VecDestroy(&X);CHKERRQ(ierr);
  ierr = VecDestroy(&D);CHKERRQ(ierr);
  PetscFinalize();
  PetscFunctionReturn(0);
}
Exemplo n.º 3
0
PetscInt main(PetscInt argc,char **args)
{
  Mat            A,As;
  PetscBool      flg,disp_mat=PETSC_FALSE;
  PetscErrorCode ierr;
  PetscMPIInt    size,rank;
  PetscInt       i,j;
  PetscScalar    v,sigma2;
  PetscRandom    rctx;
  PetscReal      h2,sigma1=100.0;
  PetscInt       dim,Ii,J,n = 3,use_random,rstart,rend;
  KSP            ksp;
  PC             pc;
  Mat            F;
  PetscInt       nneg, nzero, npos;

  PetscInitialize(&argc,&args,(char *)0,help);
#if !defined(PETSC_USE_COMPLEX)
  SETERRQ(PETSC_COMM_WORLD,1,"This example requires complex numbers");
#endif
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);
  ierr = PetscOptionsHasName(PETSC_NULL, "-display_mat", &disp_mat);CHKERRQ(ierr);

  ierr = PetscOptionsGetReal(PETSC_NULL,"-sigma1",&sigma1,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);CHKERRQ(ierr);
  dim  = n*n;

  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,dim,dim);CHKERRQ(ierr);
  ierr = MatSetType(A,MATAIJ);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);

  ierr = PetscOptionsHasName(PETSC_NULL,"-norandom",&flg);CHKERRQ(ierr);
  if (flg) use_random = 0;
  else     use_random = 1;
  if (use_random) {
    ierr = PetscRandomCreate(PETSC_COMM_WORLD,&rctx);CHKERRQ(ierr);
    ierr = PetscRandomSetFromOptions(rctx);CHKERRQ(ierr);
    ierr = PetscRandomSetInterval(rctx,0.0,PETSC_i);CHKERRQ(ierr);
    ierr = PetscRandomGetValue(rctx,&sigma2);CHKERRQ(ierr); /* RealPart(sigma2) == 0.0 */
  } else {
    sigma2 = 10.0*PETSC_i;
  }
  h2 = 1.0/((n+1)*(n+1));

  ierr = MatGetOwnershipRange(A,&rstart,&rend);CHKERRQ(ierr);
  for (Ii=rstart; Ii<rend; Ii++) {
    v = -1.0; i = Ii/n; j = Ii - i*n;
    if (i>0) {
      J = Ii-n; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    if (i<n-1) {
      J = Ii+n; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    if (j>0) {
      J = Ii-1; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    if (j<n-1) {
      J = Ii+1; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    v = 4.0 - sigma1*h2;
    ierr = MatSetValues(A,1,&Ii,1,&Ii,&v,ADD_VALUES);CHKERRQ(ierr);
  }
  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  /* Check whether A is symmetric */
  ierr = PetscOptionsHasName(PETSC_NULL, "-check_symmetric", &flg);CHKERRQ(ierr);
  if (flg) {
    Mat Trans;
    ierr = MatTranspose(A,MAT_INITIAL_MATRIX, &Trans);
    ierr = MatEqual(A, Trans, &flg);
    if (!flg) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_USER,"A is not symmetric");
    ierr = MatDestroy(&Trans);CHKERRQ(ierr);
  }
  ierr = MatSetOption(A,MAT_SYMMETRIC,PETSC_TRUE);CHKERRQ(ierr);

  /* make A complex Hermitian */
  Ii = 0; J = dim-1;
  if (Ii >= rstart && Ii < rend){
    v = sigma2*h2; /* RealPart(v) = 0.0 */
    ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);
    v = -sigma2*h2;
    ierr = MatSetValues(A,1,&J,1,&Ii,&v,ADD_VALUES);CHKERRQ(ierr);
  }

