Exemplo n.º 1
0
/*
 * Attitude controller.
 * Input: 'manual_control_setpoint' and 'vehicle_attitude_setpoint' topics (depending on mode)
 * Output: '_rates_sp' vector, '_thrust_sp', 'vehicle_attitude_setpoint' topic (for manual modes)
 */
void
MulticopterAttitudeControl::control_attitude(float dt)
{
	float yaw_sp_move_rate = 0.0f;
	bool publish_att_sp = false;

	if (_v_control_mode.flag_control_manual_enabled) {
		/* manual input, set or modify attitude setpoint */

		if (_v_control_mode.flag_control_velocity_enabled || _v_control_mode.flag_control_climb_rate_enabled) {
			/* in assisted modes poll 'vehicle_attitude_setpoint' topic and modify it */
			vehicle_attitude_setpoint_poll();
		}

		if (!_v_control_mode.flag_control_climb_rate_enabled) {
			/* pass throttle directly if not in altitude stabilized mode */
			_v_att_sp.thrust = _manual_control_sp.z;
			publish_att_sp = true;
		}

		if (!_armed.armed) {
			/* reset yaw setpoint when disarmed */
			_reset_yaw_sp = true;
		}

		/* move yaw setpoint in all modes */
		if (_v_att_sp.thrust < 0.1f) {
			// TODO
			//if (_status.condition_landed) {
			/* reset yaw setpoint if on ground */
			//	reset_yaw_sp = true;
			//}
		} else {
			/* move yaw setpoint */
			yaw_sp_move_rate = _manual_control_sp.r * _params.man_yaw_max;
			_v_att_sp.yaw_body = _wrap_pi(_v_att_sp.yaw_body + yaw_sp_move_rate * dt);
			float yaw_offs_max = _params.man_yaw_max / _params.att_p(2);
			float yaw_offs = _wrap_pi(_v_att_sp.yaw_body - _v_att.yaw);
			if (yaw_offs < - yaw_offs_max) {
				_v_att_sp.yaw_body = _wrap_pi(_v_att.yaw - yaw_offs_max);

			} else if (yaw_offs > yaw_offs_max) {
				_v_att_sp.yaw_body = _wrap_pi(_v_att.yaw + yaw_offs_max);
			}
			_v_att_sp.R_valid = false;
			publish_att_sp = true;
		}

		/* reset yaw setpint to current position if needed */
		if (_reset_yaw_sp) {
			_reset_yaw_sp = false;
			_v_att_sp.yaw_body = _v_att.yaw;
			_v_att_sp.R_valid = false;
			publish_att_sp = true;
		}

		if (!_v_control_mode.flag_control_velocity_enabled) {
			/* update attitude setpoint if not in position control mode */
			_v_att_sp.roll_body = _manual_control_sp.y * _params.man_roll_max;
			_v_att_sp.pitch_body = -_manual_control_sp.x * _params.man_pitch_max;
			_v_att_sp.R_valid = false;
			publish_att_sp = true;
		}

	} else {
		/* in non-manual mode use 'vehicle_attitude_setpoint' topic */
		vehicle_attitude_setpoint_poll();

		/* reset yaw setpoint after non-manual control mode */
		_reset_yaw_sp = true;
	}

	_thrust_sp = _v_att_sp.thrust;

	/* construct attitude setpoint rotation matrix */
	math::Matrix<3, 3> R_sp;

	if (_v_att_sp.R_valid) {
		/* rotation matrix in _att_sp is valid, use it */
		R_sp.set(&_v_att_sp.R_body[0][0]);

	} else {
		/* rotation matrix in _att_sp is not valid, use euler angles instead */
		R_sp.from_euler(_v_att_sp.roll_body, _v_att_sp.pitch_body, _v_att_sp.yaw_body);

		/* copy rotation matrix back to setpoint struct */
		memcpy(&_v_att_sp.R_body[0][0], &R_sp.data[0][0], sizeof(_v_att_sp.R_body));
		_v_att_sp.R_valid = true;
	}

	/* publish the attitude setpoint if needed */
	if (publish_att_sp) {
		_v_att_sp.timestamp = hrt_absolute_time();

		if (_att_sp_pub > 0) {
			orb_publish(ORB_ID(vehicle_attitude_setpoint), _att_sp_pub, &_v_att_sp);

		} else {
			_att_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &_v_att_sp);
		}
	}

