Exemplo n.º 1
0
/*
 * Returns bool with current recovery mode, a global state.
 */
Datum
pg_is_in_recovery(PG_FUNCTION_ARGS)
{
	PG_RETURN_BOOL(RecoveryInProgress());
}
Exemplo n.º 2
0
/* --------------------------------
 * InitPostgres
 *		Initialize POSTGRES.
 *
 * The database can be specified by name, using the in_dbname parameter, or by
 * OID, using the dboid parameter.  In the latter case, the actual database
 * name can be returned to the caller in out_dbname.  If out_dbname isn't
 * NULL, it must point to a buffer of size NAMEDATALEN.
 *
 * Similarly, the username can be passed by name, using the username parameter,
 * or by OID using the useroid parameter.
 *
 * In bootstrap mode no parameters are used.  The autovacuum launcher process
 * doesn't use any parameters either, because it only goes far enough to be
 * able to read pg_database; it doesn't connect to any particular database.
 * In walsender mode only username is used.
 *
 * As of PostgreSQL 8.2, we expect InitProcess() was already called, so we
 * already have a PGPROC struct ... but it's not completely filled in yet.
 *
 * Note:
 *		Be very careful with the order of calls in the InitPostgres function.
 * --------------------------------
 */
void
InitPostgres(const char *in_dbname, Oid dboid, const char *username,
			 Oid useroid, char *out_dbname)
{
	bool		bootstrap = IsBootstrapProcessingMode();
	bool		am_superuser;
	char	   *fullpath;
	char		dbname[NAMEDATALEN];

	elog(DEBUG3, "InitPostgres");

	/*
	 * Add my PGPROC struct to the ProcArray.
	 *
	 * Once I have done this, I am visible to other backends!
	 */
	InitProcessPhase2();

	/*
	 * Initialize my entry in the shared-invalidation manager's array of
	 * per-backend data.
	 *
	 * Sets up MyBackendId, a unique backend identifier.
	 */
	MyBackendId = InvalidBackendId;

	SharedInvalBackendInit(false);

	if (MyBackendId > MaxBackends || MyBackendId <= 0)
		elog(FATAL, "bad backend ID: %d", MyBackendId);

	/* Now that we have a BackendId, we can participate in ProcSignal */
	ProcSignalInit(MyBackendId);

	/*
	 * Also set up timeout handlers needed for backend operation.  We need
	 * these in every case except bootstrap.
	 */
	if (!bootstrap)
	{
		RegisterTimeout(DEADLOCK_TIMEOUT, CheckDeadLockAlert);
		RegisterTimeout(STATEMENT_TIMEOUT, StatementTimeoutHandler);
		RegisterTimeout(LOCK_TIMEOUT, LockTimeoutHandler);
	}

	/*
	 * bufmgr needs another initialization call too
	 */
	InitBufferPoolBackend();

	/*
	 * Initialize local process's access to XLOG.
	 */
	if (IsUnderPostmaster)
	{
		/*
		 * The postmaster already started the XLOG machinery, but we need to
		 * call InitXLOGAccess(), if the system isn't in hot-standby mode.
		 * This is handled by calling RecoveryInProgress and ignoring the
		 * result.
		 */
		(void) RecoveryInProgress();
	}
	else
	{
		/*
		 * We are either a bootstrap process or a standalone backend. Either
		 * way, start up the XLOG machinery, and register to have it closed
		 * down at exit.
		 */
		StartupXLOG();
		on_shmem_exit(ShutdownXLOG, 0);
	}

	/*
	 * Initialize the relation cache and the system catalog caches.  Note that
	 * no catalog access happens here; we only set up the hashtable structure.
	 * We must do this before starting a transaction because transaction abort
	 * would try to touch these hashtables.
	 */
	RelationCacheInitialize();
	InitCatalogCache();
	InitPlanCache();

	/* Initialize portal manager */
	EnablePortalManager();

	/* Initialize stats collection --- must happen before first xact */
	if (!bootstrap)
		pgstat_initialize();

	/*
	 * Load relcache entries for the shared system catalogs.  This must create
	 * at least entries for pg_database and catalogs used for authentication.
	 */
	RelationCacheInitializePhase2();

	/*
	 * Set up process-exit callback to do pre-shutdown cleanup.  This is the
	 * first before_shmem_exit callback we register; thus, this will be the
	 * last thing we do before low-level modules like the buffer manager begin
	 * to close down.  We need to have this in place before we begin our first
	 * transaction --- if we fail during the initialization transaction, as is
	 * entirely possible, we need the AbortTransaction call to clean up.
	 */
	before_shmem_exit(ShutdownPostgres, 0);

	/* The autovacuum launcher is done here */
	if (IsAutoVacuumLauncherProcess())
		return;

	/*
	 * Start a new___ transaction here before first access to db, and get a
	 * snapshot.  We don't have a use for the snapshot itself, but we're
	 * interested in the secondary effect that it sets RecentGlobalXmin. (This
	 * is critical for anything that reads heap pages, because HOT may decide
	 * to prune them even if the process doesn't attempt to modify any
	 * tuples.)
	 */
	if (!bootstrap)
	{
		/* statement_timestamp must be set for timeouts to work correctly */
		SetCurrentStatementStartTimestamp();
		StartTransactionCommand();

		/*
		 * transaction_isolation will have been set to the default by the
		 * above.  If the default is "serializable", and we are in hot
		 * standby, we will fail if we don't change it to something lower.
		 * Fortunately, "read committed" is plenty good enough.
		 */
		XactIsoLevel = XACT_READ_COMMITTED;

		(void) GetTransactionSnapshot();
	}

	/*
	 * Perform client authentication if necessary, then figure out our
	 * postgres user ID, and see if we are a superuser.
	 *
	 * In standalone mode and in autovacuum worker processes, we use a fixed
	 * ID, otherwise we figure it out from the authenticated user name.
	 */
	if (bootstrap || IsAutoVacuumWorkerProcess())
	{
		InitializeSessionUserIdStandalone();
		am_superuser = true;
	}
	else if (!IsUnderPostmaster)
	{
		InitializeSessionUserIdStandalone();
		am_superuser = true;
		if (!ThereIsAtLeastOneRole())
			ereport(WARNING,
					(errcode(ERRCODE_UNDEFINED_OBJECT),
					 errmsg("no roles are defined in this database system"),
					 errhint("You should immediately run CREATE USER \"%s\" SUPERUSER;.",
							 username != NULL ? username : "******")));
	}
	else if (IsBackgroundWorker)
	{
		if (username == NULL && !OidIsValid(useroid))
		{
			InitializeSessionUserIdStandalone();
			am_superuser = true;
		}
		else
		{
			InitializeSessionUserId(username, useroid);
			am_superuser = superuser();
		}
	}
	else
	{
		/* normal multiuser case */
		Assert(MyProcPort != NULL);
		PerformAuthentication(MyProcPort);
		InitializeSessionUserId(username, useroid);
		am_superuser = superuser();
	}

	/*
	 * If we're trying to shut down, only superusers can connect, and new___
	 * replication connections are not allowed.
	 */
	if ((!am_superuser || am_walsender) &&
		MyProcPort != NULL &&
		MyProcPort->canAcceptConnections == CAC_WAITBACKUP)
	{
		if (am_walsender)
			ereport(FATAL,
					(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
					 errmsg("new___ replication connections are not allowed during database shutdown")));
		else
			ereport(FATAL,
					(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
			errmsg("must be superuser to connect during database shutdown")));
	}

	/*
	 * Binary upgrades only allowed super-user connections
	 */
	if (IsBinaryUpgrade && !am_superuser)
	{
		ereport(FATAL,
				(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
			 errmsg("must be superuser to connect in binary upgrade mode")));
	}

	/*
	 * The last few connections slots are reserved for superusers. Although
	 * replication connections currently require superuser privileges, we
	 * don't allow them to consume the reserved slots, which are intended for
	 * interactive use.
	 */
	if ((!am_superuser || am_walsender) &&
		ReservedBackends > 0 &&
		!HaveNFreeProcs(ReservedBackends))
		ereport(FATAL,
				(errcode(ERRCODE_TOO_MANY_CONNECTIONS),
				 errmsg("remaining connection slots are reserved for non-replication superuser connections")));

	/* Check replication permissions needed for walsender processes. */
	if (am_walsender)
	{
		Assert(!bootstrap);

		if (!superuser() && !has_rolreplication(GetUserId()))
			ereport(FATAL,
					(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
					 errmsg("must be superuser or replication role to start walsender")));
	}

	/*
	 * If this is a plain walsender only supporting physical replication, we
	 * don't want to connect to any particular database. Just finish the
	 * backend startup by processing any options from the startup packet, and
	 * we're done.
	 */
	if (am_walsender && !am_db_walsender)
	{
		/* process any options passed in the startup packet */
		if (MyProcPort != NULL)
			process_startup_options(MyProcPort, am_superuser);

		/* Apply PostAuthDelay as soon as we've read all options */
		if (PostAuthDelay > 0)
			pg_usleep(PostAuthDelay * 1000000L);

		/* initialize client encoding */
		InitializeClientEncoding();

		/* report this backend in the PgBackendStatus array */
		pgstat_bestart();

		/* close the transaction we started above */
		CommitTransactionCommand();

		return;
	}

	/*
	 * Set up the global variables holding database id and default tablespace.
	 * But note we won't actually try to touch the database just yet.
	 *
	 * We take a shortcut in the bootstrap case, otherwise we have to look up
	 * the db's entry in pg_database.
	 */
	if (bootstrap)
	{
		MyDatabaseId = TemplateDbOid;
		MyDatabaseTableSpace = DEFAULTTABLESPACE_OID;
	}
	else if (in_dbname != NULL)
	{
		HeapTuple	tuple;
		Form_pg_database dbform;

		tuple = GetDatabaseTuple(in_dbname);
		if (!HeapTupleIsValid(tuple))
			ereport(FATAL,
					(errcode(ERRCODE_UNDEFINED_DATABASE),
					 errmsg("database \"%s\" does not exist", in_dbname)));
		dbform = (Form_pg_database) GETSTRUCT(tuple);
		MyDatabaseId = HeapTupleGetOid(tuple);
		MyDatabaseTableSpace = dbform->dattablespace;
		/* take database name from the caller, just for paranoia */
		strlcpy(dbname, in_dbname, sizeof(dbname));
	}
	else
	{
		/* caller specified database by OID */
		HeapTuple	tuple;
		Form_pg_database dbform;

		tuple = GetDatabaseTupleByOid(dboid);
		if (!HeapTupleIsValid(tuple))
			ereport(FATAL,
					(errcode(ERRCODE_UNDEFINED_DATABASE),
					 errmsg("database %u does not exist", dboid)));
		dbform = (Form_pg_database) GETSTRUCT(tuple);
		MyDatabaseId = HeapTupleGetOid(tuple);
		MyDatabaseTableSpace = dbform->dattablespace;
		Assert(MyDatabaseId == dboid);
		strlcpy(dbname, NameStr(dbform->datname), sizeof(dbname));
		/* pass the database name back to the caller */
		if (out_dbname)
			strcpy(out_dbname, dbname);
	}

	/* Now we can mark our PGPROC entry with the database ID */
	/* (We assume this is an atomic store so no lock is needed) */
	MyProc->databaseId = MyDatabaseId;

	/*
	 * We established a catalog snapshot while reading pg_authid and/or
	 * pg_database; but until we have set up MyDatabaseId, we won't react to
	 * incoming sinval messages for unshared catalogs, so we won't realize it
	 * if the snapshot has been invalidated.  Assume it's no good anymore.
	 */
	InvalidateCatalogSnapshot();

	/*
	 * Now, take a writer's lock on the database we are trying to connect to.
	 * If there is a concurrently running DROP DATABASE on that database, this
	 * will block us until it finishes (and has committed its update of
	 * pg_database).
	 *
	 * Note that the lock is not held long, only until the end of this startup
	 * transaction.  This is OK since we are already advertising our use of
	 * the database in the PGPROC array; anyone trying a DROP DATABASE after
	 * this point will see us there.
	 *
	 * Note: use of RowExclusiveLock here is reasonable because we envision
	 * our session as being a concurrent writer of the database.  If we had a
	 * way of declaring a session as being guaranteed-read-only, we could use
	 * AccessShareLock for such sessions and thereby not conflict against
	 * CREATE DATABASE.
	 */
	if (!bootstrap)
		LockSharedObject(DatabaseRelationId, MyDatabaseId, 0,
						 RowExclusiveLock);

	/*
	 * Recheck pg_database to make sure the target database hasn't gone away.
	 * If there was a concurrent DROP DATABASE, this ensures we will die
	 * cleanly without creating a mess.
	 */
	if (!bootstrap)
	{
		HeapTuple	tuple;

		tuple = GetDatabaseTuple(dbname);
		if (!HeapTupleIsValid(tuple) ||
			MyDatabaseId != HeapTupleGetOid(tuple) ||
			MyDatabaseTableSpace != ((Form_pg_database) GETSTRUCT(tuple))->dattablespace)
			ereport(FATAL,
					(errcode(ERRCODE_UNDEFINED_DATABASE),
					 errmsg("database \"%s\" does not exist", dbname),
			   errdetail("It seems to have just been dropped or renamed.")));
	}

	/*
	 * Now we should be able to access the database directory safely. Verify
	 * it's there and looks reasonable.
	 */
	fullpath = GetDatabasePath(MyDatabaseId, MyDatabaseTableSpace);

	if (!bootstrap)
	{
		if (access(fullpath, F_OK) == -1)
		{
			if (errno == ENOENT)
				ereport(FATAL,
						(errcode(ERRCODE_UNDEFINED_DATABASE),
						 errmsg("database \"%s\" does not exist",
								dbname),
					errdetail("The database subdirectory \"%s\" is missing.",
							  fullpath)));
			else
				ereport(FATAL,
						(errcode_for_file_access(),
						 errmsg("could not access directory \"%s\": %m",
								fullpath)));
		}

		ValidatePgVersion(fullpath);
	}

	SetDatabasePath(fullpath);

	/*
	 * It's now possible to do real access to the system catalogs.
	 *
	 * Load relcache entries for the system catalogs.  This must create at
	 * least the minimum set of "nailed-in" cache entries.
	 */
	RelationCacheInitializePhase3();