  Ii = dim-2; J = dim-1;
  if (Ii >= rstart && Ii < rend){
  v = sigma2*h2; /* RealPart(v) = 0.0 */
  ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);
  v = -sigma2*h2;
  ierr = MatSetValues(A,1,&J,1,&Ii,&v,ADD_VALUES);CHKERRQ(ierr);
  }

  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  /* Check whether A is Hermitian */
  ierr = PetscOptionsHasName(PETSC_NULL, "-check_Hermitian", &flg);CHKERRQ(ierr);
  if (flg) {
    Mat Hermit;
    if (disp_mat){
      if (!rank) printf(" A:\n");
      ierr = MatView(A,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
    }
    ierr = MatHermitianTranspose(A,MAT_INITIAL_MATRIX, &Hermit);
    if (disp_mat){
      if (!rank) printf(" A_Hermitian:\n");
      ierr = MatView(Hermit,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
    }
    ierr = MatEqual(A, Hermit, &flg);
    if (!flg) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_USER,"A is not Hermitian");
    ierr = MatDestroy(&Hermit);CHKERRQ(ierr);
  }
  ierr = MatSetOption(A,MAT_HERMITIAN,PETSC_TRUE);CHKERRQ(ierr);

  /* Create a Hermitian matrix As in sbaij format */
  ierr = MatConvert(A,MATSBAIJ,MAT_INITIAL_MATRIX,&As);CHKERRQ(ierr);
  if (disp_mat){
    if (!rank) {ierr = PetscPrintf(PETSC_COMM_SELF," As:\n");CHKERRQ(ierr);}
    ierr = MatView(As,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  }

  /* Test MatGetInertia() */
  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
  ierr = KSPSetType(ksp,KSPPREONLY);CHKERRQ(ierr);
  ierr = KSPSetOperators(ksp,As,As,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);

  ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
  ierr = PCSetType(pc,PCCHOLESKY);CHKERRQ(ierr);
  ierr = PCSetFromOptions(pc);CHKERRQ(ierr);

  ierr = PCSetUp(pc);CHKERRQ(ierr);
  ierr = PCFactorGetMatrix(pc,&F);CHKERRQ(ierr);
  ierr = MatGetInertia(F,&nneg,&nzero,&npos);CHKERRQ(ierr);
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);
  if (!rank){
    ierr = PetscPrintf(PETSC_COMM_SELF," MatInertia: nneg: %D, nzero: %D, npos: %D\n",nneg,nzero,npos);CHKERRQ(ierr);
  }

  /* Free spaces */
  ierr = KSPDestroy(&ksp);CHKERRQ(ierr);
  if (use_random) {ierr = PetscRandomDestroy(&rctx);CHKERRQ(ierr);}
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = MatDestroy(&As);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return 0;
}
Exemplo n.º 4
0
Arquivo: ex33.c Projeto: Kun-Qu/petsc
int main(int argc,char **args)
{
  Mat            A,B,F; 
  PetscErrorCode ierr;
  KSP            ksp;
  PC             pc;
  PetscInt    	 N, n=10, m, Istart, Iend, II, J, i,j;
  PetscInt       nneg, nzero, npos;
  PetscScalar 	 v,sigma;
  PetscBool   	 flag,loadA=PETSC_FALSE,loadB=PETSC_FALSE;
  char           file[2][PETSC_MAX_PATH_LEN]; 
  PetscViewer    viewer;
  PetscMPIInt    rank;

  PetscInitialize(&argc,&args,(char *)0,help);
  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
     Compute the matrices that define the eigensystem, Ax=kBx
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscOptionsGetString(PETSC_NULL,"-fA",file[0],PETSC_MAX_PATH_LEN,&loadA);CHKERRQ(ierr);
  if (loadA) {
    ierr = PetscViewerBinaryOpen(PETSC_COMM_WORLD,file[0],FILE_MODE_READ,&viewer);CHKERRQ(ierr);
    ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
    ierr = MatSetType(A,MATSBAIJ);CHKERRQ(ierr);
    ierr = MatLoad(A,viewer);CHKERRQ(ierr);
    ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr);  

