/**
 * Implements the timed wait.
 *
 * @returns See RTSemEventMultiWaitEx
 * @param   pThis               The semaphore.
 * @param   fFlags              See RTSemEventMultiWaitEx.
 * @param   uTimeout            See RTSemEventMultiWaitEx.
 * @param   pSrcPos             The source position, can be NULL.
 */
static int rtSemEventMultiPosixWaitTimed(struct RTSEMEVENTMULTIINTERNAL *pThis, uint32_t fFlags, uint64_t uTimeout,
        PCRTLOCKVALSRCPOS pSrcPos)
{
    /*
     * Convert uTimeout to a relative value in nano seconds.
     */
    if (fFlags & RTSEMWAIT_FLAGS_MILLISECS)
        uTimeout = uTimeout < UINT64_MAX / UINT32_C(1000000) * UINT32_C(1000000)
                   ? uTimeout * UINT32_C(1000000)
                   : UINT64_MAX;
    if (uTimeout == UINT64_MAX) /* unofficial way of indicating an indefinite wait */
        return rtSemEventMultiPosixWaitIndefinite(pThis, fFlags, pSrcPos);

    uint64_t uAbsTimeout = uTimeout;
    if (fFlags & RTSEMWAIT_FLAGS_ABSOLUTE)
    {
        uint64_t u64Now = RTTimeSystemNanoTS();
        uTimeout = uTimeout > u64Now ? uTimeout - u64Now : 0;
    }

    if (uTimeout == 0)
        return rtSemEventMultiPosixWaitPoll(pThis);

    /*
     * Get current time and calc end of deadline relative to real time.
     */
    struct timespec     ts = {0,0};
    if (!pThis->fMonotonicClock)
    {
#if defined(RT_OS_DARWIN) || defined(RT_OS_HAIKU)
        struct timeval  tv = {0,0};
        gettimeofday(&tv, NULL);
        ts.tv_sec = tv.tv_sec;
        ts.tv_nsec = tv.tv_usec * 1000;
#else
        clock_gettime(CLOCK_REALTIME, &ts);
#endif
        struct timespec tsAdd;
        tsAdd.tv_nsec = uTimeout % UINT32_C(1000000000);
        tsAdd.tv_sec  = uTimeout / UINT32_C(1000000000);
        if (   sizeof(ts.tv_sec) < sizeof(uint64_t)
                && (   uTimeout > UINT64_C(1000000000) * UINT32_MAX
                       || (uint64_t)ts.tv_sec + tsAdd.tv_sec >= UINT32_MAX) )
            return rtSemEventMultiPosixWaitIndefinite(pThis, fFlags, pSrcPos);

        ts.tv_sec  += tsAdd.tv_sec;
        ts.tv_nsec += tsAdd.tv_nsec;
        if (ts.tv_nsec >= 1000000000)
        {
            ts.tv_nsec -= 1000000000;
            ts.tv_sec++;
        }
        /* Note! No need to complete uAbsTimeout for RTSEMWAIT_FLAGS_RELATIVE in this path. */
    }
    else
    {
        /* ASSUMES RTTimeSystemNanoTS() == RTTimeNanoTS() == clock_gettime(CLOCK_MONOTONIC). */
        if (fFlags & RTSEMWAIT_FLAGS_RELATIVE)
            uAbsTimeout += RTTimeSystemNanoTS();
        if (   sizeof(ts.tv_sec) < sizeof(uint64_t)
                && uAbsTimeout > UINT64_C(1000000000) * UINT32_MAX)
            return rtSemEventMultiPosixWaitIndefinite(pThis, fFlags, pSrcPos);
        ts.tv_nsec = uAbsTimeout % UINT32_C(1000000000);
        ts.tv_sec  = uAbsTimeout / UINT32_C(1000000000);
    }

    /*
     * To business!
     */
    /* take mutex */
    int rc = pthread_mutex_lock(&pThis->Mutex);
    AssertMsgReturn(rc == 0, ("rc=%d pThis=%p\n", rc, pThis), RTErrConvertFromErrno(rc));
    NOREF(rc);
    ASMAtomicIncU32(&pThis->cWaiters);

    for (;;)
    {
        /* check state. */
        uint32_t const u32State = pThis->u32State;
        if (u32State != EVENTMULTI_STATE_NOT_SIGNALED)
        {
            ASMAtomicDecU32(&pThis->cWaiters);
            rc = pthread_mutex_unlock(&pThis->Mutex);
            AssertMsg(!rc, ("Failed to unlock event multi sem %p, rc=%d.\n", pThis, rc));
            return u32State == EVENTMULTI_STATE_SIGNALED
                   ? VINF_SUCCESS
                   : VERR_SEM_DESTROYED;
        }