	/* set up ACL framework (so CheckMyDatabase can check permissions) */
	initialize_acl();

	/*
	 * Re-read the pg_database row for our database, check permissions and set
	 * up database-specific GUC settings.  We can't do this until all the
	 * database-access infrastructure is up.  (Also, it wants to know if the
	 * user is a superuser, so the above stuff has to happen first.)
	 */
	if (!bootstrap)
		CheckMyDatabase(dbname, am_superuser);

	/*
	 * Now process any command-line switches and any additional GUC variable
	 * settings passed in the startup packet.   We couldn't do this before
	 * because we didn't know if client is a superuser.
	 */
	if (MyProcPort != NULL)
		process_startup_options(MyProcPort, am_superuser);

	/* Process pg_db_role_setting options */
	process_settings(MyDatabaseId, GetSessionUserId());

	/* Apply PostAuthDelay as soon as we've read all options */
	if (PostAuthDelay > 0)
		pg_usleep(PostAuthDelay * 1000000L);

	/*
	 * Initialize various default states that can't be set up until we've
	 * selected the active user and gotten the right GUC settings.
	 */

	/* set default namescpace___ search path */
	InitializeSearchPath();

	/* initialize client encoding */
	InitializeClientEncoding();

	/* report this backend in the PgBackendStatus array */
	if (!bootstrap)
		pgstat_bestart();

	/* close the transaction we started above */
	if (!bootstrap)
		CommitTransactionCommand();
}
Exemplo n.º 3
0
/* Main entry point for walreceiver process */
void
WalReceiverMain(void)
{
	char		conninfo[MAXCONNINFO];
	XLogRecPtr	startpoint;

	/* use volatile pointer to prevent code rearrangement */
	volatile WalRcvData *walrcv = WalRcv;

	am_walreceiver = true;

	/*
	 * WalRcv should be set up already (if we are a backend, we inherit this
	 * by fork() or EXEC_BACKEND mechanism from the postmaster).
	 */
	Assert(walrcv != NULL);

	/*
	 * Mark walreceiver as running in shared memory.
	 *
	 * Do this as early as possible, so that if we fail later on, we'll set
	 * state to STOPPED. If we die before this, the startup process will keep
	 * waiting for us to start up, until it times out.
	 */
	SpinLockAcquire(&walrcv->mutex);
	Assert(walrcv->pid == 0);
	switch (walrcv->walRcvState)
	{
		case WALRCV_STOPPING:
			/* If we've already been requested to stop, don't start up. */
			walrcv->walRcvState = WALRCV_STOPPED;
			/* fall through */

		case WALRCV_STOPPED:
			SpinLockRelease(&walrcv->mutex);
			proc_exit(1);
			break;

		case WALRCV_STARTING:
			/* The usual case */
			break;

		case WALRCV_RUNNING:
			/* Shouldn't happen */
			elog(PANIC, "walreceiver still running according to shared memory state");
	}
	/* Advertise our PID so that the startup process can kill us */
	walrcv->pid = MyProcPid;
	walrcv->walRcvState = WALRCV_RUNNING;

	/* Fetch information required to start streaming */
	strlcpy(conninfo, (char *) walrcv->conninfo, MAXCONNINFO);
	startpoint = walrcv->receivedUpto;
	SpinLockRelease(&walrcv->mutex);

	/* Arrange to clean up at walreceiver exit */
	on_shmem_exit(WalRcvDie, 0);

	/*
	 * If possible, make this process a group leader, so that the postmaster
	 * can signal any child processes too.	(walreceiver probably never has
	 * any child processes, but for consistency we make all postmaster child
	 * processes do this.)
	 */
#ifdef HAVE_SETSID
	if (setsid() < 0)
		elog(FATAL, "setsid() failed: %m");
#endif

	/* Properly accept or ignore signals the postmaster might send us */
	pqsignal(SIGHUP, WalRcvSigHupHandler);		/* set flag to read config
												 * file */
	pqsignal(SIGINT, SIG_IGN);
	pqsignal(SIGTERM, WalRcvShutdownHandler);	/* request shutdown */
	pqsignal(SIGQUIT, WalRcvQuickDieHandler);	/* hard crash time */
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, SIG_IGN);
	pqsignal(SIGUSR2, SIG_IGN);

	/* Reset some signals that are accepted by postmaster but not here */
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);

	/* We allow SIGQUIT (quickdie) at all times */
	sigdelset(&BlockSig, SIGQUIT);

	/* Load the libpq-specific functions */
	load_file("libpqwalreceiver", false);
	if (walrcv_connect == NULL || walrcv_receive == NULL ||
		walrcv_send == NULL || walrcv_disconnect == NULL)
		elog(ERROR, "libpqwalreceiver didn't initialize correctly");

	/*
	 * Create a resource owner to keep track of our resources (not clear that
	 * we need this, but may as well have one).
	 */
	CurrentResourceOwner = ResourceOwnerCreate(NULL, "Wal Receiver");

	/* Unblock signals (they were blocked when the postmaster forked us) */
	PG_SETMASK(&UnBlockSig);

	/* Establish the connection to the primary for XLOG streaming */
	EnableWalRcvImmediateExit();
	walrcv_connect(conninfo, startpoint);
	DisableWalRcvImmediateExit();

	/* Loop until end-of-streaming or error */
	for (;;)
	{
		unsigned char type;
		char	   *buf;
		int			len;

		/*
		 * Emergency bailout if postmaster has died.  This is to avoid the
		 * necessity for manual cleanup of all postmaster children.
		 */
		if (!PostmasterIsAlive(true))
			exit(1);

		/*
		 * Exit walreceiver if we're not in recovery. This should not happen,
		 * but cross-check the status here.
		 */
		if (!RecoveryInProgress())
			ereport(FATAL,
					(errmsg("cannot continue WAL streaming, recovery has already ended")));

		/* Process any requests or signals received recently */
		ProcessWalRcvInterrupts();

		if (got_SIGHUP)
		{
			got_SIGHUP = false;
			ProcessConfigFile(PGC_SIGHUP);
		}

		/* Wait a while for data to arrive */
		if (walrcv_receive(NAPTIME_PER_CYCLE, &type, &buf, &len))
		{
			/* Accept the received data, and process it */
			XLogWalRcvProcessMsg(type, buf, len);

			/* Receive any more data we can without sleeping */
			while (walrcv_receive(0, &type, &buf, &len))
				XLogWalRcvProcessMsg(type, buf, len);

			/* Let the master know that we received some data. */
			XLogWalRcvSendReply();

			/*
			 * If we've written some records, flush them to disk and let the
			 * startup process know about them.
			 */
			XLogWalRcvFlush();
		}
		else
		{
			/*
			 * We didn't receive anything new, but send a status update to
			 * the master anyway, to report any progress in applying WAL.
			 */
			XLogWalRcvSendReply();
		}
	}
}
Exemplo n.º 4
0
/*
 * Helper function for the various SQL callable logical decoding functions.
 */
static Datum
pg_logical_slot_get_changes_guts(FunctionCallInfo fcinfo, bool confirm, bool binary)
{
	Name		name = PG_GETARG_NAME(0);
	XLogRecPtr	upto_lsn;
	int32		upto_nchanges;

	ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
	MemoryContext per_query_ctx;
	MemoryContext oldcontext;

	XLogRecPtr	end_of_wal;
	XLogRecPtr	startptr;

	LogicalDecodingContext *ctx;

	ResourceOwner old_resowner = CurrentResourceOwner;
	ArrayType  *arr;
	Size		ndim;
	List	   *options = NIL;
	DecodingOutputState *p;

	if (PG_ARGISNULL(1))
		upto_lsn = InvalidXLogRecPtr;
	else
		upto_lsn = PG_GETARG_LSN(1);

	if (PG_ARGISNULL(2))
		upto_nchanges = InvalidXLogRecPtr;
	else
		upto_nchanges = PG_GETARG_INT32(2);

	/* check to see if caller supports us returning a tuplestore */
	if (rsinfo == NULL || !IsA(rsinfo, ReturnSetInfo))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("set-valued function called in context that cannot accept a set")));
	if (!(rsinfo->allowedModes & SFRM_Materialize))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("materialize mode required, but it is not allowed in this context")));

	/* state to write output to */
	p = palloc0(sizeof(DecodingOutputState));

	p->binary_output = binary;

	/* Build a tuple descriptor for our result type */
	if (get_call_result_type(fcinfo, NULL, &p->tupdesc) != TYPEFUNC_COMPOSITE)
		elog(ERROR, "return type must be a row type");

	check_permissions();

	CheckLogicalDecodingRequirements();

	arr = PG_GETARG_ARRAYTYPE_P(3);
	ndim = ARR_NDIM(arr);

	per_query_ctx = rsinfo->econtext->ecxt_per_query_memory;
	oldcontext = MemoryContextSwitchTo(per_query_ctx);

	if (ndim > 1)
	{
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("array must be one-dimensional")));
	}
	else if (array_contains_nulls(arr))
	{
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("array must not contain nulls")));
	}
	else if (ndim == 1)
	{
		int			nelems;
		Datum	   *datum_opts;
		int			i;

		Assert(ARR_ELEMTYPE(arr) == TEXTOID);

		deconstruct_array(arr, TEXTOID, -1, false, 'i',
						  &datum_opts, NULL, &nelems);

		if (nelems % 2 != 0)
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("array must have even number of elements")));

		for (i = 0; i < nelems; i += 2)
		{
			char	   *name = TextDatumGetCString(datum_opts[i]);
			char	   *opt = TextDatumGetCString(datum_opts[i + 1]);

			options = lappend(options, makeDefElem(name, (Node *) makeString(opt)));
		}
	}

	p->tupstore = tuplestore_begin_heap(true, false, work_mem);
	rsinfo->returnMode = SFRM_Materialize;
	rsinfo->setResult = p->tupstore;
	rsinfo->setDesc = p->tupdesc;

	/* compute the current end-of-wal */
	if (!RecoveryInProgress())
		end_of_wal = GetFlushRecPtr();
	else
		end_of_wal = GetXLogReplayRecPtr(NULL);

	CheckLogicalDecodingRequirements();
	ReplicationSlotAcquire(NameStr(*name));

	PG_TRY();
	{
		ctx = CreateDecodingContext(InvalidXLogRecPtr,
									options,
									logical_read_local_xlog_page,
									LogicalOutputPrepareWrite,
									LogicalOutputWrite);

		MemoryContextSwitchTo(oldcontext);

		/*
		 * Check whether the output pluggin writes textual output if that's
		 * what we need.
		 */
		if (!binary &&
			ctx->options.output_type != OUTPUT_PLUGIN_TEXTUAL_OUTPUT)
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("output plugin cannot produce binary output")));

		ctx->output_writer_private = p;

		startptr = MyReplicationSlot->data.restart_lsn;

		CurrentResourceOwner = ResourceOwnerCreate(CurrentResourceOwner, "logical decoding");

		/* invalidate non-timetravel entries */
		InvalidateSystemCaches();

		while ((startptr != InvalidXLogRecPtr && startptr < end_of_wal) ||
			   (ctx->reader->EndRecPtr && ctx->reader->EndRecPtr < end_of_wal))
		{
			XLogRecord *record;
			char	   *errm = NULL;

			record = XLogReadRecord(ctx->reader, startptr, &errm);
			if (errm)
				elog(ERROR, "%s", errm);

			startptr = InvalidXLogRecPtr;

			/*
			 * The {begin_txn,change,commit_txn}_wrapper callbacks above will
			 * store the description into our tuplestore.
			 */
			if (record != NULL)
				LogicalDecodingProcessRecord(ctx, record);

			/* check limits */
			if (upto_lsn != InvalidXLogRecPtr &&
				upto_lsn <= ctx->reader->EndRecPtr)
				break;
			if (upto_nchanges != 0 &&
				upto_nchanges <= p->returned_rows)
				break;
		}
	}
	PG_CATCH();
	{
		/* clear all timetravel entries */
		InvalidateSystemCaches();

		PG_RE_THROW();
	}
	PG_END_TRY();

	tuplestore_donestoring(tupstore);

	CurrentResourceOwner = old_resowner;

	/*
	 * Next time, start where we left off. (Hunting things, the family
	 * business..)
	 */
	if (ctx->reader->EndRecPtr != InvalidXLogRecPtr && confirm)
		LogicalConfirmReceivedLocation(ctx->reader->EndRecPtr);

	/* free context, call shutdown callback */
	FreeDecodingContext(ctx);

	ReplicationSlotRelease();
	InvalidateSystemCaches();

	return (Datum) 0;
}
Exemplo n.º 5
0
/*
 * Reserve WAL for the currently active slot.
 *
 * Compute and set restart_lsn in a manner that's appropriate for the type of
 * the slot and concurrency safe.
 */
void
ReplicationSlotReserveWal(void)
{
	ReplicationSlot *slot = MyReplicationSlot;

	Assert(slot != NULL);
	Assert(slot->data.restart_lsn == InvalidXLogRecPtr);

	/*
	 * The replication slot mechanism is used to prevent removal of required
	 * WAL. As there is no interlock between this routine and checkpoints, WAL
	 * segments could concurrently be removed when a now stale return value of
	 * ReplicationSlotsComputeRequiredLSN() is used. In the unlikely case that
	 * this happens we'll just retry.
	 */
	while (true)
	{
		XLogSegNo	segno;
		XLogRecPtr	restart_lsn;

		/*
		 * For logical slots log a standby snapshot and start logical decoding
		 * at exactly that position. That allows the slot to start up more
		 * quickly.
		 *
		 * That's not needed (or indeed helpful) for physical slots as they'll
		 * start replay at the last logged checkpoint anyway. Instead return
		 * the location of the last redo LSN. While that slightly increases
		 * the chance that we have to retry, it's where a base backup has to
		 * start replay at.
		 */
		if (!RecoveryInProgress() && SlotIsLogical(slot))
		{
			XLogRecPtr	flushptr;

			/* start at current insert position */
			restart_lsn = GetXLogInsertRecPtr();
			SpinLockAcquire(&slot->mutex);
			slot->data.restart_lsn = restart_lsn;
			SpinLockRelease(&slot->mutex);

			/* make sure we have enough information to start */
			flushptr = LogStandbySnapshot();