    ierr = PetscOptionsGetString(PETSC_NULL,"-fB",file[1],PETSC_MAX_PATH_LEN,&loadB);CHKERRQ(ierr);
    if (loadB){
      /* load B to get A = A + sigma*B */
      ierr = PetscViewerBinaryOpen(PETSC_COMM_WORLD,file[1],FILE_MODE_READ,&viewer);CHKERRQ(ierr);
      ierr = MatCreate(PETSC_COMM_WORLD,&B);CHKERRQ(ierr);
      ierr = MatSetType(B,MATSBAIJ);CHKERRQ(ierr);
      ierr  = MatLoad(B,viewer);CHKERRQ(ierr);
      ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr);  
    }
  } 

  if (!loadA) { /* Matrix A is copied from slepc-3.0.0-p6/src/examples/ex13.c. */
    ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);CHKERRQ(ierr);
    ierr = PetscOptionsGetInt(PETSC_NULL,"-m",&m,&flag);CHKERRQ(ierr);
    if( flag==PETSC_FALSE ) m=n;
    N = n*m;
    ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
    ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N);CHKERRQ(ierr);
    ierr = MatSetType(A,MATSBAIJ);CHKERRQ(ierr);
    ierr = MatSetFromOptions(A);CHKERRQ(ierr);
    ierr = MatSetUp(A);CHKERRQ(ierr);

    ierr = MatSetOption(A,MAT_IGNORE_LOWER_TRIANGULAR,PETSC_TRUE);CHKERRQ(ierr);
    ierr = MatGetOwnershipRange(A,&Istart,&Iend);CHKERRQ(ierr);
    for( II=Istart; II<Iend; II++ ) { 
      v = -1.0; i = II/n; j = II-i*n;  
      if(i>0) { J=II-n; MatSetValues(A,1,&II,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr); }
      if(i<m-1) { J=II+n; MatSetValues(A,1,&II,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr); }
      if(j>0) { J=II-1; MatSetValues(A,1,&II,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr); }
      if(j<n-1) { J=II+1; MatSetValues(A,1,&II,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr); }
      v=4.0; MatSetValues(A,1,&II,1,&II,&v,INSERT_VALUES);CHKERRQ(ierr);
    
    }
    ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  }
  /* ierr = MatView(A,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); */
  
  if (!loadB) {
    ierr = MatGetLocalSize(A,&m,&n);CHKERRQ(ierr);
    ierr = MatCreate(PETSC_COMM_WORLD,&B);CHKERRQ(ierr);
    ierr = MatSetSizes(B,m,n,PETSC_DECIDE,PETSC_DECIDE);CHKERRQ(ierr);
    ierr = MatSetType(B,MATSBAIJ);CHKERRQ(ierr);
    ierr = MatSetFromOptions(B);CHKERRQ(ierr);
    ierr = MatSetUp(B);CHKERRQ(ierr);
    ierr = MatSetOption(B,MAT_IGNORE_LOWER_TRIANGULAR,PETSC_TRUE);CHKERRQ(ierr);
    ierr = MatGetOwnershipRange(A,&Istart,&Iend);CHKERRQ(ierr);
 
    for( II=Istart; II<Iend; II++ ) { 
      /* v=4.0; MatSetValues(B,1,&II,1,&II,&v,INSERT_VALUES);CHKERRQ(ierr); */
      v=1.0; MatSetValues(B,1,&II,1,&II,&v,INSERT_VALUES);CHKERRQ(ierr); 
    }
    ierr = MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  }
  /* ierr = MatView(B,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); */

  /* Set a shift: A = A - sigma*B */
  ierr = PetscOptionsGetScalar(PETSC_NULL,"-sigma",&sigma,&flag);CHKERRQ(ierr);
  if (flag){
    sigma = -1.0 * sigma;
    ierr = MatAXPY(A,sigma,B,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr); /* A <- A - sigma*B */  
    /* ierr = MatView(A,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); */
  }

