static void tstVDSnapSegmentsDice(PVDSNAPTEST pTest, PVDDISKSEG paDiskSeg, uint32_t cDiskSegments,
                                  uint8_t *pbTestPattern, size_t cbTestPattern)
{
    for (uint32_t i = 0; i < cDiskSegments; i++)
    {
        /* Do we want to change the current segment? */
        if (tstVDSnapIsTrue(pTest->uChangeSegChance))
            paDiskSeg[i].pbDataDiff = pbTestPattern + RT_ALIGN_64(RTRandAdvU64Ex(g_hRand, 0, cbTestPattern - paDiskSeg[i].cbSeg - 512), 512);
    }
}
Exemplo n.º 2
0
static int tstRandAdv(RTRAND hRand)
{
    /*
     * Test distribution.
     */
#if 1
    /* unsigned 32-bit */
    static const struct
    {
        uint32_t u32First;
        uint32_t u32Last;
    } s_aU32Tests[] =
    {
        { 0, UINT32_MAX },
        { 0, UINT32_MAX / 2 + UINT32_MAX / 4 },
        { 0, UINT32_MAX / 2 + UINT32_MAX / 8 },
        { 0, UINT32_MAX / 2 + UINT32_MAX / 16 },
        { 0, UINT32_MAX / 2 + UINT32_MAX / 64 },
        { 0, UINT32_MAX / 2 },
        { UINT32_MAX / 4, UINT32_MAX / 4 * 3 },
        { 0, TST_RAND_SAMPLE_RANGES - 1 },
        { 1234, 1234 + TST_RAND_SAMPLE_RANGES - 1 },
    };
    for (unsigned iTest = 0; iTest < RT_ELEMENTS(s_aU32Tests); iTest++)
    {
        uint32_t       acHits[TST_RAND_SAMPLE_RANGES] = {0};
        uint32_t const uFirst = s_aU32Tests[iTest].u32First;
        uint32_t const uLast  = s_aU32Tests[iTest].u32Last;
        uint32_t const uRange = uLast - uFirst; Assert(uLast >= uFirst);
        uint32_t const uDivisor = uRange / TST_RAND_SAMPLE_RANGES + 1;
        RTPrintf("tstRand:   TESTING RTRandAdvU32Ex(,%#RX32, %#RX32) distribution... [div=%#RX32 range=%#RX32]\n", uFirst, uLast, uDivisor, uRange);
        for (unsigned iSample = 0; iSample < TST_RAND_SAMPLE_RANGES * 10240; iSample++)
        {
            uint32_t uRand = RTRandAdvU32Ex(hRand, uFirst, uLast);
            CHECK_EXPR_MSG(uRand >= uFirst, ("%#RX32 %#RX32\n", uRand, uFirst));
            CHECK_EXPR_MSG(uRand <= uLast,  ("%#RX32 %#RX32\n", uRand, uLast));
            uint32_t off = uRand - uFirst;
            acHits[off / uDivisor]++;
        }
        tstRandCheckDist(acHits, iTest);
    }
#endif