			/* and make sure it's fsynced to disk */
			XLogFlush(flushptr);
		}
		else
		{
			restart_lsn = GetRedoRecPtr();
			SpinLockAcquire(&slot->mutex);
			slot->data.restart_lsn = restart_lsn;
			SpinLockRelease(&slot->mutex);
		}

		/* prevent WAL removal as fast as possible */
		ReplicationSlotsComputeRequiredLSN();

		/*
		 * If all required WAL is still there, great, otherwise retry. The
		 * slot should prevent further removal of WAL, unless there's a
		 * concurrent ReplicationSlotsComputeRequiredLSN() after we've written
		 * the new restart_lsn above, so normally we should never need to loop
		 * more than twice.
		 */
		XLByteToSeg(slot->data.restart_lsn, segno, wal_segment_size);
		if (XLogGetLastRemovedSegno() < segno)
			break;
	}
}
Exemplo n.º 6
0
/*
 * START_REPLICATION
 */
static void
StartReplication(StartReplicationCmd *cmd)
{
	StringInfoData buf;

	/*
	 * Let postmaster know that we're streaming. Once we've declared us as a
	 * WAL sender process, postmaster will let us outlive the bgwriter and
	 * kill us last in the shutdown sequence, so we get a chance to stream all
	 * remaining WAL at shutdown, including the shutdown checkpoint. Note that
	 * there's no going back, and we mustn't write any WAL records after this.
	 */
	MarkPostmasterChildWalSender();
	SendPostmasterSignal(PMSIGNAL_ADVANCE_STATE_MACHINE);

	/*
	 * When promoting a cascading standby, postmaster sends SIGUSR2 to
	 * any cascading walsenders to kill them. But there is a corner-case where
	 * such walsender fails to receive SIGUSR2 and survives a standby promotion
	 * unexpectedly. This happens when postmaster sends SIGUSR2 before
	 * the walsender marks itself as a WAL sender, because postmaster sends
	 * SIGUSR2 to only the processes marked as a WAL sender.
	 *
	 * To avoid this corner-case, if recovery is NOT in progress even though
	 * the walsender is cascading one, we do the same thing as SIGUSR2 signal
	 * handler does, i.e., set walsender_ready_to_stop to true. Which causes
	 * the walsender to end later.
	 *
	 * When terminating cascading walsenders, usually postmaster writes
	 * the log message announcing the terminations. But there is a race condition
	 * here. If there is no walsender except this process before reaching here,
	 * postmaster thinks that there is no walsender and suppresses that
	 * log message. To handle this case, we always emit that log message here.
	 * This might cause duplicate log messages, but which is less likely to happen,
	 * so it's not worth writing some code to suppress them.
	 */
	if (am_cascading_walsender && !RecoveryInProgress())
	{
		ereport(LOG,
				(errmsg("terminating walsender process to force cascaded standby "
						"to update timeline and reconnect")));
		walsender_ready_to_stop = true;
	}

	/*
	 * We assume here that we're logging enough information in the WAL for
	 * log-shipping, since this is checked in PostmasterMain().
	 *
	 * NOTE: wal_level can only change at shutdown, so in most cases it is
	 * difficult for there to be WAL data that we can still see that was written
	 * at wal_level='minimal'.
	 */

	/*
	 * When we first start replication the standby will be behind the primary.
	 * For some applications, for example, synchronous replication, it is
	 * important to have a clear state for this initial catchup mode, so we
	 * can trigger actions when we change streaming state later. We may stay
	 * in this state for a long time, which is exactly why we want to be able
	 * to monitor whether or not we are still here.
	 */
	WalSndSetState(WALSNDSTATE_CATCHUP);

	/* Send a CopyBothResponse message, and start streaming */
	pq_beginmessage(&buf, 'W');
	pq_sendbyte(&buf, 0);
	pq_sendint(&buf, 0, 2);
	pq_endmessage(&buf);
	pq_flush();

	/*
	 * Initialize position to the received one, then the xlog records begin to
	 * be shipped from that position
	 */
	sentPtr = cmd->startpoint;
}
Exemplo n.º 7
0
/*
 * Actually do a base backup for the specified tablespaces.
 *
 * This is split out mainly to avoid complaints about "variable might be
 * clobbered by longjmp" from stupider versions of gcc.
 */
static void
perform_base_backup(basebackup_options *opt, DIR *tblspcdir)
{
	XLogRecPtr	startptr;
	TimeLineID	starttli;
	XLogRecPtr	endptr;
	TimeLineID	endtli;
	StringInfo	labelfile;
	StringInfo	tblspc_map_file = NULL;
	int			datadirpathlen;
	List	   *tablespaces = NIL;

	datadirpathlen = strlen(DataDir);

	backup_started_in_recovery = RecoveryInProgress();

	labelfile = makeStringInfo();
	tblspc_map_file = makeStringInfo();

	startptr = do_pg_start_backup(opt->label, opt->fastcheckpoint, &starttli,
								  labelfile, tblspcdir, &tablespaces,
								  tblspc_map_file,
								  opt->progress, opt->sendtblspcmapfile);

	/*
	 * Once do_pg_start_backup has been called, ensure that any failure causes
	 * us to abort the backup so we don't "leak" a backup counter. For this
	 * reason, *all* functionality between do_pg_start_backup() and
	 * do_pg_stop_backup() should be inside the error cleanup block!
	 */

	PG_ENSURE_ERROR_CLEANUP(base_backup_cleanup, (Datum) 0);
	{
		ListCell   *lc;
		tablespaceinfo *ti;

		SendXlogRecPtrResult(startptr, starttli);

		/*
		 * Calculate the relative path of temporary statistics directory in
		 * order to skip the files which are located in that directory later.
		 */
		if (is_absolute_path(pgstat_stat_directory) &&
			strncmp(pgstat_stat_directory, DataDir, datadirpathlen) == 0)
			statrelpath = psprintf("./%s", pgstat_stat_directory + datadirpathlen + 1);
		else if (strncmp(pgstat_stat_directory, "./", 2) != 0)
			statrelpath = psprintf("./%s", pgstat_stat_directory);
		else
			statrelpath = pgstat_stat_directory;

		/* Add a node for the base directory at the end */
		ti = palloc0(sizeof(tablespaceinfo));
		ti->size = opt->progress ? sendDir(".", 1, true, tablespaces, true) : -1;
		tablespaces = lappend(tablespaces, ti);

		/* Send tablespace header */
		SendBackupHeader(tablespaces);

		/* Setup and activate network throttling, if client requested it */
		if (opt->maxrate > 0)
		{
			throttling_sample =
				(int64) opt->maxrate * (int64) 1024 / THROTTLING_FREQUENCY;

			/*
			 * The minimum amount of time for throttling_sample bytes to be
			 * transferred.
			 */
			elapsed_min_unit = USECS_PER_SEC / THROTTLING_FREQUENCY;

			/* Enable throttling. */
			throttling_counter = 0;

			/* The 'real data' starts now (header was ignored). */
			throttled_last = GetCurrentIntegerTimestamp();
		}
		else
		{
			/* Disable throttling. */
			throttling_counter = -1;
		}

		/* Send off our tablespaces one by one */
		foreach(lc, tablespaces)
		{
			tablespaceinfo *ti = (tablespaceinfo *) lfirst(lc);
			StringInfoData buf;

			/* Send CopyOutResponse message */
			pq_beginmessage(&buf, 'H');
			pq_sendbyte(&buf, 0);		/* overall format */
			pq_sendint(&buf, 0, 2);		/* natts */
			pq_endmessage(&buf);

			if (ti->path == NULL)
			{
				struct stat statbuf;

				/* In the main tar, include the backup_label first... */
				sendFileWithContent(BACKUP_LABEL_FILE, labelfile->data);

				/*
				 * Send tablespace_map file if required and then the bulk of
				 * the files.
				 */
				if (tblspc_map_file && opt->sendtblspcmapfile)
				{
					sendFileWithContent(TABLESPACE_MAP, tblspc_map_file->data);
					sendDir(".", 1, false, tablespaces, false);
				}
				else
					sendDir(".", 1, false, tablespaces, true);

				/* ... and pg_control after everything else. */
				if (lstat(XLOG_CONTROL_FILE, &statbuf) != 0)
					ereport(ERROR,
							(errcode_for_file_access(),
							 errmsg("could not stat control file \"%s\": %m",
									XLOG_CONTROL_FILE)));
				sendFile(XLOG_CONTROL_FILE, XLOG_CONTROL_FILE, &statbuf, false);
			}
			else
				sendTablespace(ti->path, false);

			/*
			 * If we're including WAL, and this is the main data directory we
			 * don't terminate the tar stream here. Instead, we will append
			 * the xlog files below and terminate it then. This is safe since
			 * the main data directory is always sent *last*.
			 */
			if (opt->includewal && ti->path == NULL)
			{
				Assert(lnext(lc) == NULL);
			}
			else
				pq_putemptymessage('c');		/* CopyDone */
		}
	}
Exemplo n.º 8
0
/*
 * get_relation_info -
 *	  Retrieves catalog information for a given relation.
 *
 * Given the Oid of the relation, return the following info into fields
 * of the RelOptInfo struct:
 *
 *	min_attr	lowest valid AttrNumber
 *	max_attr	highest valid AttrNumber
 *	indexlist	list of IndexOptInfos for relation's indexes
 *	pages		number of pages
 *	tuples		number of tuples
 *
 * Also, initialize the attr_needed[] and attr_widths[] arrays.  In most
 * cases these are left as zeroes, but sometimes we need to compute attr
 * widths here, and we may as well cache the results for costsize.c.
 *
 * If inhparent is true, all we need to do is set up the attr arrays:
 * the RelOptInfo actually represents the appendrel formed by an inheritance
 * tree, and so the parent rel's physical size and index information isn't
 * important for it.
 */
void
get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
				  RelOptInfo *rel)
{
	Index		varno = rel->relid;
	Relation	relation;
	bool		hasindex;
	List	   *indexinfos = NIL;

	/*
	 * We need not lock the relation since it was already locked, either by
	 * the rewriter or when expand_inherited_rtentry() added it to the query's
	 * rangetable.
	 */
	relation = heap_open(relationObjectId, NoLock);

	/* Temporary and unlogged relations are inaccessible during recovery. */
	if (!RelationNeedsWAL(relation) && RecoveryInProgress())
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("cannot access temporary or unlogged relations during recovery")));

	rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1;
	rel->max_attr = RelationGetNumberOfAttributes(relation);
	rel->reltablespace = RelationGetForm(relation)->reltablespace;

	Assert(rel->max_attr >= rel->min_attr);
	rel->attr_needed = (Relids *)
		palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
	rel->attr_widths = (int32 *)
		palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));

	/*
	 * Estimate relation size --- unless it's an inheritance parent, in which
	 * case the size will be computed later in set_append_rel_pathlist, and we
	 * must leave it zero for now to avoid bollixing the total_table_pages
	 * calculation.
	 */
	if (!inhparent)
		estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
						  &rel->pages, &rel->tuples, &rel->allvisfrac);

	/*
	 * Make list of indexes.  Ignore indexes on system catalogs if told to.
	 * Don't bother with indexes for an inheritance parent, either.
	 */
	if (inhparent ||
		(IgnoreSystemIndexes && IsSystemClass(relation->rd_rel)))
		hasindex = false;
	else
		hasindex = relation->rd_rel->relhasindex;

	if (hasindex)
	{
		List	   *indexoidlist;
		ListCell   *l;
		LOCKMODE	lmode;

		indexoidlist = RelationGetIndexList(relation);

		/*
		 * For each index, we get the same type of lock that the executor will
		 * need, and do not release it.  This saves a couple of trips to the
		 * shared lock manager while not creating any real loss of
		 * concurrency, because no schema changes could be happening on the
		 * index while we hold lock on the parent rel, and neither lock type
		 * blocks any other kind of index operation.
		 */
		if (rel->relid == root->parse->resultRelation)
			lmode = RowExclusiveLock;
		else
			lmode = AccessShareLock;

		foreach(l, indexoidlist)
		{
			Oid			indexoid = lfirst_oid(l);
			Relation	indexRelation;
			Form_pg_index index;
			IndexOptInfo *info;
			int			ncolumns;
			int			i;

			/*
			 * Extract info from the relation descriptor for the index.
			 */
			indexRelation = index_open(indexoid, lmode);
			index = indexRelation->rd_index;

			/*
			 * Ignore invalid indexes, since they can't safely be used for
			 * queries.  Note that this is OK because the data structure we
			 * are constructing is only used by the planner --- the executor
			 * still needs to insert into "invalid" indexes!
			 */
			if (!index->indisvalid)
			{
				index_close(indexRelation, NoLock);
				continue;
			}

			/*
			 * If the index is valid, but cannot yet be used, ignore it; but
			 * mark the plan we are generating as transient. See
			 * src/backend/access/heap/README.HOT for discussion.
			 */
			if (index->indcheckxmin &&
				!TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data),
									   TransactionXmin))
			{
				root->glob->transientPlan = true;
				index_close(indexRelation, NoLock);
				continue;
			}

			info = makeNode(IndexOptInfo);

			info->indexoid = index->indexrelid;
			info->reltablespace =
				RelationGetForm(indexRelation)->reltablespace;
			info->rel = rel;
			info->ncolumns = ncolumns = index->indnatts;
			info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
			info->indexcollations = (Oid *) palloc(sizeof(Oid) * ncolumns);
			info->opfamily = (Oid *) palloc(sizeof(Oid) * ncolumns);
			info->opcintype = (Oid *) palloc(sizeof(Oid) * ncolumns);

			for (i = 0; i < ncolumns; i++)
			{
				info->indexkeys[i] = index->indkey.values[i];
				info->indexcollations[i] = indexRelation->rd_indcollation[i];
				info->opfamily[i] = indexRelation->rd_opfamily[i];
				info->opcintype[i] = indexRelation->rd_opcintype[i];
			}

			info->relam = indexRelation->rd_rel->relam;
			info->amcostestimate = indexRelation->rd_am->amcostestimate;
			info->canreturn = index_can_return(indexRelation);
			info->amcanorderbyop = indexRelation->rd_am->amcanorderbyop;
			info->amoptionalkey = indexRelation->rd_am->amoptionalkey;
			info->amsearcharray = indexRelation->rd_am->amsearcharray;
			info->amsearchnulls = indexRelation->rd_am->amsearchnulls;
			info->amhasgettuple = OidIsValid(indexRelation->rd_am->amgettuple);
			info->amhasgetbitmap = OidIsValid(indexRelation->rd_am->amgetbitmap);