  /* Test MatGetInertia() */
  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
  ierr = KSPSetType(ksp,KSPPREONLY);CHKERRQ(ierr);
  ierr = KSPSetOperators(ksp,A,A,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);

  ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
  ierr = PCSetType(pc,PCCHOLESKY);CHKERRQ(ierr);
  ierr = PCSetFromOptions(pc);CHKERRQ(ierr);

  ierr = PCSetUp(pc);CHKERRQ(ierr);
  ierr = PCFactorGetMatrix(pc,&F);CHKERRQ(ierr);
  ierr = MatGetInertia(F,&nneg,&nzero,&npos);CHKERRQ(ierr);
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);
  if (!rank){
    ierr = PetscPrintf(PETSC_COMM_SELF," MatInertia: nneg: %D, nzero: %D, npos: %D\n",nneg,nzero,npos);CHKERRQ(ierr);
  }

  /* Destroy */
  ierr = KSPDestroy(&ksp);CHKERRQ(ierr);
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = MatDestroy(&B);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return 0;
}
Exemplo n.º 5
0
// =====================================================
  void PetscPreconditioner::set_petsc_preconditioner_type
  (const PreconditionerType & preconditioner_type, PC & pc,  const int &parallelOverlapping) {
    int ierr = 0;
    switch(preconditioner_type)  {

      case IDENTITY_PRECOND:
        ierr = PCSetType(pc, (char*) PCNONE);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        break;

      case CHOLESKY_PRECOND:
        ierr = PCSetType(pc, (char*) PCCHOLESKY);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        break;

      case ICC_PRECOND:
        ierr = PCSetType(pc, (char*) PCICC);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        break;


      case ILU_PRECOND:
      {
        int nprocs;
        MPI_Comm_size(MPI_COMM_WORLD, &nprocs); //TODO
        // In serial, just set the ILU preconditioner type
        if(nprocs == 1)
        {
          ierr = PCSetType(pc, (char*) PCILU);
          CHKERRABORT(MPI_COMM_WORLD, ierr);
        }
        else
        {
//        But PETSc has no truly parallel ILU, instead you have to set
//        an actual parallel preconditioner (e.g. block Jacobi (parlleloverlapping 0) or ASM (parlleloverlapping >0))
//	  and then assign ILU sub-preconditioners.

          set_petsc_preconditioner_type(ASM_PRECOND, pc);
          PCASMSetOverlap(pc, parallelOverlapping);
          PCSetUp(pc);

          // Set ILU as the sub preconditioner type
          set_petsc_subpreconditioner_type(PCILU, pc);
        }
        break;
      }
      case LU_PRECOND: {
        int nprocs;
        MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
        if(nprocs == 1) {
          ierr = PCSetType(pc, (char*) PCLU);
          CHKERRABORT(MPI_COMM_WORLD, ierr);
        }
        else {
          ierr = PCSetType(pc, (char*) PCLU);
          CHKERRABORT(MPI_COMM_WORLD, ierr);

          ierr = PCFactorSetMatSolverPackage(pc, MATSOLVERMUMPS);
          CHKERRABORT(MPI_COMM_WORLD, ierr);
          ierr = PCFactorSetUpMatSolverPackage(pc);
          CHKERRABORT(MPI_COMM_WORLD, ierr);
          Mat       F;
          ierr = PCFactorGetMatrix(pc, &F);
          CHKERRABORT(MPI_COMM_WORLD, ierr);
          ierr = MatMumpsSetIcntl(F, 14, 30);
          CHKERRABORT(MPI_COMM_WORLD, ierr);
        }
        break;
      }

      case SLU_PRECOND:
        ierr = PCSetType(pc, (char*) PCLU);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        ierr = PCFactorSetMatSolverPackage(pc, MATSOLVERSUPERLU_DIST);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        break;    //here we set the SuperLU_dist solver package

      case MLU_PRECOND: //here we set the MUMPS parallel direct solver package
        ierr = PCSetType(pc, (char*) PCLU);
        CHKERRABORT(MPI_COMM_WORLD, ierr);