	/* rotation matrix for current state */
	math::Matrix<3, 3> R;
	R.set(_v_att.R);

	/* all input data is ready, run controller itself */

	/* try to move thrust vector shortest way, because yaw response is slower than roll/pitch */
	math::Vector<3> R_z(R(0, 2), R(1, 2), R(2, 2));
	math::Vector<3> R_sp_z(R_sp(0, 2), R_sp(1, 2), R_sp(2, 2));

	/* axis and sin(angle) of desired rotation */
	math::Vector<3> e_R = R.transposed() * (R_z % R_sp_z);

	/* calculate angle error */
	float e_R_z_sin = e_R.length();
	float e_R_z_cos = R_z * R_sp_z;

	/* calculate weight for yaw control */
	float yaw_w = R_sp(2, 2) * R_sp(2, 2);

	/* calculate rotation matrix after roll/pitch only rotation */
	math::Matrix<3, 3> R_rp;

	if (e_R_z_sin > 0.0f) {
		/* get axis-angle representation */
		float e_R_z_angle = atan2f(e_R_z_sin, e_R_z_cos);
		math::Vector<3> e_R_z_axis = e_R / e_R_z_sin;

		e_R = e_R_z_axis * e_R_z_angle;

		/* cross product matrix for e_R_axis */
		math::Matrix<3, 3> e_R_cp;
		e_R_cp.zero();
		e_R_cp(0, 1) = -e_R_z_axis(2);
		e_R_cp(0, 2) = e_R_z_axis(1);
		e_R_cp(1, 0) = e_R_z_axis(2);
		e_R_cp(1, 2) = -e_R_z_axis(0);
		e_R_cp(2, 0) = -e_R_z_axis(1);
		e_R_cp(2, 1) = e_R_z_axis(0);

		/* rotation matrix for roll/pitch only rotation */
		R_rp = R * (_I + e_R_cp * e_R_z_sin + e_R_cp * e_R_cp * (1.0f - e_R_z_cos));

	} else {
		/* zero roll/pitch rotation */
		R_rp = R;
	}

	/* R_rp and R_sp has the same Z axis, calculate yaw error */
	math::Vector<3> R_sp_x(R_sp(0, 0), R_sp(1, 0), R_sp(2, 0));
	math::Vector<3> R_rp_x(R_rp(0, 0), R_rp(1, 0), R_rp(2, 0));
	e_R(2) = atan2f((R_rp_x % R_sp_x) * R_sp_z, R_rp_x * R_sp_x) * yaw_w;

	if (e_R_z_cos < 0.0f) {
		/* for large thrust vector rotations use another rotation method:
		 * calculate angle and axis for R -> R_sp rotation directly */
		math::Quaternion q;
		q.from_dcm(R.transposed() * R_sp);
		math::Vector<3> e_R_d = q.imag();
		e_R_d.normalize();
		e_R_d *= 2.0f * atan2f(e_R_d.length(), q(0));

		/* use fusion of Z axis based rotation and direct rotation */
		float direct_w = e_R_z_cos * e_R_z_cos * yaw_w;
		e_R = e_R * (1.0f - direct_w) + e_R_d * direct_w;
	}

	/* calculate angular rates setpoint */
	_rates_sp = _params.att_p.emult(e_R);

	/* limit yaw rate */
	_rates_sp(2) = math::constrain(_rates_sp(2), -_params.yaw_rate_max, _params.yaw_rate_max);

	/* feed forward yaw setpoint rate */
	_rates_sp(2) += yaw_sp_move_rate * yaw_w * _params.yaw_ff;
}
Exemplo n.º 2
0
    system::error_code AttitudeControlSimple::update(asio::yield_context yctx)
    {
        Mat3x3f R = m_ISAttitudeEstimated.m_Value.toRotationMatrix();
        
        #if 1
        Mat3x3f R_sp = m_ISAttitudeSetpoint.m_Value.toRotationMatrix();
        #else
        #if 0
        Mat3x3f R_sp = Quaternionf(AngleAxisf(M_PI_4, Vec3f::UnitX())).toRotationMatrix();
        #else
        static once_flag initSetpoint;
        call_once(initSetpoint, [this]() { m_ISAttitudeSetpoint.m_Value = m_ISAttitudeEstimated.m_Value; } );
        Mat3x3f R_sp = m_ISAttitudeSetpoint.m_Value.toRotationMatrix();
        #endif
        #endif
        
        float dT = std::min(std::max(m_ISDT.m_Value, 0.002f), 0.02f);
        