			/*
			 * Fetch the ordering information for the index, if any.
			 */
			if (info->relam == BTREE_AM_OID)
			{
				/*
				 * If it's a btree index, we can use its opfamily OIDs
				 * directly as the sort ordering opfamily OIDs.
				 */
				Assert(indexRelation->rd_am->amcanorder);

				info->sortopfamily = info->opfamily;
				info->reverse_sort = (bool *) palloc(sizeof(bool) * ncolumns);
				info->nulls_first = (bool *) palloc(sizeof(bool) * ncolumns);

				for (i = 0; i < ncolumns; i++)
				{
					int16		opt = indexRelation->rd_indoption[i];

					info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
					info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
				}
			}
			else if (indexRelation->rd_am->amcanorder)
			{
				/*
				 * Otherwise, identify the corresponding btree opfamilies by
				 * trying to map this index's "<" operators into btree.  Since
				 * "<" uniquely defines the behavior of a sort order, this is
				 * a sufficient test.
				 *
				 * XXX This method is rather slow and also requires the
				 * undesirable assumption that the other index AM numbers its
				 * strategies the same as btree.  It'd be better to have a way
				 * to explicitly declare the corresponding btree opfamily for
				 * each opfamily of the other index type.  But given the lack
				 * of current or foreseeable amcanorder index types, it's not
				 * worth expending more effort on now.
				 */
				info->sortopfamily = (Oid *) palloc(sizeof(Oid) * ncolumns);
				info->reverse_sort = (bool *) palloc(sizeof(bool) * ncolumns);
				info->nulls_first = (bool *) palloc(sizeof(bool) * ncolumns);

				for (i = 0; i < ncolumns; i++)
				{
					int16		opt = indexRelation->rd_indoption[i];
					Oid			ltopr;
					Oid			btopfamily;
					Oid			btopcintype;
					int16		btstrategy;

					info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
					info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;

					ltopr = get_opfamily_member(info->opfamily[i],
												info->opcintype[i],
												info->opcintype[i],
												BTLessStrategyNumber);
					if (OidIsValid(ltopr) &&
						get_ordering_op_properties(ltopr,
												   &btopfamily,
												   &btopcintype,
												   &btstrategy) &&
						btopcintype == info->opcintype[i] &&
						btstrategy == BTLessStrategyNumber)
					{
						/* Successful mapping */
						info->sortopfamily[i] = btopfamily;
					}
					else
					{
						/* Fail ... quietly treat index as unordered */
						info->sortopfamily = NULL;
						info->reverse_sort = NULL;
						info->nulls_first = NULL;
						break;
					}
				}
			}
			else
			{
				info->sortopfamily = NULL;
				info->reverse_sort = NULL;
				info->nulls_first = NULL;
			}

			/*
			 * Fetch the index expressions and predicate, if any.  We must
			 * modify the copies we obtain from the relcache to have the
			 * correct varno for the parent relation, so that they match up
			 * correctly against qual clauses.
			 */
			info->indexprs = RelationGetIndexExpressions(indexRelation);
			info->indpred = RelationGetIndexPredicate(indexRelation);
			if (info->indexprs && varno != 1)
				ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
			if (info->indpred && varno != 1)
				ChangeVarNodes((Node *) info->indpred, 1, varno, 0);

			/* Build targetlist using the completed indexprs data */
			info->indextlist = build_index_tlist(root, info, relation);

			info->predOK = false;		/* set later in indxpath.c */
			info->unique = index->indisunique;
			info->immediate = index->indimmediate;
			info->hypothetical = false;

			/*
			 * Estimate the index size.  If it's not a partial index, we lock
			 * the number-of-tuples estimate to equal the parent table; if it
			 * is partial then we have to use the same methods as we would for
			 * a table, except we can be sure that the index is not larger
			 * than the table.
			 */
			if (info->indpred == NIL)
			{
				info->pages = RelationGetNumberOfBlocks(indexRelation);
				info->tuples = rel->tuples;
			}
			else
			{
				double		allvisfrac; /* dummy */

				estimate_rel_size(indexRelation, NULL,
								  &info->pages, &info->tuples, &allvisfrac);
				if (info->tuples > rel->tuples)
					info->tuples = rel->tuples;
			}

			index_close(indexRelation, NoLock);

			indexinfos = lcons(info, indexinfos);
		}

		list_free(indexoidlist);
	}
Exemplo n.º 9
0
/*
 * Main entry point for bgwriter process
 *
 * This is invoked from AuxiliaryProcessMain, which has already created the
 * basic execution environment, but not enabled signals yet.
 */
void
BackgroundWriterMain(void)
{
	sigjmp_buf	local_sigjmp_buf;
	MemoryContext bgwriter_context;
	bool		prev_hibernate;
	WritebackContext wb_context;

	/*
	 * Properly accept or ignore signals the postmaster might send us.
	 *
	 * bgwriter doesn't participate in ProcSignal signalling, but a SIGUSR1
	 * handler is still needed for latch wakeups.
	 */
	pqsignal(SIGHUP, BgSigHupHandler);	/* set flag to read config file */
	pqsignal(SIGINT, SIG_IGN);
	pqsignal(SIGTERM, ReqShutdownHandler);		/* shutdown */
	pqsignal(SIGQUIT, bg_quickdie);		/* hard crash time */
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, bgwriter_sigusr1_handler);
	pqsignal(SIGUSR2, SIG_IGN);

	/*
	 * Reset some signals that are accepted by postmaster but not here
	 */
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);

	/* We allow SIGQUIT (quickdie) at all times */
	sigdelset(&BlockSig, SIGQUIT);

	/*
	 * Create a resource owner to keep track of our resources (currently only
	 * buffer pins).
	 */
	CurrentResourceOwner = ResourceOwnerCreate(NULL, "Background Writer");

	/*
	 * We just started, assume there has been either a shutdown or
	 * end-of-recovery snapshot.
	 */
	last_snapshot_ts = GetCurrentTimestamp();

	/*
	 * Create a memory context that we will do all our work in.  We do this so
	 * that we can reset the context during error recovery and thereby avoid
	 * possible memory leaks.  Formerly this code just ran in
	 * TopMemoryContext, but resetting that would be a really bad idea.
	 */
	bgwriter_context = AllocSetContextCreate(TopMemoryContext,
											 "Background Writer",
											 ALLOCSET_DEFAULT_SIZES);
	MemoryContextSwitchTo(bgwriter_context);

	WritebackContextInit(&wb_context, &bgwriter_flush_after);

	/*
	 * If an exception is encountered, processing resumes here.
	 *
	 * See notes in postgres.c about the design of this coding.
	 */
	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
	{
		/* Since not using PG_TRY, must reset error stack by hand */
		error_context_stack = NULL;

		/* Prevent interrupts while cleaning up */
		HOLD_INTERRUPTS();

		/* Report the error to the server log */
		EmitErrorReport();

		/*
		 * These operations are really just a minimal subset of
		 * AbortTransaction().  We don't have very many resources to worry
		 * about in bgwriter, but we do have LWLocks, buffers, and temp files.
		 */
		LWLockReleaseAll();
		AbortBufferIO();
		UnlockBuffers();
		/* buffer pins are released here: */
		ResourceOwnerRelease(CurrentResourceOwner,
							 RESOURCE_RELEASE_BEFORE_LOCKS,
							 false, true);
		/* we needn't bother with the other ResourceOwnerRelease phases */
		AtEOXact_Buffers(false);
		AtEOXact_SMgr();
		AtEOXact_Files();
		AtEOXact_HashTables(false);

		/*
		 * Now return to normal top-level context and clear ErrorContext for
		 * next time.
		 */
		MemoryContextSwitchTo(bgwriter_context);
		FlushErrorState();

		/* Flush any leaked data in the top-level context */
		MemoryContextResetAndDeleteChildren(bgwriter_context);

		/* re-initilialize to avoid repeated errors causing problems */
		WritebackContextInit(&wb_context, &bgwriter_flush_after);

		/* Now we can allow interrupts again */
		RESUME_INTERRUPTS();

		/*
		 * Sleep at least 1 second after any error.  A write error is likely
		 * to be repeated, and we don't want to be filling the error logs as
		 * fast as we can.
		 */
		pg_usleep(1000000L);

		/*
		 * Close all open files after any error.  This is helpful on Windows,
		 * where holding deleted files open causes various strange errors.
		 * It's not clear we need it elsewhere, but shouldn't hurt.
		 */
		smgrcloseall();

		/* Report wait end here, when there is no further possibility of wait */
		pgstat_report_wait_end();
	}

	/* We can now handle ereport(ERROR) */
	PG_exception_stack = &local_sigjmp_buf;

	/*
	 * Unblock signals (they were blocked when the postmaster forked us)
	 */
	PG_SETMASK(&UnBlockSig);

	/*
	 * Reset hibernation state after any error.
	 */
	prev_hibernate = false;

	/*
	 * Loop forever
	 */
	for (;;)
	{
		bool		can_hibernate;
		int			rc;

		/* Clear any already-pending wakeups */
		ResetLatch(MyLatch);

		if (got_SIGHUP)
		{
			got_SIGHUP = false;
			ProcessConfigFile(PGC_SIGHUP);
		}
		if (shutdown_requested)
		{
			/*
			 * From here on, elog(ERROR) should end with exit(1), not send
			 * control back to the sigsetjmp block above
			 */
			ExitOnAnyError = true;
			/* Normal exit from the bgwriter is here */
			proc_exit(0);		/* done */
		}

		/*
		 * Do one cycle of dirty-buffer writing.
		 */
		can_hibernate = BgBufferSync(&wb_context);

		/*
		 * Send off activity statistics to the stats collector
		 */
		pgstat_send_bgwriter();

		if (FirstCallSinceLastCheckpoint())
		{
			/*
			 * After any checkpoint, close all smgr files.  This is so we
			 * won't hang onto smgr references to deleted files indefinitely.
			 */
			smgrcloseall();
		}

		/*
		 * Log a new xl_running_xacts every now and then so replication can
		 * get into a consistent state faster (think of suboverflowed
		 * snapshots) and clean up resources (locks, KnownXids*) more
		 * frequently. The costs of this are relatively low, so doing it 4
		 * times (LOG_SNAPSHOT_INTERVAL_MS) a minute seems fine.
		 *
		 * We assume the interval for writing xl_running_xacts is
		 * significantly bigger than BgWriterDelay, so we don't complicate the
		 * overall timeout handling but just assume we're going to get called
		 * often enough even if hibernation mode is active. It's not that
		 * important that log_snap_interval_ms is met strictly. To make sure
		 * we're not waking the disk up unnecessarily on an idle system we
		 * check whether there has been any WAL inserted since the last time
		 * we've logged a running xacts.
		 *
		 * We do this logging in the bgwriter as its the only process that is
		 * run regularly and returns to its mainloop all the time. E.g.
		 * Checkpointer, when active, is barely ever in its mainloop and thus
		 * makes it hard to log regularly.
		 */
		if (XLogStandbyInfoActive() && !RecoveryInProgress())
		{
			TimestampTz timeout = 0;
			TimestampTz now = GetCurrentTimestamp();

			timeout = TimestampTzPlusMilliseconds(last_snapshot_ts,
												  LOG_SNAPSHOT_INTERVAL_MS);

			/*
			 * only log if enough time has passed and some xlog record has
			 * been inserted.
			 */
			if (now >= timeout &&
				last_snapshot_lsn != GetXLogInsertRecPtr())
			{
				last_snapshot_lsn = LogStandbySnapshot();
				last_snapshot_ts = now;
			}
		}

		/*
		 * Sleep until we are signaled or BgWriterDelay has elapsed.
		 *
		 * Note: the feedback control loop in BgBufferSync() expects that we
		 * will call it every BgWriterDelay msec.  While it's not critical for
		 * correctness that that be exact, the feedback loop might misbehave
		 * if we stray too far from that.  Hence, avoid loading this process
		 * down with latch events that are likely to happen frequently during
		 * normal operation.
		 */
		rc = WaitLatch(MyLatch,
					   WL_LATCH_SET | WL_TIMEOUT | WL_POSTMASTER_DEATH,
					   BgWriterDelay /* ms */ );

		/*
		 * If no latch event and BgBufferSync says nothing's happening, extend
		 * the sleep in "hibernation" mode, where we sleep for much longer
		 * than bgwriter_delay says.  Fewer wakeups save electricity.  When a
		 * backend starts using buffers again, it will wake us up by setting
		 * our latch.  Because the extra sleep will persist only as long as no
		 * buffer allocations happen, this should not distort the behavior of
		 * BgBufferSync's control loop too badly; essentially, it will think
		 * that the system-wide idle interval didn't exist.
		 *
		 * There is a race condition here, in that a backend might allocate a
		 * buffer between the time BgBufferSync saw the alloc count as zero
		 * and the time we call StrategyNotifyBgWriter.  While it's not
		 * critical that we not hibernate anyway, we try to reduce the odds of
		 * that by only hibernating when BgBufferSync says nothing's happening
		 * for two consecutive cycles.  Also, we mitigate any possible
		 * consequences of a missed wakeup by not hibernating forever.
		 */
		if (rc == WL_TIMEOUT && can_hibernate && prev_hibernate)
		{
			/* Ask for notification at next buffer allocation */
			StrategyNotifyBgWriter(MyProc->pgprocno);
			/* Sleep ... */
			rc = WaitLatch(MyLatch,
						   WL_LATCH_SET | WL_TIMEOUT | WL_POSTMASTER_DEATH,
						   BgWriterDelay * HIBERNATE_FACTOR);
			/* Reset the notification request in case we timed out */
			StrategyNotifyBgWriter(-1);
		}