        ierr = PCFactorSetMatSolverPackage(pc, MATSOLVERMUMPS);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        ierr = PCFactorSetUpMatSolverPackage(pc);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        Mat       F;
        ierr = PCFactorGetMatrix(pc, &F);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        ierr = MatMumpsSetIcntl(F, 14, 30);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        break;

      case ULU_PRECOND: //here we set the Umfpack serial direct solver package
        ierr = PCSetType(pc, (char*) PCLU);
        CHKERRABORT(MPI_COMM_WORLD, ierr);

        ierr = PCFactorSetMatSolverPackage(pc, MATSOLVERUMFPACK);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        ierr = PCFactorSetUpMatSolverPackage(pc);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        break;

      case MCC_PRECOND:
        ierr = PCSetType(pc, (char*) PCCHOLESKY);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        ierr = PCFactorSetMatSolverPackage(pc, MATSOLVERMUMPS);
        CHKERRABORT(MPI_COMM_WORLD, ierr);                   //here we set the MUMPS parallel direct solver package
        break;

      case ASM_PRECOND:
        ierr = PCSetType(pc, (char*) PCASM);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        break;

      case FIELDSPLIT_PRECOND:
        ierr = PCSetType(pc, (char*) PCFIELDSPLIT);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        break;

      case JACOBI_PRECOND:
        ierr = PCSetType(pc, (char*) PCJACOBI);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        break;

      case BLOCK_JACOBI_PRECOND:
        ierr = PCSetType(pc, (char*) PCBJACOBI);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        break;

      case SOR_PRECOND:
        ierr = PCSetType(pc, (char*) PCSOR);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        break;

      case EISENSTAT_PRECOND:
        ierr = PCSetType(pc, (char*) PCEISENSTAT);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        break;

      case AMG_PRECOND:
        ierr = PCSetType(pc, (char*) PCHYPRE);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        break;

      case MG_PRECOND:
        ierr = PCSetType(pc, (char*) PCMG);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        break;

      case LSC_PRECOND:
        ierr = PCSetType(pc, (char*) PCLSC);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        break;

#if !(PETSC_VERSION_LESS_THAN(2,1,2))
        // Only available for PETSC >= 2.1.2
      case USER_PRECOND:
        ierr = PCSetType(pc, (char*) PCMAT);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        break;
#endif

      case SHELL_PRECOND:
        ierr = PCSetType(pc, (char*) PCSHELL);
        CHKERRABORT(MPI_COMM_WORLD, ierr);
        break;

      default:
        std::cerr << "ERROR:  Unsupported PETSC Preconditioner: "
                  << preconditioner_type << std::endl
                  << "Continuing with PETSC defaults" << std::endl;
    }

    //Let the commandline override stuff
    if(preconditioner_type != AMG_PRECOND && preconditioner_type != MG_PRECOND)   PCSetFromOptions(pc);   //!!!!!!
  }
Exemplo n.º 6
0
Arquivo: ex1.c Projeto: 00liujj/petsc
int main(int argc,char **argv)
{
  KSP                solver;
  PC                 prec;
  Mat                A,M;
  Vec                X,B,D;
  MPI_Comm           comm;
  PetscScalar        v;
  KSPConvergedReason reason;
  PetscInt           i,j,its;
  PetscErrorCode     ierr;

  ierr = PetscInitialize(&argc,&argv,0,help);CHKERRQ(ierr);
  comm = MPI_COMM_SELF;