        /* wait */
#ifdef RTSEMEVENTMULTI_STRICT
        RTTHREAD hThreadSelf = RTThreadSelfAutoAdopt();
        if (pThis->fEverHadSignallers)
        {
            rc = RTLockValidatorRecSharedCheckBlocking(&pThis->Signallers, hThreadSelf, pSrcPos, false,
                    uTimeout / UINT32_C(1000000), RTTHREADSTATE_EVENT_MULTI, true);
            if (RT_FAILURE(rc))
            {
                ASMAtomicDecU32(&pThis->cWaiters);
                pthread_mutex_unlock(&pThis->Mutex);
                return rc;
            }
        }
#else
        RTTHREAD hThreadSelf = RTThreadSelf();
#endif
        RTThreadBlocking(hThreadSelf, RTTHREADSTATE_EVENT_MULTI, true);
        rc = pthread_cond_timedwait(&pThis->Cond, &pThis->Mutex, &ts);
        RTThreadUnblocked(hThreadSelf, RTTHREADSTATE_EVENT_MULTI);
        if (    rc
                && (   rc != EINTR  /* according to SuS this function shall not return EINTR, but linux man page says differently. */
                       || (fFlags & RTSEMWAIT_FLAGS_NORESUME)) )
        {
            AssertMsg(rc == ETIMEDOUT, ("Failed to wait on event multi sem %p, rc=%d.\n", pThis, rc));
            ASMAtomicDecU32(&pThis->cWaiters);
            int rc2 = pthread_mutex_unlock(&pThis->Mutex);
            AssertMsg(!rc2, ("Failed to unlock event multi sem %p, rc=%d.\n", pThis, rc2));
            NOREF(rc2);
            return RTErrConvertFromErrno(rc);
        }

        /* check the absolute deadline. */
    }
}
Exemplo n.º 2
0
/**
 * Worker for RTSemEventWaitEx and RTSemEventWaitExDebug.
 *
 * @returns VBox status code.
 * @param   pThis           The event semaphore.
 * @param   fFlags          See RTSemEventWaitEx.
 * @param   uTimeout        See RTSemEventWaitEx.
 * @param   pSrcPos         The source code position of the wait.
 */
DECLINLINE(int) rtR0SemEventNtWait(PRTSEMEVENTINTERNAL pThis, uint32_t fFlags, uint64_t uTimeout,
                                   PCRTLOCKVALSRCPOS pSrcPos)
{
    /*
     * Validate input.
     */
    if (!pThis)
        return VERR_INVALID_PARAMETER;
    AssertPtrReturn(pThis, VERR_INVALID_PARAMETER);
    AssertMsgReturn(pThis->u32Magic == RTSEMEVENT_MAGIC, ("%p u32Magic=%RX32\n", pThis, pThis->u32Magic), VERR_INVALID_PARAMETER);
    AssertReturn(RTSEMWAIT_FLAGS_ARE_VALID(fFlags), VERR_INVALID_PARAMETER);

    rtR0SemEventNtRetain(pThis);

    /*
     * Convert the timeout to a relative one because KeWaitForSingleObject
     * takes system time instead of interrupt time as input for absolute
     * timeout specifications.  So, we're best of by giving it relative time.
     *
     * Lazy bird converts uTimeout to relative nanoseconds and then to Nt time.
     */
    if (!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE))
    {
        if (fFlags & RTSEMWAIT_FLAGS_MILLISECS)
            uTimeout = uTimeout < UINT64_MAX / UINT32_C(1000000) * UINT32_C(1000000)
                     ? uTimeout * UINT32_C(1000000)
                     : UINT64_MAX;
        if (uTimeout == UINT64_MAX)
            fFlags |= RTSEMWAIT_FLAGS_INDEFINITE;
        else
        {
            if (fFlags & RTSEMWAIT_FLAGS_ABSOLUTE)
            {
                uint64_t u64Now = RTTimeSystemNanoTS();
                uTimeout = u64Now < uTimeout
                         ? uTimeout - u64Now
                         : 0;
            }
        }
    }