		/*
		 * Emergency bailout if postmaster has died.  This is to avoid the
		 * necessity for manual cleanup of all postmaster children.
		 */
		if (rc & WL_POSTMASTER_DEATH)
			exit(1);

		prev_hibernate = can_hibernate;
	}
}
Exemplo n.º 10
0
/*
 * Actually do a base backup for the specified tablespaces.
 *
 * This is split out mainly to avoid complaints about "variable might be
 * clobbered by longjmp" from stupider versions of gcc.
 */
static void
perform_base_backup(basebackup_options *opt, DIR *tblspcdir)
{
	XLogRecPtr	startptr;
	TimeLineID	starttli;
	XLogRecPtr	endptr;
	TimeLineID	endtli;
	char	   *labelfile;
	int			datadirpathlen;

	datadirpathlen = strlen(DataDir);

	backup_started_in_recovery = RecoveryInProgress();

	startptr = do_pg_start_backup(opt->label, opt->fastcheckpoint, &starttli,
								  &labelfile);
	/*
	 * Once do_pg_start_backup has been called, ensure that any failure causes
	 * us to abort the backup so we don't "leak" a backup counter. For this reason,
	 * *all* functionality between do_pg_start_backup() and do_pg_stop_backup()
	 * should be inside the error cleanup block!
	 */

	PG_ENSURE_ERROR_CLEANUP(base_backup_cleanup, (Datum) 0);
	{
		List	   *tablespaces = NIL;
		ListCell   *lc;
		struct dirent *de;
		tablespaceinfo *ti;

		SendXlogRecPtrResult(startptr, starttli);

		/*
		 * Calculate the relative path of temporary statistics directory in order
		 * to skip the files which are located in that directory later.
		 */
		if (is_absolute_path(pgstat_stat_directory) &&
			strncmp(pgstat_stat_directory, DataDir, datadirpathlen) == 0)
			statrelpath = psprintf("./%s", pgstat_stat_directory + datadirpathlen + 1);
		else if (strncmp(pgstat_stat_directory, "./", 2) != 0)
			statrelpath = psprintf("./%s", pgstat_stat_directory);
		else
			statrelpath = pgstat_stat_directory;

		/* Collect information about all tablespaces */
		while ((de = ReadDir(tblspcdir, "pg_tblspc")) != NULL)
		{
			char		fullpath[MAXPGPATH];
			char		linkpath[MAXPGPATH];
			char	   *relpath = NULL;
			int			rllen;

			/* Skip special stuff */
			if (strcmp(de->d_name, ".") == 0 || strcmp(de->d_name, "..") == 0)
				continue;

			snprintf(fullpath, sizeof(fullpath), "pg_tblspc/%s", de->d_name);

#if defined(HAVE_READLINK) || defined(WIN32)
			rllen = readlink(fullpath, linkpath, sizeof(linkpath));
			if (rllen < 0)
			{
				ereport(WARNING,
						(errmsg("could not read symbolic link \"%s\": %m",
								fullpath)));
				continue;
			}
			else if (rllen >= sizeof(linkpath))
			{
				ereport(WARNING,
						(errmsg("symbolic link \"%s\" target is too long",
								fullpath)));
				continue;
			}
			linkpath[rllen] = '\0';

			/*
			 * Relpath holds the relative path of the tablespace directory
			 * when it's located within PGDATA, or NULL if it's located
			 * elsewhere.
			 */
			if (rllen > datadirpathlen &&
				strncmp(linkpath, DataDir, datadirpathlen) == 0 &&
				IS_DIR_SEP(linkpath[datadirpathlen]))
				relpath = linkpath + datadirpathlen + 1;

			ti = palloc(sizeof(tablespaceinfo));
			ti->oid = pstrdup(de->d_name);
			ti->path = pstrdup(linkpath);
			ti->rpath = relpath ? pstrdup(relpath) : NULL;
			ti->size = opt->progress ? sendTablespace(fullpath, true) : -1;
			tablespaces = lappend(tablespaces, ti);
#else

			/*
			 * If the platform does not have symbolic links, it should not be
			 * possible to have tablespaces - clearly somebody else created
			 * them. Warn about it and ignore.
			 */
			ereport(WARNING,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				  errmsg("tablespaces are not supported on this platform")));
#endif
		}

		/* Add a node for the base directory at the end */
		ti = palloc0(sizeof(tablespaceinfo));
		ti->size = opt->progress ? sendDir(".", 1, true, tablespaces) : -1;
		tablespaces = lappend(tablespaces, ti);

		/* Send tablespace header */
		SendBackupHeader(tablespaces);

		/* Setup and activate network throttling, if client requested it */
		if (opt->maxrate > 0)
		{
			throttling_sample =
				(int64) opt->maxrate * (int64) 1024 / THROTTLING_FREQUENCY;

			/*
			 * The minimum amount of time for throttling_sample bytes to be
			 * transfered.
			 */
			elapsed_min_unit = USECS_PER_SEC / THROTTLING_FREQUENCY;

			/* Enable throttling. */
			throttling_counter = 0;

			/* The 'real data' starts now (header was ignored). */
			throttled_last = GetCurrentIntegerTimestamp();
		}
		else
		{
			/* Disable throttling. */
			throttling_counter = -1;
		}

		/* Send off our tablespaces one by one */
		foreach(lc, tablespaces)
		{
			tablespaceinfo *ti = (tablespaceinfo *) lfirst(lc);
			StringInfoData buf;

			/* Send CopyOutResponse message */
			pq_beginmessage(&buf, 'H');
			pq_sendbyte(&buf, 0);		/* overall format */
			pq_sendint(&buf, 0, 2);		/* natts */
			pq_endmessage(&buf);

			if (ti->path == NULL)
			{
				struct stat statbuf;

				/* In the main tar, include the backup_label first... */
				sendFileWithContent(BACKUP_LABEL_FILE, labelfile);

				/* ... then the bulk of the files ... */
				sendDir(".", 1, false, tablespaces);

				/* ... and pg_control after everything else. */
				if (lstat(XLOG_CONTROL_FILE, &statbuf) != 0)
					ereport(ERROR,
							(errcode_for_file_access(),
							 errmsg("could not stat control file \"%s\": %m",
									XLOG_CONTROL_FILE)));
				sendFile(XLOG_CONTROL_FILE, XLOG_CONTROL_FILE, &statbuf, false);
			}
			else
				sendTablespace(ti->path, false);

			/*
			 * If we're including WAL, and this is the main data directory we
			 * don't terminate the tar stream here. Instead, we will append
			 * the xlog files below and terminate it then. This is safe since
			 * the main data directory is always sent *last*.
			 */
			if (opt->includewal && ti->path == NULL)
			{
				Assert(lnext(lc) == NULL);
			}
			else
				pq_putemptymessage('c');		/* CopyDone */
		}
	}
Exemplo n.º 11
0
/*
 * Compute an xlog file name and decimal byte offset given a WAL location,
 * such as is returned by pg_stop_backup() or pg_xlog_switch().
 *
 * Note that a location exactly at a segment boundary is taken to be in
 * the previous segment.  This is usually the right thing, since the
 * expected usage is to determine which xlog file(s) are ready to archive.
 */
Datum
pg_xlogfile_name_offset(PG_FUNCTION_ARGS)
{
	text	   *location = PG_GETARG_TEXT_P(0);
	char	   *locationstr;
	unsigned int uxlogid;
	unsigned int uxrecoff;
	uint32		xlogid;
	uint32		xlogseg;
	uint32		xrecoff;
	XLogRecPtr	locationpoint;
	char		xlogfilename[MAXFNAMELEN];
	Datum		values[2];
	bool		isnull[2];
	TupleDesc	resultTupleDesc;
	HeapTuple	resultHeapTuple;
	Datum		result;

	if (RecoveryInProgress())
		ereport(ERROR,
				(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
				 errmsg("recovery is in progress"),
				 errhint("pg_xlogfile_name_offset() cannot be executed during recovery.")));

	/*
	 * Read input and parse
	 */
	locationstr = text_to_cstring(location);

	validate_xlog_location(locationstr);

	if (sscanf(locationstr, "%X/%X", &uxlogid, &uxrecoff) != 2)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
				 errmsg("could not parse transaction log location \"%s\"",
						locationstr)));

	locationpoint.xlogid = uxlogid;
	locationpoint.xrecoff = uxrecoff;

	/*
	 * Construct a tuple descriptor for the result row.  This must match this
	 * function's pg_proc entry!
	 */
	resultTupleDesc = CreateTemplateTupleDesc(2, false);
	TupleDescInitEntry(resultTupleDesc, (AttrNumber) 1, "file_name",
					   TEXTOID, -1, 0);
	TupleDescInitEntry(resultTupleDesc, (AttrNumber) 2, "file_offset",
					   INT4OID, -1, 0);

	resultTupleDesc = BlessTupleDesc(resultTupleDesc);

	/*
	 * xlogfilename
	 */
	XLByteToPrevSeg(locationpoint, xlogid, xlogseg);
	XLogFileName(xlogfilename, ThisTimeLineID, xlogid, xlogseg);

	values[0] = CStringGetTextDatum(xlogfilename);
	isnull[0] = false;

	/*
	 * offset
	 */
	xrecoff = locationpoint.xrecoff - xlogseg * XLogSegSize;

	values[1] = UInt32GetDatum(xrecoff);
	isnull[1] = false;

	/*
	 * Tuple jam: Having first prepared your Datums, then squash together
	 */
	resultHeapTuple = heap_form_tuple(resultTupleDesc, values, isnull);

	result = HeapTupleGetDatum(resultHeapTuple);

	PG_RETURN_DATUM(result);
}
Exemplo n.º 12
0
/*
 * Optionally prune and repair fragmentation in the specified page.
 *
 * This is an opportunistic function.  It will perform housekeeping
 * only if the page heuristically looks like a candidate for pruning and we
 * can acquire buffer cleanup lock without blocking.
 *
 * Note: this is called quite often.  It's important that it fall out quickly
 * if there's not any use in pruning.
 *
 * Caller must have pin on the buffer, and must *not* have a lock on it.
 *
 * OldestXmin is the cutoff XID used to distinguish whether tuples are DEAD
 * or RECENTLY_DEAD (see HeapTupleSatisfiesVacuum).
 */
void
heap_page_prune_opt(Relation relation, Buffer buffer)
{
	Page		page = BufferGetPage(buffer);
	Size		minfree;
	TransactionId OldestXmin;

	/*
	 * We can't write WAL in recovery mode, so there's no point trying to
	 * clean the page. The master will likely issue a cleaning WAL record soon
	 * anyway, so this is no particular loss.
	 */
	if (RecoveryInProgress())
		return;

	/*
	 * Use the appropriate xmin horizon for this relation. If it's a proper
	 * catalog relation or a user defined, additional, catalog relation, we
	 * need to use the horizon that includes slots, otherwise the data-only
	 * horizon can be used. Note that the toast relation of user defined
	 * relations are *not* considered catalog relations.
	 *
	 * It is OK to apply the old snapshot limit before acquiring the cleanup
	 * lock because the worst that can happen is that we are not quite as
	 * aggressive about the cleanup (by however many transaction IDs are
	 * consumed between this point and acquiring the lock).  This allows us to
	 * save significant overhead in the case where the page is found not to be
	 * prunable.
	 */
	if (IsCatalogRelation(relation) ||
		RelationIsAccessibleInLogicalDecoding(relation))
		OldestXmin = RecentGlobalXmin;
	else
		OldestXmin =
			TransactionIdLimitedForOldSnapshots(RecentGlobalDataXmin,
												relation);

	Assert(TransactionIdIsValid(OldestXmin));

	/*
	 * Let's see if we really need pruning.
	 *
	 * Forget it if page is not hinted to contain something prunable that's
	 * older than OldestXmin.
	 */
	if (!PageIsPrunable(page, OldestXmin))
		return;

	/*
	 * We prune when a previous UPDATE failed to find enough space on the page
	 * for a new tuple version, or when free space falls below the relation's
	 * fill-factor target (but not less than 10%).
	 *
	 * Checking free space here is questionable since we aren't holding any
	 * lock on the buffer; in the worst case we could get a bogus answer. It's
	 * unlikely to be *seriously* wrong, though, since reading either pd_lower
	 * or pd_upper is probably atomic.  Avoiding taking a lock seems more
	 * important than sometimes getting a wrong answer in what is after all
	 * just a heuristic estimate.
	 */
	minfree = RelationGetTargetPageFreeSpace(relation,
											 HEAP_DEFAULT_FILLFACTOR);
	minfree = Max(minfree, BLCKSZ / 10);

	if (PageIsFull(page) || PageGetHeapFreeSpace(page) < minfree)
	{
		/* OK, try to get exclusive buffer lock */
		if (!ConditionalLockBufferForCleanup(buffer))
			return;

		/*
		 * Now that we have buffer lock, get accurate information about the
		 * page's free space, and recheck the heuristic about whether to
		 * prune. (We needn't recheck PageIsPrunable, since no one else could
		 * have pruned while we hold pin.)
		 */
		if (PageIsFull(page) || PageGetHeapFreeSpace(page) < minfree)
		{
			TransactionId ignore = InvalidTransactionId;	/* return value not
															 * needed */

			/* OK to prune */
			(void) heap_page_prune(relation, buffer, OldestXmin, true, &ignore);
		}

		/* And release buffer lock */
		LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
	}
}
Exemplo n.º 13
0
/*
 * SQL-callable interface to mark a range as no longer summarized
 */
Datum
brin_desummarize_range(PG_FUNCTION_ARGS)
{
	Oid			indexoid = PG_GETARG_OID(0);
	int64		heapBlk64 = PG_GETARG_INT64(1);
	BlockNumber heapBlk;
	Oid			heapoid;
	Relation	heapRel;
	Relation	indexRel;
	bool		done;

	if (RecoveryInProgress())
		ereport(ERROR,
				(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
				 errmsg("recovery is in progress"),
				 errhint("BRIN control functions cannot be executed during recovery.")));

	if (heapBlk64 > MaxBlockNumber || heapBlk64 < 0)
	{
		char	   *blk = psprintf(INT64_FORMAT, heapBlk64);

		ereport(ERROR,
				(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
				 errmsg("block number out of range: %s", blk)));
	}
	heapBlk = (BlockNumber) heapBlk64;

	/*
	 * We must lock table before index to avoid deadlocks.  However, if the
	 * passed indexoid isn't an index then IndexGetRelation() will fail.
	 * Rather than emitting a not-very-helpful error message, postpone
	 * complaining, expecting that the is-it-an-index test below will fail.
	 */
	heapoid = IndexGetRelation(indexoid, true);
	if (OidIsValid(heapoid))
		heapRel = table_open(heapoid, ShareUpdateExclusiveLock);
	else
		heapRel = NULL;

	indexRel = index_open(indexoid, ShareUpdateExclusiveLock);