        Vec3f R_z(R(0, 2), R(1, 2), R(2, 2));
        Vec3f R_sp_z(R_sp(0, 2), R_sp(1, 2), R_sp(2, 2));
        
        Vec3f e_R = R.transpose() * (R_z.cross(R_sp_z));
        
        float e_R_z_sin = e_R.norm();
        float e_R_z_cos = R_z.dot(R_sp_z);

        float yaw_w = R_sp(2, 2) * R_sp(2, 2);
        
        Mat3x3f R_rp;
        
        if(e_R_z_sin > 0.0f)
        {
            float e_R_z_angle = std::atan2(e_R_z_sin, e_R_z_cos);
            Vec3f e_R_z_axis = e_R / e_R_z_sin;
            
            e_R = e_R_z_angle * e_R_z_axis;
            
            Mat3x3f e_R_cp = Mat3x3f::Zero();
            e_R_cp(0, 1) = -e_R_z_axis(2);
            e_R_cp(0, 2) = e_R_z_axis(1);
            e_R_cp(1, 0) = e_R_z_axis(2);
            e_R_cp(1, 2) = -e_R_z_axis(0);
            e_R_cp(2, 0) = -e_R_z_axis(1);
            e_R_cp(2, 1) = e_R_z_axis(0);

            R_rp = R * (Mat3x3f::Identity() + e_R_cp * e_R_z_sin + e_R_cp * e_R_cp * (1.0f - e_R_z_cos));
        }
        else
        {
            R_rp = R;
        }
        
        Vec3f R_sp_x(R_sp(0, 0), R_sp(1, 0), R_sp(2, 0));
        Vec3f R_rp_x(R_rp(0, 0), R_rp(1, 0), R_rp(2, 0));
        e_R(2) = std::atan2(R_rp_x.cross(R_sp_x).dot(R_sp_z), R_rp_x.dot(R_sp_x)) * yaw_w;
        
        if(e_R_z_cos < 0.0f)
        {
            Quaternionf q(R.transpose() * R_sp);
            Vec3f e_R_d = q.vec();
            e_R_d.normalize();
            e_R_d *= 2.0f * std::atan2(e_R_d.norm(), q.w());
            
            float direct_w = e_R_z_cos * e_R_z_cos * yaw_w;
            e_R = e_R * (1.0f - direct_w) + e_R_d * direct_w;
        }
        
        Vec3f const rotationRateSetpoint = m_AttitudeP.cwiseProduct(e_R);
        Vec3f e_RR = rotationRateSetpoint - m_ISRotationRateMeasured.m_Value;
        
        
        Vec3f rotationRateControl =
            m_RotationRateP.cwiseProduct(e_RR) +
            m_RotationRateD.cwiseProduct(m_RotationRateMeasuredPrev - m_ISRotationRateMeasured.m_Value) / dT +
            m_RotationRateIError;
        
        m_RotationRateMeasuredPrev = m_ISRotationRateMeasured.m_Value;
        m_RotationRateSetpointPrev = rotationRateSetpoint;
        
        m_OSRotationRateSetpoint.m_Value = rotationRateControl;
        
        return base::makeErrorCode(base::kENoError);
    }
Exemplo n.º 3
0
/**
 * Attitude controller.
 * Input: 'vehicle_attitude_setpoint' topics (depending on mode)
 * Output: '_rates_sp' vector, '_thrust_sp'
 */
void
MulticopterAttitudeControl::control_attitude(float dt)
{
	vehicle_attitude_setpoint_poll();

	_thrust_sp = _v_att_sp.thrust;

	/* construct attitude setpoint rotation matrix */
	math::Matrix<3, 3> R_sp;
	R_sp.set(_v_att_sp.R_body);

	/* get current rotation matrix from control state quaternions */
	math::Quaternion q_att(_ctrl_state.q[0], _ctrl_state.q[1], _ctrl_state.q[2], _ctrl_state.q[3]);
	math::Matrix<3, 3> R = q_att.to_dcm();

	/* all input data is ready, run controller itself */

	/* try to move thrust vector shortest way, because yaw response is slower than roll/pitch */
	math::Vector<3> R_z(R(0, 2), R(1, 2), R(2, 2));
	math::Vector<3> R_sp_z(R_sp(0, 2), R_sp(1, 2), R_sp(2, 2));