    /*
     * Wait for it.
     * We're assuming interruptible waits should happen at UserMode level.
     */
    NTSTATUS        rcNt;
    BOOLEAN         fInterruptible = !!(fFlags & RTSEMWAIT_FLAGS_INTERRUPTIBLE);
    KPROCESSOR_MODE WaitMode   = fInterruptible ? UserMode : KernelMode;
    if (fFlags & RTSEMWAIT_FLAGS_INDEFINITE)
        rcNt = KeWaitForSingleObject(&pThis->Event, Executive, WaitMode, fInterruptible, NULL);
    else
    {
        LARGE_INTEGER Timeout;
        Timeout.QuadPart = -(int64_t)(uTimeout / 100);
        rcNt = KeWaitForSingleObject(&pThis->Event, Executive, WaitMode, fInterruptible, &Timeout);
    }
    int rc;
    if (pThis->u32Magic == RTSEMEVENT_MAGIC)
    {
        switch (rcNt)
        {
            case STATUS_SUCCESS:
                rc = VINF_SUCCESS;
                break;
            case STATUS_ALERTED:
                rc = VERR_INTERRUPTED;
                break;
            case STATUS_USER_APC:
                rc = VERR_INTERRUPTED;
                break;
            case STATUS_TIMEOUT:
                rc = VERR_TIMEOUT;
                break;
            default:
                AssertMsgFailed(("pThis->u32Magic=%RX32 pThis=%p: wait returned %lx!\n",
                                 pThis->u32Magic, pThis, (long)rcNt));
                rc = VERR_INTERNAL_ERROR_4;
                break;
        }
    }
    else
        rc = VERR_SEM_DESTROYED;

    rtR0SemEventNtRelease(pThis);
    return rc;
}
DECL_FORCE_INLINE(int) rtSemMutexRequest(RTSEMMUTEX hMutexSem, RTMSINTERVAL cMillies, bool fAutoResume, PCRTLOCKVALSRCPOS pSrcPos)
{
    /*
     * Validate input.
     */
    struct RTSEMMUTEXINTERNAL *pThis = hMutexSem;
    AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
    AssertReturn(pThis->u32Magic == RTSEMMUTEX_MAGIC, VERR_INVALID_HANDLE);

    /*
     * Check if nested request.
     */
    pthread_t Self = pthread_self();
    if (    pThis->Owner == Self
        &&  pThis->cNestings > 0)
    {
#ifdef RTSEMMUTEX_STRICT
        int rc9 = RTLockValidatorRecExclRecursion(&pThis->ValidatorRec, pSrcPos);
        if (RT_FAILURE(rc9))
            return rc9;
#endif
        ASMAtomicIncU32(&pThis->cNestings);
        return VINF_SUCCESS;
    }

#ifdef RTSEMMUTEX_STRICT
    RTTHREAD hThreadSelf = RTThreadSelfAutoAdopt();
    if (cMillies)
    {
        int rc9 = RTLockValidatorRecExclCheckOrder(&pThis->ValidatorRec, hThreadSelf, pSrcPos, cMillies);
        if (RT_FAILURE(rc9))
            return rc9;
    }
#else
    RTTHREAD hThreadSelf = RTThreadSelf();
#endif

    /*
     * Convert timeout value.
     */
    struct timespec ts;
    struct timespec *pTimeout = NULL;
    uint64_t u64End = 0; /* shut up gcc */
    if (cMillies != RT_INDEFINITE_WAIT)
    {
        ts.tv_sec  = cMillies / 1000;
        ts.tv_nsec = (cMillies % 1000) * UINT32_C(1000000);
        u64End = RTTimeSystemNanoTS() + cMillies * UINT64_C(1000000);
        pTimeout = &ts;
    }

    /*
     * Lock the mutex.
     * Optimize for the uncontended case (makes 1-2 ns difference).
     */
    if (RT_UNLIKELY(!ASMAtomicCmpXchgS32(&pThis->iState, 1, 0)))
    {
        for (;;)
        {
            int32_t iOld = ASMAtomicXchgS32(&pThis->iState, 2);

            /*
             * Was the lock released in the meantime? This is unlikely (but possible)
             */
            if (RT_UNLIKELY(iOld == 0))
                break;

            /*
             * Go to sleep.
             */
            if (pTimeout && ( pTimeout->tv_sec || pTimeout->tv_nsec ))
            {
#ifdef RTSEMMUTEX_STRICT
                int rc9 = RTLockValidatorRecExclCheckBlocking(&pThis->ValidatorRec, hThreadSelf, pSrcPos, true,
                                                              cMillies, RTTHREADSTATE_MUTEX, true);
                if (RT_FAILURE(rc9))
                    return rc9;
#else
                RTThreadBlocking(hThreadSelf, RTTHREADSTATE_MUTEX, true);
#endif
            }

            long rc = sys_futex(&pThis->iState, FUTEX_WAIT, 2, pTimeout, NULL, 0);