	/* Must be a BRIN index */
	if (indexRel->rd_rel->relkind != RELKIND_INDEX ||
		indexRel->rd_rel->relam != BRIN_AM_OID)
		ereport(ERROR,
				(errcode(ERRCODE_WRONG_OBJECT_TYPE),
				 errmsg("\"%s\" is not a BRIN index",
						RelationGetRelationName(indexRel))));

	/* User must own the index (comparable to privileges needed for VACUUM) */
	if (!pg_class_ownercheck(indexoid, GetUserId()))
		aclcheck_error(ACLCHECK_NOT_OWNER, OBJECT_INDEX,
					   RelationGetRelationName(indexRel));

	/*
	 * Since we did the IndexGetRelation call above without any lock, it's
	 * barely possible that a race against an index drop/recreation could have
	 * netted us the wrong table.  Recheck.
	 */
	if (heapRel == NULL || heapoid != IndexGetRelation(indexoid, false))
		ereport(ERROR,
				(errcode(ERRCODE_UNDEFINED_TABLE),
				 errmsg("could not open parent table of index %s",
						RelationGetRelationName(indexRel))));

	/* the revmap does the hard work */
	do
	{
		done = brinRevmapDesummarizeRange(indexRel, heapBlk);
	}
	while (!done);

	relation_close(indexRel, ShareUpdateExclusiveLock);
	relation_close(heapRel, ShareUpdateExclusiveLock);

	PG_RETURN_VOID();
}
Exemplo n.º 14
0
/*
 * Helper function for the various SQL callable logical decoding functions.
 */
static Datum
pg_logical_slot_get_changes_guts(FunctionCallInfo fcinfo, bool confirm, bool binary)
{
    Name		name;
    XLogRecPtr	upto_lsn;
    int32		upto_nchanges;
    ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
    MemoryContext per_query_ctx;
    MemoryContext oldcontext;
    XLogRecPtr	end_of_wal;
    XLogRecPtr	startptr;
    LogicalDecodingContext *ctx;
    ResourceOwner old_resowner = CurrentResourceOwner;
    ArrayType  *arr;
    Size		ndim;
    List	   *options = NIL;
    DecodingOutputState *p;

    check_permissions();

    CheckLogicalDecodingRequirements();

    if (PG_ARGISNULL(0))
        ereport(ERROR,
                (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
                 errmsg("slot name must not be null")));
    name = PG_GETARG_NAME(0);

    if (PG_ARGISNULL(1))
        upto_lsn = InvalidXLogRecPtr;
    else
        upto_lsn = PG_GETARG_LSN(1);

    if (PG_ARGISNULL(2))
        upto_nchanges = InvalidXLogRecPtr;
    else
        upto_nchanges = PG_GETARG_INT32(2);

    if (PG_ARGISNULL(3))
        ereport(ERROR,
                (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
                 errmsg("options array must not be null")));
    arr = PG_GETARG_ARRAYTYPE_P(3);

    /* check to see if caller supports us returning a tuplestore */
    if (rsinfo == NULL || !IsA(rsinfo, ReturnSetInfo))
        ereport(ERROR,
                (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
                 errmsg("set-valued function called in context that cannot accept a set")));
    if (!(rsinfo->allowedModes & SFRM_Materialize))
        ereport(ERROR,
                (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
                 errmsg("materialize mode required, but it is not allowed in this context")));

    /* state to write output to */
    p = palloc0(sizeof(DecodingOutputState));

    p->binary_output = binary;

    /* Build a tuple descriptor for our result type */
    if (get_call_result_type(fcinfo, NULL, &p->tupdesc) != TYPEFUNC_COMPOSITE)
        elog(ERROR, "return type must be a row type");

    per_query_ctx = rsinfo->econtext->ecxt_per_query_memory;
    oldcontext = MemoryContextSwitchTo(per_query_ctx);

    /* Deconstruct options array */
    ndim = ARR_NDIM(arr);
    if (ndim > 1)
    {
        ereport(ERROR,
                (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
                 errmsg("array must be one-dimensional")));
    }
    else if (array_contains_nulls(arr))
    {
        ereport(ERROR,
                (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
                 errmsg("array must not contain nulls")));
    }
    else if (ndim == 1)
    {
        int			nelems;
        Datum	   *datum_opts;
        int			i;

        Assert(ARR_ELEMTYPE(arr) == TEXTOID);

        deconstruct_array(arr, TEXTOID, -1, false, 'i',
                          &datum_opts, NULL, &nelems);

        if (nelems % 2 != 0)
            ereport(ERROR,
                    (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
                     errmsg("array must have even number of elements")));

        for (i = 0; i < nelems; i += 2)
        {
            char	   *name = TextDatumGetCString(datum_opts[i]);
            char	   *opt = TextDatumGetCString(datum_opts[i + 1]);

            options = lappend(options, makeDefElem(name, (Node *) makeString(opt), -1));
        }
    }

    p->tupstore = tuplestore_begin_heap(true, false, work_mem);
    rsinfo->returnMode = SFRM_Materialize;
    rsinfo->setResult = p->tupstore;
    rsinfo->setDesc = p->tupdesc;

    /* compute the current end-of-wal */
    if (!RecoveryInProgress())
        end_of_wal = GetFlushRecPtr();
    else
        end_of_wal = GetXLogReplayRecPtr(NULL);

    ReplicationSlotAcquire(NameStr(*name));

    PG_TRY();
    {
        /* restart at slot's confirmed_flush */
        ctx = CreateDecodingContext(InvalidXLogRecPtr,
                                    options,
                                    logical_read_local_xlog_page,
                                    LogicalOutputPrepareWrite,
                                    LogicalOutputWrite);

        MemoryContextSwitchTo(oldcontext);

        /*
         * Check whether the output plugin writes textual output if that's
         * what we need.
         */
        if (!binary &&
                ctx->options.output_type !=OUTPUT_PLUGIN_TEXTUAL_OUTPUT)
            ereport(ERROR,
                    (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
                     errmsg("logical decoding output plugin \"%s\" produces binary output, but function \"%s\" expects textual data",
                            NameStr(MyReplicationSlot->data.plugin),
                            format_procedure(fcinfo->flinfo->fn_oid))));

        ctx->output_writer_private = p;

        /*
         * Decoding of WAL must start at restart_lsn so that the entirety of
         * xacts that committed after the slot's confirmed_flush can be
         * accumulated into reorder buffers.
         */
        startptr = MyReplicationSlot->data.restart_lsn;

        CurrentResourceOwner = ResourceOwnerCreate(CurrentResourceOwner, "logical decoding");

        /* invalidate non-timetravel entries */
        InvalidateSystemCaches();

        while ((startptr != InvalidXLogRecPtr && startptr < end_of_wal) ||
                (ctx->reader->EndRecPtr != InvalidXLogRecPtr && ctx->reader->EndRecPtr < end_of_wal))
        {
            XLogRecord *record;
            char	   *errm = NULL;

            record = XLogReadRecord(ctx->reader, startptr, &errm);
            if (errm)
                elog(ERROR, "%s", errm);

            /*
             * Now that we've set up the xlog reader state, subsequent calls
             * pass InvalidXLogRecPtr to say "continue from last record"
             */
            startptr = InvalidXLogRecPtr;

            /*
             * The {begin_txn,change,commit_txn}_wrapper callbacks above will
             * store the description into our tuplestore.
             */
            if (record != NULL)
                LogicalDecodingProcessRecord(ctx, ctx->reader);

            /* check limits */
            if (upto_lsn != InvalidXLogRecPtr &&
                    upto_lsn <= ctx->reader->EndRecPtr)
                break;
            if (upto_nchanges != 0 &&
                    upto_nchanges <= p->returned_rows)
                break;
            CHECK_FOR_INTERRUPTS();
        }

        tuplestore_donestoring(tupstore);

        CurrentResourceOwner = old_resowner;

        /*
         * Next time, start where we left off. (Hunting things, the family
         * business..)
         */
        if (ctx->reader->EndRecPtr != InvalidXLogRecPtr && confirm)
        {
            LogicalConfirmReceivedLocation(ctx->reader->EndRecPtr);
            /*
             * If only the confirmed_flush_lsn has changed the slot won't get
             * marked as dirty by the above. Callers on the walsender interface
             * are expected to keep track of their own progress and don't need
             * it written out. But SQL-interface users cannot specify their own
             * start positions and it's harder for them to keep track of their
             * progress, so we should make more of an effort to save it for them.
             *
             * Dirty the slot so it's written out at the next checkpoint. We'll
             * still lose its position on crash, as documented, but it's better
             * than always losing the position even on clean restart.
             */
            ReplicationSlotMarkDirty();
        }

        /* free context, call shutdown callback */
        FreeDecodingContext(ctx);

        ReplicationSlotRelease();
        InvalidateSystemCaches();
    }
    PG_CATCH();
    {
        /* clear all timetravel entries */
        InvalidateSystemCaches();

        PG_RE_THROW();
    }
    PG_END_TRY();

    return (Datum) 0;
}
Exemplo n.º 15
0
/*
 * IsCheckpointOnSchedule -- are we on schedule to finish this checkpoint
 *		 in time?
 *
 * Compares the current progress against the time/segments elapsed since last
 * checkpoint, and returns true if the progress we've made this far is greater
 * than the elapsed time/segments.
 */
static bool
IsCheckpointOnSchedule(double progress)
{
	XLogRecPtr	recptr;
	struct timeval now;
	double		elapsed_xlogs,
				elapsed_time;

	Assert(ckpt_active);

	/* Scale progress according to checkpoint_completion_target. */
	progress *= CheckPointCompletionTarget;

	/*
	 * Check against the cached value first. Only do the more expensive
	 * calculations once we reach the target previously calculated. Since
	 * neither time or WAL insert pointer moves backwards, a freshly
	 * calculated value can only be greater than or equal to the cached value.
	 */
	if (progress < ckpt_cached_elapsed)
		return false;

	/*
	 * Check progress against WAL segments written and checkpoint_segments.
	 *
	 * We compare the current WAL insert location against the location
	 * computed before calling CreateCheckPoint. The code in XLogInsert that
	 * actually triggers a checkpoint when checkpoint_segments is exceeded
	 * compares against RedoRecptr, so this is not completely accurate.
	 * However, it's good enough for our purposes, we're only calculating an
	 * estimate anyway.
	 */
	if (!RecoveryInProgress())
	{
		recptr = GetInsertRecPtr();
		elapsed_xlogs =
			(((double) (int32) (recptr.xlogid - ckpt_start_recptr.xlogid)) * XLogSegsPerFile +
			 ((double) recptr.xrecoff - (double) ckpt_start_recptr.xrecoff) / XLogSegSize) /
			CheckPointSegments;

		if (progress < elapsed_xlogs)
		{
			ckpt_cached_elapsed = elapsed_xlogs;
			return false;
		}
	}

	/*
	 * Check progress against time elapsed and checkpoint_timeout.
	 */
	gettimeofday(&now, NULL);
	elapsed_time = ((double) ((pg_time_t) now.tv_sec - ckpt_start_time) +
					now.tv_usec / 1000000.0) / CheckPointTimeout;

	if (progress < elapsed_time)
	{
		ckpt_cached_elapsed = elapsed_time;
		return false;
	}

	/* It looks like we're on schedule. */
	return true;
}
Exemplo n.º 16
0
/*
 * Main entry point for checkpointer process
 *
 * This is invoked from AuxiliaryProcessMain, which has already created the
 * basic execution environment, but not enabled signals yet.
 */
void
CheckpointerMain(void)
{
	sigjmp_buf	local_sigjmp_buf;
	MemoryContext checkpointer_context;

	CheckpointerShmem->checkpointer_pid = MyProcPid;

	/*
	 * If possible, make this process a group leader, so that the postmaster
	 * can signal any child processes too.	(checkpointer probably never has
	 * any child processes, but for consistency we make all postmaster child
	 * processes do this.)
	 */
#ifdef HAVE_SETSID
	if (setsid() < 0)
		elog(FATAL, "setsid() failed: %m");
#endif

	/*
	 * Properly accept or ignore signals the postmaster might send us
	 *
	 * Note: we deliberately ignore SIGTERM, because during a standard Unix
	 * system shutdown cycle, init will SIGTERM all processes at once.	We
	 * want to wait for the backends to exit, whereupon the postmaster will
	 * tell us it's okay to shut down (via SIGUSR2).
	 */
	pqsignal(SIGHUP, ChkptSigHupHandler);		/* set flag to read config
												 * file */
	pqsignal(SIGINT, ReqCheckpointHandler);		/* request checkpoint */
	pqsignal(SIGTERM, SIG_IGN); /* ignore SIGTERM */
	pqsignal(SIGQUIT, chkpt_quickdie);	/* hard crash time */
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, chkpt_sigusr1_handler);
	pqsignal(SIGUSR2, ReqShutdownHandler);		/* request shutdown */

	/*
	 * Reset some signals that are accepted by postmaster but not here
	 */
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);

	/* We allow SIGQUIT (quickdie) at all times */
	sigdelset(&BlockSig, SIGQUIT);

	/*
	 * Initialize so that first time-driven event happens at the correct time.
	 */
	last_checkpoint_time = last_xlog_switch_time = (pg_time_t) time(NULL);

	/*
	 * Create a resource owner to keep track of our resources (currently only
	 * buffer pins).
	 */
	CurrentResourceOwner = ResourceOwnerCreate(NULL, "Checkpointer");

	/*
	 * Create a memory context that we will do all our work in.  We do this so
	 * that we can reset the context during error recovery and thereby avoid
	 * possible memory leaks.  Formerly this code just ran in
	 * TopMemoryContext, but resetting that would be a really bad idea.
	 */
	checkpointer_context = AllocSetContextCreate(TopMemoryContext,
												 "Checkpointer",
												 ALLOCSET_DEFAULT_MINSIZE,
												 ALLOCSET_DEFAULT_INITSIZE,
												 ALLOCSET_DEFAULT_MAXSIZE);
	MemoryContextSwitchTo(checkpointer_context);

	/*
	 * If an exception is encountered, processing resumes here.
	 *
	 * See notes in postgres.c about the design of this coding.
	 */
	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
	{
		/* Since not using PG_TRY, must reset error stack by hand */
		error_context_stack = NULL;