  /*
   * Construct the Kershaw matrix
   * and a suitable rhs / initial guess
   */
  ierr = MatCreateSeqAIJ(comm,4,4,4,0,&A);CHKERRQ(ierr);
  ierr = VecCreateSeq(comm,4,&B);CHKERRQ(ierr);
  ierr = VecDuplicate(B,&X);CHKERRQ(ierr);
  for (i=0; i<4; i++) {
    v    = 3;
    ierr = MatSetValues(A,1,&i,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
    v    = 1;
    ierr = VecSetValues(B,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
    ierr = VecSetValues(X,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
  }

  i=0; v=0;
  ierr = VecSetValues(X,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);

  for (i=0; i<3; i++) {
    v    = -2; j=i+1;
    ierr = MatSetValues(A,1,&i,1,&j,&v,INSERT_VALUES);CHKERRQ(ierr);
    ierr = MatSetValues(A,1,&j,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
  }
  i=0; j=3; v=2;

  ierr = MatSetValues(A,1,&i,1,&j,&v,INSERT_VALUES);CHKERRQ(ierr);
  ierr = MatSetValues(A,1,&j,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = VecAssemblyBegin(B);CHKERRQ(ierr);
  ierr = VecAssemblyEnd(B);CHKERRQ(ierr);

  /*
   * A Conjugate Gradient method
   * with ILU(0) preconditioning
   */
  ierr = KSPCreate(comm,&solver);CHKERRQ(ierr);
  ierr = KSPSetOperators(solver,A,A);CHKERRQ(ierr);

  ierr = KSPSetType(solver,KSPCG);CHKERRQ(ierr);
  ierr = KSPSetInitialGuessNonzero(solver,PETSC_TRUE);CHKERRQ(ierr);

  /*
   * ILU preconditioner;
   * this will break down unless you add the Shift line,
   * or use the -pc_factor_shift_positive_definite option */
  ierr = KSPGetPC(solver,&prec);CHKERRQ(ierr);
  ierr = PCSetType(prec,PCILU);CHKERRQ(ierr);
  /* ierr = PCFactorSetShiftType(prec,MAT_SHIFT_POSITIVE_DEFINITE);CHKERRQ(ierr); */

  ierr = KSPSetFromOptions(solver);CHKERRQ(ierr);
  ierr = KSPSetUp(solver);CHKERRQ(ierr);

  /*
   * Now that the factorisation is done, show the pivots;
   * note that the last one is negative. This in itself is not an error,
   * but it will make the iterative method diverge.
   */
  ierr = PCFactorGetMatrix(prec,&M);CHKERRQ(ierr);
  ierr = VecDuplicate(B,&D);CHKERRQ(ierr);
  ierr = MatGetDiagonal(M,D);CHKERRQ(ierr);

  /*
   * Solve the system;
   * without the shift this will diverge with
   * an indefinite preconditioner
   */
  ierr = KSPSolve(solver,B,X);CHKERRQ(ierr);
  ierr = KSPGetConvergedReason(solver,&reason);CHKERRQ(ierr);
  if (reason==KSP_DIVERGED_INDEFINITE_PC) {
    ierr = PetscPrintf(PETSC_COMM_WORLD,"\nDivergence because of indefinite preconditioner;\n");CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD,"Run the executable again but with '-pc_factor_shift_type POSITIVE_DEFINITE' option.\n");CHKERRQ(ierr);
  } else if (reason<0) {
    ierr = PetscPrintf(PETSC_COMM_WORLD,"\nOther kind of divergence: this should not happen.\n");CHKERRQ(ierr);
  } else {
    ierr = KSPGetIterationNumber(solver,&its);CHKERRQ(ierr);
  }

  ierr = VecDestroy(&X);CHKERRQ(ierr);
  ierr = VecDestroy(&B);CHKERRQ(ierr);
  ierr = VecDestroy(&D);CHKERRQ(ierr);
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = KSPDestroy(&solver);CHKERRQ(ierr);
  PetscFinalize();
  return 0;
}
Exemplo n.º 7
0
/*@
  MatSchurComplementComputeExplicitOperator - Compute the Schur complement matrix explicitly

  Collective on Mat

  Input Parameter:
. M - the matrix obtained with MatCreateSchurComplement()

  Output Parameter:
. S - the Schur complement matrix

  Note: This can be expensive, so it is mainly for testing

  Level: advanced

.seealso: MatCreateSchurComplement(), MatSchurComplementUpdate()
@*/
PetscErrorCode MatSchurComplementComputeExplicitOperator(Mat M, Mat *S)
{
  Mat            B, C, D;
  KSP            ksp;
  PC             pc;
  PetscBool      isLU, isILU;
  PetscReal      fill = 2.0;
  PetscErrorCode ierr;