            RTThreadUnblocked(hThreadSelf, RTTHREADSTATE_MUTEX);
            if (RT_UNLIKELY(pThis->u32Magic != RTSEMMUTEX_MAGIC))
                return VERR_SEM_DESTROYED;

            /*
             * Act on the wakup code.
             */
            if (rc == -ETIMEDOUT)
            {
                Assert(pTimeout);
                return VERR_TIMEOUT;
            }
            if (rc == 0)
                /* we'll leave the loop now unless another thread is faster */;
            else if (rc == -EWOULDBLOCK)
                /* retry with new value. */;
            else if (rc == -EINTR)
            {
                if (!fAutoResume)
                    return VERR_INTERRUPTED;
            }
            else
            {
                /* this shouldn't happen! */
                AssertMsgFailed(("rc=%ld errno=%d\n", rc, errno));
                return RTErrConvertFromErrno(rc);
            }

            /* adjust the relative timeout */
            if (pTimeout)
            {
                int64_t i64Diff = u64End - RTTimeSystemNanoTS();
                if (i64Diff < 1000)
                {
                    rc = VERR_TIMEOUT;
                    break;
                }
                ts.tv_sec  = (uint64_t)i64Diff / UINT32_C(1000000000);
                ts.tv_nsec = (uint64_t)i64Diff % UINT32_C(1000000000);
            }
        }

        /*
         * When leaving this loop, iState is set to 2. This means that we gained the
         * lock and there are _possibly_ some waiters. We don't know exactly as another
         * thread might entered this loop at nearly the same time. Therefore we will
         * call futex_wakeup once too often (if _no_ other thread entered this loop).
         * The key problem is the simple futex_wait test for x != y (iState != 2) in
         * our case).
         */
    }

    /*
     * Set the owner and nesting.
     */
    pThis->Owner = Self;
    ASMAtomicWriteU32(&pThis->cNestings, 1);
#ifdef RTSEMMUTEX_STRICT
    RTLockValidatorRecExclSetOwner(&pThis->ValidatorRec, hThreadSelf, pSrcPos, true);
#endif
    return VINF_SUCCESS;
}
/**
 * Service request callback function.
 *
 * @returns VBox status code.
 * @param   pSession    The caller's session.
 * @param   u64Arg      64-bit integer argument.
 * @param   pReqHdr     The request header. Input / Output. Optional.
 */
DECLEXPORT(int) TSTR0ThreadPreemptionSrvReqHandler(PSUPDRVSESSION pSession, uint32_t uOperation,
                                                   uint64_t u64Arg, PSUPR0SERVICEREQHDR pReqHdr)
{
    if (u64Arg)
        return VERR_INVALID_PARAMETER;
    if (!VALID_PTR(pReqHdr))
        return VERR_INVALID_PARAMETER;
    char   *pszErr = (char *)(pReqHdr + 1);
    size_t  cchErr = pReqHdr->cbReq - sizeof(*pReqHdr);
    if (cchErr < 32 || cchErr >= 0x10000)
        return VERR_INVALID_PARAMETER;
    *pszErr = '\0';

    /*
     * The big switch.
     */
    switch (uOperation)
    {
        case TSTR0THREADPREMEPTION_SANITY_OK:
            break;

        case TSTR0THREADPREMEPTION_SANITY_FAILURE:
            RTStrPrintf(pszErr, cchErr, "!42failure42%1024s", "");
            break;

        case TSTR0THREADPREMEPTION_BASIC:
        {
            if (!ASMIntAreEnabled())
                RTStrPrintf(pszErr, cchErr, "!Interrupts disabled");
            else if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
                RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns false by default");
            else
            {
                RTTHREADPREEMPTSTATE State = RTTHREADPREEMPTSTATE_INITIALIZER;
                RTThreadPreemptDisable(&State);
                if (RTThreadPreemptIsEnabled(NIL_RTTHREAD))
                    RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns true after RTThreadPreemptDisable");
                else if (!ASMIntAreEnabled())
                    RTStrPrintf(pszErr, cchErr, "!Interrupts disabled");
                RTThreadPreemptRestore(&State);
            }
            break;
        }