		/* Prevent interrupts while cleaning up */
		HOLD_INTERRUPTS();

		/* Report the error to the server log */
		EmitErrorReport();

		/*
		 * These operations are really just a minimal subset of
		 * AbortTransaction().	We don't have very many resources to worry
		 * about in checkpointer, but we do have LWLocks, buffers, and temp
		 * files.
		 */
		LWLockReleaseAll();
		AbortBufferIO();
		UnlockBuffers();
		/* buffer pins are released here: */
		ResourceOwnerRelease(CurrentResourceOwner,
							 RESOURCE_RELEASE_BEFORE_LOCKS,
							 false, true);
		/* we needn't bother with the other ResourceOwnerRelease phases */
		AtEOXact_Buffers(false);
		AtEOXact_Files();
		AtEOXact_HashTables(false);

		/* Warn any waiting backends that the checkpoint failed. */
		if (ckpt_active)
		{
			/* use volatile pointer to prevent code rearrangement */
			volatile CheckpointerShmemStruct *cps = CheckpointerShmem;

			SpinLockAcquire(&cps->ckpt_lck);
			cps->ckpt_failed++;
			cps->ckpt_done = cps->ckpt_started;
			SpinLockRelease(&cps->ckpt_lck);

			ckpt_active = false;
		}

		/*
		 * Now return to normal top-level context and clear ErrorContext for
		 * next time.
		 */
		MemoryContextSwitchTo(checkpointer_context);
		FlushErrorState();

		/* Flush any leaked data in the top-level context */
		MemoryContextResetAndDeleteChildren(checkpointer_context);

		/* Now we can allow interrupts again */
		RESUME_INTERRUPTS();

		/*
		 * Sleep at least 1 second after any error.  A write error is likely
		 * to be repeated, and we don't want to be filling the error logs as
		 * fast as we can.
		 */
		pg_usleep(1000000L);

		/*
		 * Close all open files after any error.  This is helpful on Windows,
		 * where holding deleted files open causes various strange errors.
		 * It's not clear we need it elsewhere, but shouldn't hurt.
		 */
		smgrcloseall();
	}

	/* We can now handle ereport(ERROR) */
	PG_exception_stack = &local_sigjmp_buf;

	/*
	 * Unblock signals (they were blocked when the postmaster forked us)
	 */
	PG_SETMASK(&UnBlockSig);

	/*
	 * Use the recovery target timeline ID during recovery
	 */
	if (RecoveryInProgress())
		ThisTimeLineID = GetRecoveryTargetTLI();

	/*
	 * Ensure all shared memory values are set correctly for the config. Doing
	 * this here ensures no race conditions from other concurrent updaters.
	 */
	UpdateSharedMemoryConfig();

	/*
	 * Advertise our latch that backends can use to wake us up while we're
	 * sleeping.
	 */
	ProcGlobal->checkpointerLatch = &MyProc->procLatch;

	/*
	 * Loop forever
	 */
	for (;;)
	{
		bool		do_checkpoint = false;
		int			flags = 0;
		pg_time_t	now;
		int			elapsed_secs;
		int			cur_timeout;
		int			rc;

		/* Clear any already-pending wakeups */
		ResetLatch(&MyProc->procLatch);

		/*
		 * Process any requests or signals received recently.
		 */
		AbsorbFsyncRequests();

		if (got_SIGHUP)
		{
			got_SIGHUP = false;
			ProcessConfigFile(PGC_SIGHUP);

			/*
			 * Checkpointer is the last process to shut down, so we ask it to
			 * hold the keys for a range of other tasks required most of which
			 * have nothing to do with checkpointing at all.
			 *
			 * For various reasons, some config values can change dynamically
			 * so the primary copy of them is held in shared memory to make
			 * sure all backends see the same value.  We make Checkpointer
			 * responsible for updating the shared memory copy if the
			 * parameter setting changes because of SIGHUP.
			 */
			UpdateSharedMemoryConfig();
		}
		if (checkpoint_requested)
		{
			checkpoint_requested = false;
			do_checkpoint = true;
			BgWriterStats.m_requested_checkpoints++;
		}
		if (shutdown_requested)
		{
			/*
			 * From here on, elog(ERROR) should end with exit(1), not send
			 * control back to the sigsetjmp block above
			 */
			ExitOnAnyError = true;
			/* Close down the database */
			ShutdownXLOG(0, 0);
			/* Normal exit from the checkpointer is here */
			proc_exit(0);		/* done */
		}

		/*
		 * Force a checkpoint if too much time has elapsed since the last one.
		 * Note that we count a timed checkpoint in stats only when this
		 * occurs without an external request, but we set the CAUSE_TIME flag
		 * bit even if there is also an external request.
		 */
		now = (pg_time_t) time(NULL);
		elapsed_secs = now - last_checkpoint_time;
		if (elapsed_secs >= CheckPointTimeout)
		{
			if (!do_checkpoint)
				BgWriterStats.m_timed_checkpoints++;
			do_checkpoint = true;
			flags |= CHECKPOINT_CAUSE_TIME;
		}

		/*
		 * Do a checkpoint if requested.
		 */
		if (do_checkpoint)
		{
			bool		ckpt_performed = false;
			bool		do_restartpoint;

			/* use volatile pointer to prevent code rearrangement */
			volatile CheckpointerShmemStruct *cps = CheckpointerShmem;

			/*
			 * Check if we should perform a checkpoint or a restartpoint. As a
			 * side-effect, RecoveryInProgress() initializes TimeLineID if
			 * it's not set yet.
			 */
			do_restartpoint = RecoveryInProgress();

			/*
			 * Atomically fetch the request flags to figure out what kind of a
			 * checkpoint we should perform, and increase the started-counter
			 * to acknowledge that we've started a new checkpoint.
			 */
			SpinLockAcquire(&cps->ckpt_lck);
			flags |= cps->ckpt_flags;
			cps->ckpt_flags = 0;
			cps->ckpt_started++;
			SpinLockRelease(&cps->ckpt_lck);

			/*
			 * The end-of-recovery checkpoint is a real checkpoint that's
			 * performed while we're still in recovery.
			 */
			if (flags & CHECKPOINT_END_OF_RECOVERY)
				do_restartpoint = false;

			/*
			 * We will warn if (a) too soon since last checkpoint (whatever
			 * caused it) and (b) somebody set the CHECKPOINT_CAUSE_XLOG flag
			 * since the last checkpoint start.  Note in particular that this
			 * implementation will not generate warnings caused by
			 * CheckPointTimeout < CheckPointWarning.
			 */
			if (!do_restartpoint &&
				(flags & CHECKPOINT_CAUSE_XLOG) &&
				elapsed_secs < CheckPointWarning)
				ereport(LOG,
						(errmsg_plural("checkpoints are occurring too frequently (%d second apart)",
				"checkpoints are occurring too frequently (%d seconds apart)",
									   elapsed_secs,
									   elapsed_secs),
						 errhint("Consider increasing the configuration parameter \"checkpoint_segments\".")));

			/*
			 * Initialize checkpointer-private variables used during
			 * checkpoint
			 */
			ckpt_active = true;
			if (!do_restartpoint)
				ckpt_start_recptr = GetInsertRecPtr();
			ckpt_start_time = now;
			ckpt_cached_elapsed = 0;

			/*
			 * Do the checkpoint.
			 */
			if (!do_restartpoint)
			{
				CreateCheckPoint(flags);
				ckpt_performed = true;
			}
			else
				ckpt_performed = CreateRestartPoint(flags);

			/*
			 * After any checkpoint, close all smgr files.	This is so we
			 * won't hang onto smgr references to deleted files indefinitely.
			 */
			smgrcloseall();

			/*
			 * Indicate checkpoint completion to any waiting backends.
			 */
			SpinLockAcquire(&cps->ckpt_lck);
			cps->ckpt_done = cps->ckpt_started;
			SpinLockRelease(&cps->ckpt_lck);

			if (ckpt_performed)
			{
				/*
				 * Note we record the checkpoint start time not end time as
				 * last_checkpoint_time.  This is so that time-driven
				 * checkpoints happen at a predictable spacing.
				 */
				last_checkpoint_time = now;
			}
			else
			{
				/*
				 * We were not able to perform the restartpoint (checkpoints
				 * throw an ERROR in case of error).  Most likely because we
				 * have not received any new checkpoint WAL records since the
				 * last restartpoint. Try again in 15 s.
				 */
				last_checkpoint_time = now - CheckPointTimeout + 15;
			}

			ckpt_active = false;
		}

		/* Check for archive_timeout and switch xlog files if necessary. */
		CheckArchiveTimeout();

		/*
		 * Send off activity statistics to the stats collector.  (The reason
		 * why we re-use bgwriter-related code for this is that the bgwriter
		 * and checkpointer used to be just one process.  It's probably not
		 * worth the trouble to split the stats support into two independent
		 * stats message types.)
		 */
		pgstat_send_bgwriter();

		/*
		 * Sleep until we are signaled or it's time for another checkpoint or
		 * xlog file switch.
		 */
		now = (pg_time_t) time(NULL);
		elapsed_secs = now - last_checkpoint_time;
		if (elapsed_secs >= CheckPointTimeout)
			continue;			/* no sleep for us ... */
		cur_timeout = CheckPointTimeout - elapsed_secs;
		if (XLogArchiveTimeout > 0 && !RecoveryInProgress())
		{
			elapsed_secs = now - last_xlog_switch_time;
			if (elapsed_secs >= XLogArchiveTimeout)
				continue;		/* no sleep for us ... */
			cur_timeout = Min(cur_timeout, XLogArchiveTimeout - elapsed_secs);
		}

		rc = WaitLatch(&MyProc->procLatch,
					   WL_LATCH_SET | WL_TIMEOUT | WL_POSTMASTER_DEATH,
					   cur_timeout * 1000L /* convert to ms */ );

		/*
		 * Emergency bailout if postmaster has died.  This is to avoid the
		 * necessity for manual cleanup of all postmaster children.
		 */
		if (rc & WL_POSTMASTER_DEATH)
			exit(1);
	}
}
Exemplo n.º 17
0
/*
 * Optionally prune and repair fragmentation in the specified page.
 *
 * This is an opportunistic function.  It will perform housekeeping
 * only if the page heuristically looks like a candidate for pruning and we
 * can acquire buffer cleanup lock without blocking.
 *
 * Note: this is called quite often.  It's important that it fall out quickly
 * if there's not any use in pruning.
 *
 * Caller must have pin on the buffer, and must *not* have a lock on it.
 *
 * OldestXmin is the cutoff XID used to distinguish whether tuples are DEAD
 * or RECENTLY_DEAD (see HeapTupleSatisfiesVacuum).
 */
void
heap_page_prune_opt(Relation relation, Buffer buffer, TransactionId OldestXmin)
{
	Page		page = BufferGetPage(buffer);
	Size		minfree;

	/*
	 * Let's see if we really need pruning.
	 *
	 * Forget it if page is not hinted to contain something prunable that's
	 * older than OldestXmin.
	 */
	if (!PageIsPrunable(page, OldestXmin))
		return;

	/*
	 * We can't write WAL in recovery mode, so there's no point trying to
	 * clean the page. The master will likely issue a cleaning WAL record soon
	 * anyway, so this is no particular loss.
	 */
	if (RecoveryInProgress())
		return;

	/*
	 * We prune when a previous UPDATE failed to find enough space on the page
	 * for a new tuple version, or when free space falls below the relation's
	 * fill-factor target (but not less than 10%).
	 *
	 * Checking free space here is questionable since we aren't holding any
	 * lock on the buffer; in the worst case we could get a bogus answer. It's
	 * unlikely to be *seriously* wrong, though, since reading either pd_lower
	 * or pd_upper is probably atomic.	Avoiding taking a lock seems more
	 * important than sometimes getting a wrong answer in what is after all
	 * just a heuristic estimate.
	 */
	minfree = RelationGetTargetPageFreeSpace(relation,
											 HEAP_DEFAULT_FILLFACTOR);
	minfree = Max(minfree, BLCKSZ / 10);

	if (PageIsFull(page) || PageGetHeapFreeSpace(page) < minfree)
	{
		/* OK, try to get exclusive buffer lock */
		if (!ConditionalLockBufferForCleanup(buffer))
			return;

		/*
		 * Now that we have buffer lock, get accurate information about the
		 * page's free space, and recheck the heuristic about whether to
		 * prune. (We needn't recheck PageIsPrunable, since no one else could
		 * have pruned while we hold pin.)
		 */
		if (PageIsFull(page) || PageGetHeapFreeSpace(page) < minfree)
		{
			TransactionId ignore = InvalidTransactionId;		/* return value not
																 * needed */

			/* OK to prune */
			(void) heap_page_prune(relation, buffer, OldestXmin, true, &ignore);
		}

		/* And release buffer lock */
		LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
	}
}
Exemplo n.º 18
0
Arquivo: proc.c Projeto: botp/postgres
/*
 * ProcSleep -- put a process to sleep on the specified lock
 *
 * Caller must have set MyProc->heldLocks to reflect locks already held
 * on the lockable object by this process (under all XIDs).
 *
 * The lock table's partition lock must be held at entry, and will be held
 * at exit.
 *
 * Result: STATUS_OK if we acquired the lock, STATUS_ERROR if not (deadlock).
 *
 * ASSUME: that no one will fiddle with the queue until after
 *		we release the partition lock.
 *
 * NOTES: The process queue is now a priority queue for locking.
 *
 * P() on the semaphore should put us to sleep.  The process
 * semaphore is normally zero, so when we try to acquire it, we sleep.
 */
int
ProcSleep(LOCALLOCK *locallock, LockMethod lockMethodTable)
{
	LOCKMODE	lockmode = locallock->tag.mode;
	LOCK	   *lock = locallock->lock;
	PROCLOCK   *proclock = locallock->proclock;
	uint32		hashcode = locallock->hashcode;
	LWLockId	partitionLock = LockHashPartitionLock(hashcode);
	PROC_QUEUE *waitQueue = &(lock->waitProcs);
	LOCKMASK	myHeldLocks = MyProc->heldLocks;
	bool		early_deadlock = false;
	bool		allow_autovacuum_cancel = true;
	int			myWaitStatus;
	PGPROC	   *proc;
	int			i;