  PetscFunctionBegin;
  ierr = MatSchurComplementGetSubMatrices(M, NULL, NULL, &B, &C, &D);CHKERRQ(ierr);
  ierr = MatSchurComplementGetKSP(M, &ksp);CHKERRQ(ierr);
  ierr = KSPGetPC(ksp, &pc);CHKERRQ(ierr);
  ierr = PetscObjectTypeCompare((PetscObject) pc, PCLU, &isLU);CHKERRQ(ierr);
  ierr = PetscObjectTypeCompare((PetscObject) pc, PCILU, &isILU);CHKERRQ(ierr);
  if (isLU || isILU) {
    Mat       fact, Bd, AinvB, AinvBd;
    PetscReal eps = 1.0e-10;

    /* This can be sped up for banded LU */
    ierr = KSPSetUp(ksp);CHKERRQ(ierr);
    ierr = PCFactorGetMatrix(pc, &fact);CHKERRQ(ierr);
    ierr = MatConvert(B, MATDENSE, MAT_INITIAL_MATRIX, &Bd);CHKERRQ(ierr);
    ierr = MatDuplicate(Bd, MAT_DO_NOT_COPY_VALUES, &AinvBd);CHKERRQ(ierr);
    ierr = MatMatSolve(fact, Bd, AinvBd);CHKERRQ(ierr);
    ierr = MatDestroy(&Bd);CHKERRQ(ierr);
    ierr = MatChop(AinvBd, eps);CHKERRQ(ierr);
    ierr = MatConvert(AinvBd, MATAIJ, MAT_INITIAL_MATRIX, &AinvB);CHKERRQ(ierr);
    ierr = MatDestroy(&AinvBd);CHKERRQ(ierr);
    ierr = MatMatMult(C, AinvB, MAT_INITIAL_MATRIX, fill, S);CHKERRQ(ierr);
    ierr = MatDestroy(&AinvB);CHKERRQ(ierr);
  } else {
    Mat Ainvd, Ainv;

    ierr = PCComputeExplicitOperator(pc, &Ainvd);CHKERRQ(ierr);
    ierr = MatConvert(Ainvd, MATAIJ, MAT_INITIAL_MATRIX, &Ainv);CHKERRQ(ierr);
    ierr = MatDestroy(&Ainvd);CHKERRQ(ierr);
#if 0
    /* Symmetric version */
    ierr = MatPtAP(Ainv, B, MAT_INITIAL_MATRIX, fill, S);CHKERRQ(ierr);
#else
    /* Nonsymmetric version */
    ierr = MatMatMatMult(C, Ainv, B, MAT_INITIAL_MATRIX, fill, S);CHKERRQ(ierr);
#endif
    ierr = MatDestroy(&Ainv);CHKERRQ(ierr);
  }

  ierr = PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD, PETSC_VIEWER_ASCII_INFO);CHKERRQ(ierr);
  ierr = MatView(*S, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

  if (D) {
    MatInfo   info;
    PetscReal norm;

    ierr = MatGetInfo(D, MAT_GLOBAL_SUM, &info);CHKERRQ(ierr);
    if (info.nz_used) {
      ierr = MatNorm(D, NORM_INFINITY, &norm);CHKERRQ(ierr);
      if (norm > PETSC_MACHINE_EPSILON) SETERRQ(PetscObjectComm((PetscObject) M), PETSC_ERR_SUP, "Not yet implemented for Schur complements with non-vanishing D");
    }
  }
  PetscFunctionReturn(0);
}
Exemplo n.º 8
0
PETSC_EXTERN void PETSC_STDCALL  pcfactorgetmatrix_(PC pc,Mat *mat, int *__ierr ){
*__ierr = PCFactorGetMatrix(
	(PC)PetscToPointer((pc) ),mat);
}