#if 1
    /* unsigned 64-bit */
    static const struct
    {
        uint64_t u64First;
        uint64_t u64Last;
    } s_aU64Tests[] =
    {
        { 0, UINT64_MAX },
        { 0, UINT64_MAX / 2 + UINT64_MAX / 4 },
        { 0, UINT64_MAX / 2 + UINT64_MAX / 8 },
        { 0, UINT64_MAX / 2 + UINT64_MAX / 16 },
        { 0, UINT64_MAX / 2 + UINT64_MAX / 64 },
        { 0, UINT64_MAX / 2 },
        { UINT64_MAX / 4, UINT64_MAX / 4 * 3 },
        { 0, UINT32_MAX },
        { 0, UINT32_MAX / 2 + UINT32_MAX / 4 },
        { 0, UINT32_MAX / 2 + UINT32_MAX / 8 },
        { 0, UINT32_MAX / 2 + UINT32_MAX / 16 },
        { 0, UINT32_MAX / 2 + UINT32_MAX / 64 },
        { 0, UINT32_MAX / 2 },
        { UINT32_MAX / 4, UINT32_MAX / 4 * 3 },
        { 0, TST_RAND_SAMPLE_RANGES - 1 },
        { 1234, 1234 + TST_RAND_SAMPLE_RANGES - 1 },
    };
    for (unsigned iTest = 0; iTest < RT_ELEMENTS(s_aU64Tests); iTest++)
    {
        uint32_t       acHits[TST_RAND_SAMPLE_RANGES] = {0};
        uint64_t const uFirst = s_aU64Tests[iTest].u64First;
        uint64_t const uLast  = s_aU64Tests[iTest].u64Last;
        uint64_t const uRange = uLast - uFirst;  Assert(uLast >= uFirst);
        uint64_t const uDivisor = uRange / TST_RAND_SAMPLE_RANGES + 1;
        RTPrintf("tstRand:   TESTING RTRandAdvU64Ex(,%#RX64, %#RX64) distribution... [div=%#RX64 range=%#RX64]\n", uFirst, uLast, uDivisor, uRange);
        for (unsigned iSample = 0; iSample < TST_RAND_SAMPLE_RANGES * 10240; iSample++)
        {
            uint64_t uRand = RTRandAdvU64Ex(hRand, uFirst, uLast);
            CHECK_EXPR_MSG(uRand >= uFirst, ("%#RX64 %#RX64\n", uRand, uFirst));
            CHECK_EXPR_MSG(uRand <= uLast,  ("%#RX64 %#RX64\n", uRand, uLast));
            uint64_t off = uRand - uFirst;
            acHits[off / uDivisor]++;
        }
        tstRandCheckDist(acHits, iTest);
    }
#endif

#if 1
    /* signed 32-bit */
    static const struct
    {
        int32_t i32First;
        int32_t i32Last;
    } s_aS32Tests[] =
    {
        { -429496729, 429496729 },
        { INT32_MIN, INT32_MAX },
        { INT32_MIN, INT32_MAX / 2 },
        { -0x20000000, INT32_MAX },
        { -0x10000000, INT32_MAX },
        { -0x08000000, INT32_MAX },
        { -0x00800000, INT32_MAX },
        { -0x00080000, INT32_MAX },
        { -0x00008000, INT32_MAX },
        { -0x00000800, INT32_MAX },
        { 2, INT32_MAX / 2 },
        { 4000000, INT32_MAX / 2 },
        { -4000000, INT32_MAX / 2 },
        { INT32_MIN / 2, INT32_MAX / 2 },
        { INT32_MIN / 3, INT32_MAX / 2 },
        { INT32_MIN / 3, INT32_MAX / 3 },
        { INT32_MIN / 3, INT32_MAX / 4 },
        { INT32_MIN / 4, INT32_MAX / 4 },
        { INT32_MIN / 5, INT32_MAX / 5 },
        { INT32_MIN / 6, INT32_MAX / 6 },
        { INT32_MIN / 7, INT32_MAX / 6 },
        { INT32_MIN / 7, INT32_MAX / 7 },
        { INT32_MIN / 7, INT32_MAX / 8 },
        { INT32_MIN / 8, INT32_MAX / 8 },
        { INT32_MIN / 9, INT32_MAX / 9 },
        { INT32_MIN / 9, INT32_MAX / 12 },
        { INT32_MIN / 12, INT32_MAX / 12 },
        { 0, TST_RAND_SAMPLE_RANGES - 1 },
        { -TST_RAND_SAMPLE_RANGES / 2, TST_RAND_SAMPLE_RANGES / 2 - 1 },
    };
    for (unsigned iTest = 0; iTest < RT_ELEMENTS(s_aS32Tests); iTest++)
    {
        uint32_t       acHits[TST_RAND_SAMPLE_RANGES] = {0};
        int32_t const  iFirst = s_aS32Tests[iTest].i32First;
        int32_t const  iLast  = s_aS32Tests[iTest].i32Last;
        uint32_t const uRange = iLast - iFirst; AssertMsg(iLast >= iFirst, ("%d\n", iTest));
        uint32_t const uDivisor = (uRange ? uRange : UINT32_MAX) / TST_RAND_SAMPLE_RANGES + 1;
        RTPrintf("tstRand:   TESTING RTRandAdvS32Ex(,%#RI32, %#RI32) distribution... [div=%#RX32 range=%#RX32]\n", iFirst, iLast, uDivisor, uRange);
        for (unsigned iSample = 0; iSample < TST_RAND_SAMPLE_RANGES * 10240; iSample++)
        {
            int32_t iRand = RTRandAdvS32Ex(hRand, iFirst, iLast);
            CHECK_EXPR_MSG(iRand >= iFirst, ("%#RI32 %#RI32\n", iRand, iFirst));
            CHECK_EXPR_MSG(iRand <= iLast,  ("%#RI32 %#RI32\n", iRand, iLast));
            uint32_t off = iRand - iFirst;
            acHits[off / uDivisor]++;
        }
        tstRandCheckDist(acHits, iTest);
    }
#endif