	/* axis and sin(angle) of desired rotation */
	math::Vector<3> e_R = R.transposed() * (R_z % R_sp_z);

	/* calculate angle error */
	float e_R_z_sin = e_R.length();
	float e_R_z_cos = R_z * R_sp_z;

	/* calculate weight for yaw control */
	float yaw_w = R_sp(2, 2) * R_sp(2, 2);

	/* calculate rotation matrix after roll/pitch only rotation */
	math::Matrix<3, 3> R_rp;

	if (e_R_z_sin > 0.0f) {
		/* get axis-angle representation */
		float e_R_z_angle = atan2f(e_R_z_sin, e_R_z_cos);
		math::Vector<3> e_R_z_axis = e_R / e_R_z_sin;

		e_R = e_R_z_axis * e_R_z_angle;

		/* cross product matrix for e_R_axis */
		math::Matrix<3, 3> e_R_cp;
		e_R_cp.zero();
		e_R_cp(0, 1) = -e_R_z_axis(2);
		e_R_cp(0, 2) = e_R_z_axis(1);
		e_R_cp(1, 0) = e_R_z_axis(2);
		e_R_cp(1, 2) = -e_R_z_axis(0);
		e_R_cp(2, 0) = -e_R_z_axis(1);
		e_R_cp(2, 1) = e_R_z_axis(0);

		/* rotation matrix for roll/pitch only rotation */
		R_rp = R * (_I + e_R_cp * e_R_z_sin + e_R_cp * e_R_cp * (1.0f - e_R_z_cos));

	} else {
		/* zero roll/pitch rotation */
		R_rp = R;
	}

	/* R_rp and R_sp has the same Z axis, calculate yaw error */
	math::Vector<3> R_sp_x(R_sp(0, 0), R_sp(1, 0), R_sp(2, 0));
	math::Vector<3> R_rp_x(R_rp(0, 0), R_rp(1, 0), R_rp(2, 0));
	e_R(2) = atan2f((R_rp_x % R_sp_x) * R_sp_z, R_rp_x * R_sp_x) * yaw_w;

	if (e_R_z_cos < 0.0f) {
		/* for large thrust vector rotations use another rotation method:
		 * calculate angle and axis for R -> R_sp rotation directly */
		math::Quaternion q;
		q.from_dcm(R.transposed() * R_sp);
		math::Vector<3> e_R_d = q.imag();
		e_R_d.normalize();
		e_R_d *= 2.0f * atan2f(e_R_d.length(), q(0));

		/* use fusion of Z axis based rotation and direct rotation */
		float direct_w = e_R_z_cos * e_R_z_cos * yaw_w;
		e_R = e_R * (1.0f - direct_w) + e_R_d * direct_w;
	}

	/* calculate angular rates setpoint */
	_rates_sp = _params.att_p.emult(e_R);

	/* limit rates */
	for (int i = 0; i < 3; i++) {
		_rates_sp(i) = math::constrain(_rates_sp(i), -_params.mc_rate_max(i), _params.mc_rate_max(i));
	}

	/* feed forward yaw setpoint rate */
	_rates_sp(2) += _v_att_sp.yaw_sp_move_rate * yaw_w * _params.yaw_ff;
}
Exemplo n.º 4
0
/**
 * Attitude controller.
 * Input: 'vehicle_attitude_setpoint' topics (depending on mode)
 * Output: '_rates_sp' vector, '_thrust_sp'
 */
void
MulticopterAttitudeControl::control_attitude(float dt)
{
	vehicle_attitude_setpoint_poll();

	_thrust_sp = _v_att_sp.thrust;

	/* construct attitude setpoint rotation matrix */
	math::Quaternion q_sp(_v_att_sp.q_d[0], _v_att_sp.q_d[1], _v_att_sp.q_d[2], _v_att_sp.q_d[3]);
	math::Matrix<3, 3> R_sp = q_sp.to_dcm();

	/* get current rotation matrix from control state quaternions */
	math::Quaternion q_att(_ctrl_state.q[0], _ctrl_state.q[1], _ctrl_state.q[2], _ctrl_state.q[3]);
	math::Matrix<3, 3> R = q_att.to_dcm();