        case TSTR0THREADPREMEPTION_IS_PENDING:
        {
            RTTHREADPREEMPTSTATE State = RTTHREADPREEMPTSTATE_INITIALIZER;
            RTThreadPreemptDisable(&State);
            if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
            {
                if (ASMIntAreEnabled())
                {
                    uint64_t    u64StartTS    = RTTimeNanoTS();
                    uint64_t    u64StartSysTS = RTTimeSystemNanoTS();
                    uint64_t    cLoops        = 0;
                    uint64_t    cNanosSysElapsed;
                    uint64_t    cNanosElapsed;
                    bool        fPending;
                    do
                    {
                        fPending         = RTThreadPreemptIsPending(NIL_RTTHREAD);
                        cNanosElapsed    = RTTimeNanoTS()       - u64StartTS;
                        cNanosSysElapsed = RTTimeSystemNanoTS() - u64StartSysTS;
                        cLoops++;
                    } while (   !fPending
                             && cNanosElapsed    < UINT64_C(2)*1000U*1000U*1000U
                             && cNanosSysElapsed < UINT64_C(2)*1000U*1000U*1000U
                             && cLoops           < 100U*_1M);
                    if (!fPending)
                        RTStrPrintf(pszErr, cchErr, "!Preempt not pending after %'llu loops / %'llu ns / %'llu ns (sys)",
                                    cLoops, cNanosElapsed, cNanosSysElapsed);
                    else if (cLoops == 1)
                        RTStrPrintf(pszErr, cchErr, "!cLoops=1\n");
                    else
                        RTStrPrintf(pszErr, cchErr, "RTThreadPreemptIsPending returned true after %'llu loops / %'llu ns / %'llu ns (sys)",
                                    cLoops, cNanosElapsed, cNanosSysElapsed);
                }
                else
                    RTStrPrintf(pszErr, cchErr, "!Interrupts disabled");
            }
            else
                RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns true after RTThreadPreemptDisable");
            RTThreadPreemptRestore(&State);
            break;
        }

        case TSTR0THREADPREMEPTION_NESTED:
        {
            bool const fDefault = RTThreadPreemptIsEnabled(NIL_RTTHREAD);
            RTTHREADPREEMPTSTATE State1 = RTTHREADPREEMPTSTATE_INITIALIZER;
            RTThreadPreemptDisable(&State1);
            if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
            {
                RTTHREADPREEMPTSTATE State2 = RTTHREADPREEMPTSTATE_INITIALIZER;
                RTThreadPreemptDisable(&State2);
                if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
                {
                    RTTHREADPREEMPTSTATE State3 = RTTHREADPREEMPTSTATE_INITIALIZER;
                    RTThreadPreemptDisable(&State3);
                    if (RTThreadPreemptIsEnabled(NIL_RTTHREAD))
                        RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns true after 3rd RTThreadPreemptDisable");

                    RTThreadPreemptRestore(&State3);
                    if (RTThreadPreemptIsEnabled(NIL_RTTHREAD) && !*pszErr)
                        RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns true after 1st RTThreadPreemptRestore");
                }
                else
                    RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns true after 2nd RTThreadPreemptDisable");

                RTThreadPreemptRestore(&State2);
                if (RTThreadPreemptIsEnabled(NIL_RTTHREAD) && !*pszErr)
                    RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns true after 2nd RTThreadPreemptRestore");
            }
            else
                RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns true after 1st RTThreadPreemptDisable");
            RTThreadPreemptRestore(&State1);
            if (RTThreadPreemptIsEnabled(NIL_RTTHREAD) != fDefault && !*pszErr)
                RTStrPrintf(pszErr, cchErr, "!RTThreadPreemptIsEnabled returns false after 3rd RTThreadPreemptRestore");
            break;
        }

        default:
            RTStrPrintf(pszErr, cchErr, "!Unknown test #%d", uOperation);
            break;
    }

    /* The error indicator is the '!' in the message buffer. */
    return VINF_SUCCESS;
}
Exemplo n.º 5
0
int main()
{
    /*
     * Init.
     */
    RTTEST hTest;
    RTEXITCODE rcExit = RTTestInitExAndCreate(0, NULL, RTR3INIT_FLAGS_SUPLIB, "tstRTTime", &hTest);
    if (rcExit != RTEXITCODE_SUCCESS)
        return rcExit;
    RTTestBanner(hTest);

    /*
     * RTNanoTimeTS() shall never return something which
     * is less or equal to the return of the previous call.
     */