#if 1
    /* signed 64-bit */
    static const struct
    {
        int64_t i64First;
        int64_t i64Last;
    } s_aS64Tests[] =
    {
        { INT64_MIN, INT64_MAX },
        { INT64_MIN, INT64_MAX / 2 },
        { INT64_MIN / 2, INT64_MAX / 2 },
        { INT64_MIN / 2 + INT64_MIN / 4, INT64_MAX / 2 },
        { INT64_MIN / 2 + INT64_MIN / 8, INT64_MAX / 2 },
        { INT64_MIN / 2 + INT64_MIN / 16, INT64_MAX / 2 },
        { INT64_MIN / 2 + INT64_MIN / 64, INT64_MAX / 2 },
        { INT64_MIN / 2 + INT64_MIN / 64, INT64_MAX / 2 + INT64_MAX / 64 },
        { INT64_MIN / 2, INT64_MAX / 2 + INT64_MAX / 64 },
        { INT64_MIN / 2, INT64_MAX / 2 + INT64_MAX / 8 },
        { INT64_MIN / 2, INT64_MAX / 2 - INT64_MAX / 8 },
        { INT64_MIN / 2 - INT64_MIN / 4, INT64_MAX / 2 - INT64_MAX / 4 },
        { INT64_MIN / 2 - INT64_MIN / 4, INT64_MAX / 2 - INT64_MAX / 8 },
        { INT64_MIN / 2 - INT64_MIN / 8, INT64_MAX / 2 - INT64_MAX / 8 },
        { INT64_MIN / 2 - INT64_MIN / 16, INT64_MAX / 2 - INT64_MAX / 8 },
        { INT64_MIN / 2 - INT64_MIN / 16, INT64_MAX / 2 - INT64_MAX / 16 },
        { INT64_MIN / 2 - INT64_MIN / 32, INT64_MAX / 2 - INT64_MAX / 16 },
        { INT64_MIN / 2 - INT64_MIN / 32, INT64_MAX / 2 - INT64_MAX / 32 },
        { INT64_MIN / 2 - INT64_MIN / 64, INT64_MAX / 2 - INT64_MAX / 64 },
        { INT64_MIN / 2 - INT64_MIN / 8, INT64_MAX / 2 },
        { INT64_MIN / 4, INT64_MAX / 4 },
        { INT64_MIN / 5, INT64_MAX / 5 },
        { INT64_MIN / 6, INT64_MAX / 6 },
        { INT64_MIN / 7, INT64_MAX / 7 },
        { INT64_MIN / 8, INT64_MAX / 8 },
        { INT32_MIN, INT32_MAX },
        { INT32_MIN, INT32_MAX / 2 },
        { -0x20000000, INT32_MAX },
        { -0x10000000, INT32_MAX },
        { -0x7f000000, INT32_MAX },
        { -0x08000000, INT32_MAX },
        { -0x00800000, INT32_MAX },
        { -0x00080000, INT32_MAX },
        { -0x00008000, INT32_MAX },
        { 2, INT32_MAX / 2 },
        { 4000000, INT32_MAX / 2 },
        { -4000000, INT32_MAX / 2 },
        { INT32_MIN / 2, INT32_MAX / 2 },
        { 0, TST_RAND_SAMPLE_RANGES - 1 },
        { -TST_RAND_SAMPLE_RANGES / 2, TST_RAND_SAMPLE_RANGES / 2 - 1 }
    };
    for (unsigned iTest = 0; iTest < RT_ELEMENTS(s_aS64Tests); iTest++)
    {
        uint32_t       acHits[TST_RAND_SAMPLE_RANGES] = {0};
        int64_t const  iFirst = s_aS64Tests[iTest].i64First;
        int64_t const  iLast  = s_aS64Tests[iTest].i64Last;
        uint64_t const uRange = iLast - iFirst; AssertMsg(iLast >= iFirst, ("%d\n", iTest));
        uint64_t const uDivisor = (uRange ? uRange : UINT64_MAX) / TST_RAND_SAMPLE_RANGES + 1;
        RTPrintf("tstRand:   TESTING RTRandAdvS64Ex(,%#RI64, %#RI64) distribution... [div=%#RX64 range=%#016RX64]\n", iFirst, iLast, uDivisor, uRange);
        for (unsigned iSample = 0; iSample < TST_RAND_SAMPLE_RANGES * 10240; iSample++)
        {
            int64_t iRand = RTRandAdvS64Ex(hRand, iFirst, iLast);
            CHECK_EXPR_MSG(iRand >= iFirst, ("%#RI64 %#RI64\n", iRand, iFirst));
            CHECK_EXPR_MSG(iRand <= iLast,  ("%#RI64 %#RI64\n", iRand, iLast));
            uint64_t off = iRand - iFirst;
            acHits[off / uDivisor]++;
        }
        tstRandCheckDist(acHits, iTest);
    }
#endif