	/* all input data is ready, run controller itself */

	/* try to move thrust vector shortest way, because yaw response is slower than roll/pitch */
	math::Vector<3> R_z(R(0, 2), R(1, 2), R(2, 2));
	math::Vector<3> R_sp_z(R_sp(0, 2), R_sp(1, 2), R_sp(2, 2));

	/* axis and sin(angle) of desired rotation */
	math::Vector<3> e_R = R.transposed() * (R_z % R_sp_z);

	/* calculate angle error */
	float e_R_z_sin = e_R.length();
	float e_R_z_cos = R_z * R_sp_z;

	/* calculate weight for yaw control */
	float yaw_w = R_sp(2, 2) * R_sp(2, 2);

	/* calculate rotation matrix after roll/pitch only rotation */
	math::Matrix<3, 3> R_rp;

	if (e_R_z_sin > 0.0f) {
		/* get axis-angle representation */
		float e_R_z_angle = atan2f(e_R_z_sin, e_R_z_cos);
		math::Vector<3> e_R_z_axis = e_R / e_R_z_sin;

		e_R = e_R_z_axis * e_R_z_angle;

		/* cross product matrix for e_R_axis */
		math::Matrix<3, 3> e_R_cp;
		e_R_cp.zero();
		e_R_cp(0, 1) = -e_R_z_axis(2);
		e_R_cp(0, 2) = e_R_z_axis(1);
		e_R_cp(1, 0) = e_R_z_axis(2);
		e_R_cp(1, 2) = -e_R_z_axis(0);
		e_R_cp(2, 0) = -e_R_z_axis(1);
		e_R_cp(2, 1) = e_R_z_axis(0);

		/* rotation matrix for roll/pitch only rotation */
		R_rp = R * (_I + e_R_cp * e_R_z_sin + e_R_cp * e_R_cp * (1.0f - e_R_z_cos));

	} else {
		/* zero roll/pitch rotation */
		R_rp = R;
	}

	/* R_rp and R_sp has the same Z axis, calculate yaw error */
	math::Vector<3> R_sp_x(R_sp(0, 0), R_sp(1, 0), R_sp(2, 0));
	math::Vector<3> R_rp_x(R_rp(0, 0), R_rp(1, 0), R_rp(2, 0));
	e_R(2) = atan2f((R_rp_x % R_sp_x) * R_sp_z, R_rp_x * R_sp_x) * yaw_w;

	if (e_R_z_cos < 0.0f) {
		/* for large thrust vector rotations use another rotation method:
		 * calculate angle and axis for R -> R_sp rotation directly */
		math::Quaternion q_error;
		q_error.from_dcm(R.transposed() * R_sp);
		math::Vector<3> e_R_d = q_error(0) >= 0.0f ? q_error.imag()  * 2.0f : -q_error.imag() * 2.0f;

		/* use fusion of Z axis based rotation and direct rotation */
		float direct_w = e_R_z_cos * e_R_z_cos * yaw_w;
		e_R = e_R * (1.0f - direct_w) + e_R_d * direct_w;
	}

	/* calculate angular rates setpoint */
	_rates_sp = _params.att_p.emult(e_R);

	/* limit rates */
	for (int i = 0; i < 3; i++) {
		if ((_v_control_mode.flag_control_velocity_enabled || _v_control_mode.flag_control_auto_enabled) &&
		    !_v_control_mode.flag_control_manual_enabled) {
			_rates_sp(i) = math::constrain(_rates_sp(i), -_params.auto_rate_max(i), _params.auto_rate_max(i));

		} else {
			_rates_sp(i) = math::constrain(_rates_sp(i), -_params.mc_rate_max(i), _params.mc_rate_max(i));
		}
	}

	/* feed forward yaw setpoint rate */
	_rates_sp(2) += _v_att_sp.yaw_sp_move_rate * yaw_w * _params.yaw_ff;

	/* weather-vane mode, dampen yaw rate */
	if ((_v_control_mode.flag_control_velocity_enabled || _v_control_mode.flag_control_auto_enabled) &&
	    _v_att_sp.disable_mc_yaw_control == true && !_v_control_mode.flag_control_manual_enabled) {
		float wv_yaw_rate_max = _params.auto_rate_max(2) * _params.vtol_wv_yaw_rate_scale;
		_rates_sp(2) = math::constrain(_rates_sp(2), -wv_yaw_rate_max, wv_yaw_rate_max);
		// prevent integrator winding up in weathervane mode
		_rates_int(2) = 0.0f;
	}
}