    RTTimeSystemNanoTS(); RTTimeNanoTS(); RTThreadYield();
    uint64_t u64RTStartTS = RTTimeNanoTS();
    uint64_t u64OSStartTS = RTTimeSystemNanoTS();

    uint32_t i;
    uint64_t u64Prev = RTTimeNanoTS();
    for (i = 0; i < 100*_1M; i++)
    {
        uint64_t u64 = RTTimeNanoTS();
        if (u64 <= u64Prev)
        {
            /** @todo wrapping detection. */
            RTTestFailed(hTest, "i=%#010x u64=%#llx u64Prev=%#llx (1)\n", i, u64, u64Prev);
            if (RTTestErrorCount(hTest) >= 256)
                break;
            RTThreadYield();
            u64 = RTTimeNanoTS();
        }
        else if (u64 - u64Prev > 1000000000 /* 1sec */)
        {
            RTTestFailed(hTest, "i=%#010x u64=%#llx u64Prev=%#llx delta=%lld\n", i, u64, u64Prev, u64 - u64Prev);
            if (RTTestErrorCount(hTest) >= 256)
                break;
            RTThreadYield();
            u64 = RTTimeNanoTS();
        }
        if (!(i & (_1M*2 - 1)))
        {
            RTTestPrintf(hTest, RTTESTLVL_INFO, "i=%#010x u64=%#llx u64Prev=%#llx delta=%lld\n", i, u64, u64Prev, u64 - u64Prev);
            RTThreadYield();
            u64 = RTTimeNanoTS();
        }
        u64Prev = u64;
    }

    RTTimeSystemNanoTS(); RTTimeNanoTS(); RTThreadYield();
    uint64_t u64RTElapsedTS = RTTimeNanoTS();
    uint64_t u64OSElapsedTS = RTTimeSystemNanoTS();
    u64RTElapsedTS -= u64RTStartTS;
    u64OSElapsedTS -= u64OSStartTS;
    int64_t i64Diff = u64OSElapsedTS >= u64RTElapsedTS ? u64OSElapsedTS - u64RTElapsedTS : u64RTElapsedTS - u64OSElapsedTS;
    if (i64Diff > (int64_t)(u64OSElapsedTS / 1000))
        RTTestFailed(hTest, "total time differs too much! u64OSElapsedTS=%#llx u64RTElapsedTS=%#llx delta=%lld\n",
                     u64OSElapsedTS, u64RTElapsedTS, u64OSElapsedTS - u64RTElapsedTS);
    else
    {
        if (u64OSElapsedTS >= u64RTElapsedTS)
            RTTestValue(hTest, "Total time delta", u64OSElapsedTS - u64RTElapsedTS, RTTESTUNIT_NS);
        else
            RTTestValue(hTest, "Total time delta", u64RTElapsedTS - u64OSElapsedTS, RTTESTUNIT_NS);
        RTTestPrintf(hTest, RTTESTLVL_INFO, "total time difference: u64OSElapsedTS=%#llx u64RTElapsedTS=%#llx delta=%lld\n",
                     u64OSElapsedTS, u64RTElapsedTS, u64OSElapsedTS - u64RTElapsedTS);
    }

#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) /** @todo This isn't really x86 or AMD64 specific... */
    RTTestValue(hTest, "RTTimeDbgSteps",        RTTimeDbgSteps(),                           RTTESTUNIT_OCCURRENCES);
    RTTestValue(hTest, "RTTimeDbgSteps pp",     ((uint64_t)RTTimeDbgSteps() * 1000) / i,    RTTESTUNIT_PP1K);
    RTTestValue(hTest, "RTTimeDbgExpired",      RTTimeDbgExpired(),                         RTTESTUNIT_OCCURRENCES);
    RTTestValue(hTest, "RTTimeDbgExpired pp",   ((uint64_t)RTTimeDbgExpired() * 1000) / i,  RTTESTUNIT_PP1K);
    RTTestValue(hTest, "RTTimeDbgBad",          RTTimeDbgBad(),                             RTTESTUNIT_OCCURRENCES);
    RTTestValue(hTest, "RTTimeDbgBad pp",       ((uint64_t)RTTimeDbgBad() * 1000) / i,      RTTESTUNIT_PP1K);
    RTTestValue(hTest, "RTTimeDbgRaces",        RTTimeDbgRaces(),                           RTTESTUNIT_OCCURRENCES);
    RTTestValue(hTest, "RTTimeDbgRaces pp",     ((uint64_t)RTTimeDbgRaces() * 1000) / i,    RTTESTUNIT_PP1K);
#endif

    return RTTestSummaryAndDestroy(hTest);
}