    /*
     * Test saving and restoring the state.
     */
    RTPrintf("tstRand:   TESTING RTRandAdvSave/RestoreSave\n");
    char szState[256];
    size_t cbState = sizeof(szState);
    int rc = RTRandAdvSaveState(hRand, szState, &cbState);
    if (rc != VERR_NOT_SUPPORTED)
    {
        CHECK_EXPR_MSG(rc == VINF_SUCCESS,  ("RTRandAdvSaveState(%p,,256) -> %Rrc (%d)\n", (uintptr_t)hRand, rc, rc));
        uint32_t const u32A1 = RTRandAdvU32(hRand);
        uint32_t const u32B1 = RTRandAdvU32(hRand);
        RTPrintf("tstRand:   state:\"%s\"  A=%RX32 B=%RX32\n", szState, u32A1, u32B1);

        rc = RTRandAdvRestoreState(hRand, szState);
        CHECK_EXPR_MSG(rc == VINF_SUCCESS,  ("RTRandAdvRestoreState(%p,\"%s\") -> %Rrc (%d)\n", (uintptr_t)hRand, szState, rc, rc));
        uint32_t const u32A2 = RTRandAdvU32(hRand);
        uint32_t const u32B2 = RTRandAdvU32(hRand);
        CHECK_EXPR_MSG(u32A1 == u32A2, ("u32A1=%RX32 u32A2=%RX32\n", u32A1, u32A2));
        CHECK_EXPR_MSG(u32B1 == u32B2, ("u32B1=%RX32 u32B2=%RX32\n", u32B1, u32B2));
    }
    else
    {
        szState[0] = '\0';
        rc = RTRandAdvRestoreState(hRand, szState);
        CHECK_EXPR_MSG(rc == VERR_NOT_SUPPORTED,  ("RTRandAdvRestoreState(%p,\"\") -> %Rrc (%d)\n", (uintptr_t)hRand, rc, rc));
    }


    /*
     * Destroy it.
     */
    rc = RTRandAdvDestroy(hRand);
    CHECK_EXPR_MSG(rc == VINF_SUCCESS,  ("RTRandAdvDestroy(%p) -> %Rrc (%d)\n", (uintptr_t)hRand, rc, rc));

    return 0;
}
static int tstVDOpenCreateWriteMerge(PVDSNAPTEST pTest)
{
    int rc;
    PVBOXHDD pVD = NULL;
    VDGEOMETRY       PCHS = { 0, 0, 0 };
    VDGEOMETRY       LCHS = { 0, 0, 0 };
    PVDINTERFACE     pVDIfs = NULL;
    VDINTERFACEERROR VDIfError;

    /** Buffer storing the random test pattern. */
    uint8_t *pbTestPattern = NULL;
    /** Number of disk segments */
    uint32_t cDiskSegments;
    /** Array of disk segments */
    PVDDISKSEG paDiskSeg = NULL;
    unsigned   cDiffs = 0;
    unsigned   idDiff = 0; /* Diff ID counter for the filename */

    /* Delete all images from a previous run. */
    RTFileDelete(pTest->pcszBaseImage);
    for (unsigned i = 0; i < pTest->cIterations; i++)
    {
        char *pszDiffFilename = NULL;

        rc = RTStrAPrintf(&pszDiffFilename, "tstVDSnapDiff%u.%s", i, pTest->pcszDiffSuff);
        if (RT_SUCCESS(rc))
        {
            if (RTFileExists(pszDiffFilename))
                RTFileDelete(pszDiffFilename);
            RTStrFree(pszDiffFilename);
        }
    }

    /* Create the virtual disk test data */
    pbTestPattern = (uint8_t *)RTMemAlloc(pTest->cbTestPattern);

    RTRandAdvBytes(g_hRand, pbTestPattern, pTest->cbTestPattern);
    cDiskSegments = RTRandAdvU32Ex(g_hRand, pTest->cDiskSegsMin, pTest->cDiskSegsMax);

    uint64_t cbDisk = 0;

    paDiskSeg = (PVDDISKSEG)RTMemAllocZ(cDiskSegments * sizeof(VDDISKSEG));
    if (!paDiskSeg)
    {
        RTPrintf("Failed to allocate memory for random disk segments\n");
        g_cErrors++;
        return VERR_NO_MEMORY;
    }

    for (unsigned i = 0; i < cDiskSegments; i++)
    {
        paDiskSeg[i].off    = cbDisk;
        paDiskSeg[i].cbSeg  = RT_ALIGN_64(RTRandAdvU64Ex(g_hRand, 512, pTest->cbTestPattern), 512);
        if (tstVDSnapIsTrue(pTest->uAllocatedBlocks))
            paDiskSeg[i].pbData = pbTestPattern + RT_ALIGN_64(RTRandAdvU64Ex(g_hRand, 0, pTest->cbTestPattern - paDiskSeg[i].cbSeg - 512), 512);
        else
            paDiskSeg[i].pbData = NULL; /* Not allocated initially */
        cbDisk += paDiskSeg[i].cbSeg;
    }

    RTPrintf("Disk size is %llu bytes\n", cbDisk);

#define CHECK(str) \
    do \
    { \
        RTPrintf("%s rc=%Rrc\n", str, rc); \
        if (RT_FAILURE(rc)) \
        { \
            if (pbTestPattern) \
                RTMemFree(pbTestPattern); \
            if (paDiskSeg) \
                RTMemFree(paDiskSeg); \
            VDDestroy(pVD); \
            g_cErrors++; \
            return rc; \
        } \
    } while (0)

#define CHECK_BREAK(str) \
    do \
    { \
        RTPrintf("%s rc=%Rrc\n", str, rc); \
        if (RT_FAILURE(rc)) \
        { \
            g_cErrors++; \
            break; \
        } \
    } while (0)

    /* Create error interface. */
    /* Create error interface. */
    VDIfError.pfnError = tstVDError;
    VDIfError.pfnMessage = tstVDMessage;

    rc = VDInterfaceAdd(&VDIfError.Core, "tstVD_Error", VDINTERFACETYPE_ERROR,
                        NULL, sizeof(VDINTERFACEERROR), &pVDIfs);
    AssertRC(rc);


    rc = VDCreate(pVDIfs, VDTYPE_HDD, &pVD);
    CHECK("VDCreate()");

    rc = VDCreateBase(pVD, pTest->pcszBackend, pTest->pcszBaseImage, cbDisk,
                      VD_IMAGE_FLAGS_NONE, "Test image",
                      &PCHS, &LCHS, NULL, VD_OPEN_FLAGS_NORMAL,
                      NULL, NULL);
    CHECK("VDCreateBase()");

    bool fInit = true;
    uint32_t cIteration = 0;

    /* Do the real work now */
    while (   RT_SUCCESS(rc)
           && cIteration < pTest->cIterations)
    {
        /* Write */
        rc = tstVDSnapWrite(pVD, paDiskSeg, cDiskSegments, cbDisk, fInit);
        CHECK_BREAK("tstVDSnapWrite()");

        fInit = false;

        /* Write returned, do we want to create a new diff or merge them? */
        bool fCreate =   cDiffs < pTest->cDiffsMinBeforeMerge
                       ? true
                       : tstVDSnapIsTrue(pTest->uCreateDiffChance);

        if (fCreate)
        {
            char *pszDiffFilename = NULL;

            RTStrAPrintf(&pszDiffFilename, "tstVDSnapDiff%u.%s", idDiff, pTest->pcszDiffSuff);
            CHECK("RTStrAPrintf()");
            idDiff++;
            cDiffs++;

            rc = VDCreateDiff(pVD, pTest->pcszBackend, pszDiffFilename,
                              VD_IMAGE_FLAGS_NONE, "Test diff image", NULL, NULL,
                              VD_OPEN_FLAGS_NORMAL, NULL, NULL);
            CHECK_BREAK("VDCreateDiff()");

            RTStrFree(pszDiffFilename);
            VDDumpImages(pVD);

            /* Change data */
            tstVDSnapSegmentsDice(pTest, paDiskSeg, cDiskSegments, pbTestPattern, pTest->cbTestPattern);
        }
        else
        {
            uint32_t uStartMerge = RTRandAdvU32Ex(g_hRand, 1, cDiffs - 1);
            uint32_t uEndMerge   = RTRandAdvU32Ex(g_hRand, uStartMerge + 1, cDiffs);
            RTPrintf("Merging %u diffs from %u to %u...\n",
                     uEndMerge - uStartMerge,
                     uStartMerge,
                     uEndMerge);
            if (pTest->fForward)
                rc = VDMerge(pVD, uStartMerge, uEndMerge, NULL);
            else
                rc = VDMerge(pVD, uEndMerge, uStartMerge, NULL);
            CHECK_BREAK("VDMerge()");

            cDiffs -= uEndMerge - uStartMerge;

            VDDumpImages(pVD);

            /* Go through the disk segments and reset pointers. */
            for (uint32_t i = 0; i < cDiskSegments; i++)
            {
                if (paDiskSeg[i].pbDataDiff)
                {
                    paDiskSeg[i].pbData     = paDiskSeg[i].pbDataDiff;
                    paDiskSeg[i].pbDataDiff = NULL;
                }
            }

            /* Now compare the result with our test pattern */
            rc = tstVDSnapReadVerify(pVD, paDiskSeg, cDiskSegments, cbDisk);
            CHECK_BREAK("tstVDSnapReadVerify()");
        }
        cIteration++;
    }

    VDDumpImages(pVD);

    VDDestroy(pVD);
    if (paDiskSeg)
        RTMemFree(paDiskSeg);
    if (pbTestPattern)
        RTMemFree(pbTestPattern);

    RTFileDelete(pTest->pcszBaseImage);
    for (unsigned i = 0; i < idDiff; i++)
    {
        char *pszDiffFilename = NULL;

        RTStrAPrintf(&pszDiffFilename, "tstVDSnapDiff%u.%s", i, pTest->pcszDiffSuff);
        RTFileDelete(pszDiffFilename);
        RTStrFree(pszDiffFilename);
    }
#undef CHECK
    return rc;
}