	/*
	 * Determine where to add myself in the wait queue.
	 *
	 * Normally I should go at the end of the queue.  However, if I already
	 * hold locks that conflict with the request of any previous waiter, put
	 * myself in the queue just in front of the first such waiter. This is not
	 * a necessary step, since deadlock detection would move me to before that
	 * waiter anyway; but it's relatively cheap to detect such a conflict
	 * immediately, and avoid delaying till deadlock timeout.
	 *
	 * Special case: if I find I should go in front of some waiter, check to
	 * see if I conflict with already-held locks or the requests before that
	 * waiter.	If not, then just grant myself the requested lock immediately.
	 * This is the same as the test for immediate grant in LockAcquire, except
	 * we are only considering the part of the wait queue before my insertion
	 * point.
	 */
	if (myHeldLocks != 0)
	{
		LOCKMASK	aheadRequests = 0;

		proc = (PGPROC *) waitQueue->links.next;
		for (i = 0; i < waitQueue->size; i++)
		{
			/* Must he wait for me? */
			if (lockMethodTable->conflictTab[proc->waitLockMode] & myHeldLocks)
			{
				/* Must I wait for him ? */
				if (lockMethodTable->conflictTab[lockmode] & proc->heldLocks)
				{
					/*
					 * Yes, so we have a deadlock.	Easiest way to clean up
					 * correctly is to call RemoveFromWaitQueue(), but we
					 * can't do that until we are *on* the wait queue. So, set
					 * a flag to check below, and break out of loop.  Also,
					 * record deadlock info for later message.
					 */
					RememberSimpleDeadLock(MyProc, lockmode, lock, proc);
					early_deadlock = true;
					break;
				}
				/* I must go before this waiter.  Check special case. */
				if ((lockMethodTable->conflictTab[lockmode] & aheadRequests) == 0 &&
					LockCheckConflicts(lockMethodTable,
									   lockmode,
									   lock,
									   proclock,
									   MyProc) == STATUS_OK)
				{
					/* Skip the wait and just grant myself the lock. */
					GrantLock(lock, proclock, lockmode);
					GrantAwaitedLock();
					return STATUS_OK;
				}
				/* Break out of loop to put myself before him */
				break;
			}
			/* Nope, so advance to next waiter */
			aheadRequests |= LOCKBIT_ON(proc->waitLockMode);
			proc = (PGPROC *) proc->links.next;
		}

		/*
		 * If we fall out of loop normally, proc points to waitQueue head, so
		 * we will insert at tail of queue as desired.
		 */
	}
	else
	{
		/* I hold no locks, so I can't push in front of anyone. */
		proc = (PGPROC *) &(waitQueue->links);
	}

	/*
	 * Insert self into queue, ahead of the given proc (or at tail of queue).
	 */
	SHMQueueInsertBefore(&(proc->links), &(MyProc->links));
	waitQueue->size++;

	lock->waitMask |= LOCKBIT_ON(lockmode);

	/* Set up wait information in PGPROC object, too */
	MyProc->waitLock = lock;
	MyProc->waitProcLock = proclock;
	MyProc->waitLockMode = lockmode;

	MyProc->waitStatus = STATUS_WAITING;

	/*
	 * If we detected deadlock, give up without waiting.  This must agree with
	 * CheckDeadLock's recovery code, except that we shouldn't release the
	 * semaphore since we haven't tried to lock it yet.
	 */
	if (early_deadlock)
	{
		RemoveFromWaitQueue(MyProc, hashcode);
		return STATUS_ERROR;
	}

	/* mark that we are waiting for a lock */
	lockAwaited = locallock;

	/*
	 * Release the lock table's partition lock.
	 *
	 * NOTE: this may also cause us to exit critical-section state, possibly
	 * allowing a cancel/die interrupt to be accepted. This is OK because we
	 * have recorded the fact that we are waiting for a lock, and so
	 * LockErrorCleanup will clean up if cancel/die happens.
	 */
	LWLockRelease(partitionLock);

	/*
	 * Also, now that we will successfully clean up after an ereport, it's
	 * safe to check to see if there's a buffer pin deadlock against the
	 * Startup process.  Of course, that's only necessary if we're doing Hot
	 * Standby and are not the Startup process ourselves.
	 */
	if (RecoveryInProgress() && !InRecovery)
		CheckRecoveryConflictDeadlock();

	/* Reset deadlock_state before enabling the timeout handler */
	deadlock_state = DS_NOT_YET_CHECKED;

	/*
	 * Set timer so we can wake up after awhile and check for a deadlock. If a
	 * deadlock is detected, the handler releases the process's semaphore and
	 * sets MyProc->waitStatus = STATUS_ERROR, allowing us to know that we
	 * must report failure rather than success.
	 *
	 * By delaying the check until we've waited for a bit, we can avoid
	 * running the rather expensive deadlock-check code in most cases.
	 */
	enable_timeout_after(DEADLOCK_TIMEOUT, DeadlockTimeout);

	/*
	 * If someone wakes us between LWLockRelease and PGSemaphoreLock,
	 * PGSemaphoreLock will not block.	The wakeup is "saved" by the semaphore
	 * implementation.	While this is normally good, there are cases where a
	 * saved wakeup might be leftover from a previous operation (for example,
	 * we aborted ProcWaitForSignal just before someone did ProcSendSignal).
	 * So, loop to wait again if the waitStatus shows we haven't been granted
	 * nor denied the lock yet.
	 *
	 * We pass interruptOK = true, which eliminates a window in which
	 * cancel/die interrupts would be held off undesirably.  This is a promise
	 * that we don't mind losing control to a cancel/die interrupt here.  We
	 * don't, because we have no shared-state-change work to do after being
	 * granted the lock (the grantor did it all).  We do have to worry about
	 * canceling the deadlock timeout and updating the locallock table, but if
	 * we lose control to an error, LockErrorCleanup will fix that up.
	 */
	do
	{
		PGSemaphoreLock(&MyProc->sem, true);

		/*
		 * waitStatus could change from STATUS_WAITING to something else
		 * asynchronously.	Read it just once per loop to prevent surprising
		 * behavior (such as missing log messages).
		 */
		myWaitStatus = MyProc->waitStatus;

		/*
		 * If we are not deadlocked, but are waiting on an autovacuum-induced
		 * task, send a signal to interrupt it.
		 */
		if (deadlock_state == DS_BLOCKED_BY_AUTOVACUUM && allow_autovacuum_cancel)
		{
			PGPROC	   *autovac = GetBlockingAutoVacuumPgproc();
			PGXACT	   *autovac_pgxact = &ProcGlobal->allPgXact[autovac->pgprocno];

			LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);

			/*
			 * Only do it if the worker is not working to protect against Xid
			 * wraparound.
			 */
			if ((autovac != NULL) &&
				(autovac_pgxact->vacuumFlags & PROC_IS_AUTOVACUUM) &&
				!(autovac_pgxact->vacuumFlags & PROC_VACUUM_FOR_WRAPAROUND))
			{
				int			pid = autovac->pid;
				StringInfoData locktagbuf;
				StringInfoData logbuf;		/* errdetail for server log */

				initStringInfo(&locktagbuf);
				initStringInfo(&logbuf);
				DescribeLockTag(&locktagbuf, &lock->tag);
				appendStringInfo(&logbuf,
					  _("Process %d waits for %s on %s."),
						 MyProcPid,
						 GetLockmodeName(lock->tag.locktag_lockmethodid,
										 lockmode),
						 locktagbuf.data);

				/* release lock as quickly as possible */
				LWLockRelease(ProcArrayLock);

				ereport(LOG,
						(errmsg("sending cancel to blocking autovacuum PID %d",
							pid),
						 errdetail_log("%s", logbuf.data)));

				pfree(logbuf.data);
				pfree(locktagbuf.data);

				/* send the autovacuum worker Back to Old Kent Road */
				if (kill(pid, SIGINT) < 0)
				{
					/* Just a warning to allow multiple callers */
					ereport(WARNING,
							(errmsg("could not send signal to process %d: %m",
									pid)));
				}
			}
			else
				LWLockRelease(ProcArrayLock);

			/* prevent signal from being resent more than once */
			allow_autovacuum_cancel = false;
		}

		/*
		 * If awoken after the deadlock check interrupt has run, and
		 * log_lock_waits is on, then report about the wait.
		 */
		if (log_lock_waits && deadlock_state != DS_NOT_YET_CHECKED)
		{
			StringInfoData buf;
			const char *modename;
			long		secs;
			int			usecs;
			long		msecs;

			initStringInfo(&buf);
			DescribeLockTag(&buf, &locallock->tag.lock);
			modename = GetLockmodeName(locallock->tag.lock.locktag_lockmethodid,
									   lockmode);
			TimestampDifference(get_timeout_start_time(DEADLOCK_TIMEOUT),
								GetCurrentTimestamp(),
								&secs, &usecs);
			msecs = secs * 1000 + usecs / 1000;
			usecs = usecs % 1000;

			if (deadlock_state == DS_SOFT_DEADLOCK)
				ereport(LOG,
						(errmsg("process %d avoided deadlock for %s on %s by rearranging queue order after %ld.%03d ms",
							  MyProcPid, modename, buf.data, msecs, usecs)));
			else if (deadlock_state == DS_HARD_DEADLOCK)
			{
				/*
				 * This message is a bit redundant with the error that will be
				 * reported subsequently, but in some cases the error report
				 * might not make it to the log (eg, if it's caught by an
				 * exception handler), and we want to ensure all long-wait
				 * events get logged.
				 */
				ereport(LOG,
						(errmsg("process %d detected deadlock while waiting for %s on %s after %ld.%03d ms",
							  MyProcPid, modename, buf.data, msecs, usecs)));
			}

			if (myWaitStatus == STATUS_WAITING)
				ereport(LOG,
						(errmsg("process %d still waiting for %s on %s after %ld.%03d ms",
							  MyProcPid, modename, buf.data, msecs, usecs)));
			else if (myWaitStatus == STATUS_OK)
				ereport(LOG,
					(errmsg("process %d acquired %s on %s after %ld.%03d ms",
							MyProcPid, modename, buf.data, msecs, usecs)));
			else
			{
				Assert(myWaitStatus == STATUS_ERROR);

				/*
				 * Currently, the deadlock checker always kicks its own
				 * process, which means that we'll only see STATUS_ERROR when
				 * deadlock_state == DS_HARD_DEADLOCK, and there's no need to
				 * print redundant messages.  But for completeness and
				 * future-proofing, print a message if it looks like someone
				 * else kicked us off the lock.
				 */
				if (deadlock_state != DS_HARD_DEADLOCK)
					ereport(LOG,
							(errmsg("process %d failed to acquire %s on %s after %ld.%03d ms",
							  MyProcPid, modename, buf.data, msecs, usecs)));
			}

			/*
			 * At this point we might still need to wait for the lock. Reset
			 * state so we don't print the above messages again.
			 */
			deadlock_state = DS_NO_DEADLOCK;

			pfree(buf.data);
		}
	} while (myWaitStatus == STATUS_WAITING);

	/*
	 * Disable the timer, if it's still running
	 */
	disable_timeout(DEADLOCK_TIMEOUT, false);

	/*
	 * Re-acquire the lock table's partition lock.  We have to do this to hold
	 * off cancel/die interrupts before we can mess with lockAwaited (else we
	 * might have a missed or duplicated locallock update).
	 */
	LWLockAcquire(partitionLock, LW_EXCLUSIVE);

	/*
	 * We no longer want LockErrorCleanup to do anything.
	 */
	lockAwaited = NULL;

	/*
	 * If we got the lock, be sure to remember it in the locallock table.
	 */
	if (MyProc->waitStatus == STATUS_OK)
		GrantAwaitedLock();

	/*
	 * We don't have to do anything else, because the awaker did all the
	 * necessary update of the lock table and MyProc.
	 */
	return MyProc->waitStatus;
}
Exemplo n.º 19
0
/*
 * IsCheckpointOnSchedule -- are we on schedule to finish this checkpoint
 *		 (or restartpoint) in time?
 *
 * Compares the current progress against the time/segments elapsed since last
 * checkpoint, and returns true if the progress we've made this far is greater
 * than the elapsed time/segments.
 */
static bool
IsCheckpointOnSchedule(double progress)
{
	XLogRecPtr	recptr;
	struct timeval now;
	double		elapsed_xlogs,
				elapsed_time;

	Assert(ckpt_active);

	/* Scale progress according to checkpoint_completion_target. */
	progress *= CheckPointCompletionTarget;

	/*
	 * Check against the cached value first. Only do the more expensive
	 * calculations once we reach the target previously calculated. Since
	 * neither time or WAL insert pointer moves backwards, a freshly
	 * calculated value can only be greater than or equal to the cached value.
	 */
	if (progress < ckpt_cached_elapsed)
		return false;

	/*
	 * Check progress against WAL segments written and CheckPointSegments.
	 *
	 * We compare the current WAL insert location against the location
	 * computed before calling CreateCheckPoint. The code in XLogInsert that
	 * actually triggers a checkpoint when CheckPointSegments is exceeded
	 * compares against RedoRecptr, so this is not completely accurate.
	 * However, it's good enough for our purposes, we're only calculating an
	 * estimate anyway.
	 *
	 * During recovery, we compare last replayed WAL record's location with
	 * the location computed before calling CreateRestartPoint. That maintains
	 * the same pacing as we have during checkpoints in normal operation, but
	 * we might exceed max_wal_size by a fair amount. That's because there can
	 * be a large gap between a checkpoint's redo-pointer and the checkpoint
	 * record itself, and we only start the restartpoint after we've seen the
	 * checkpoint record. (The gap is typically up to CheckPointSegments *
	 * checkpoint_completion_target where checkpoint_completion_target is the
	 * value that was in effect when the WAL was generated).
	 */
	if (RecoveryInProgress())
		recptr = GetXLogReplayRecPtr(NULL);
	else
		recptr = GetInsertRecPtr();
	elapsed_xlogs = (((double) (recptr - ckpt_start_recptr)) / XLogSegSize) / CheckPointSegments;

	if (progress < elapsed_xlogs)
	{
		ckpt_cached_elapsed = elapsed_xlogs;
		return false;
	}

	/*
	 * Check progress against time elapsed and checkpoint_timeout.
	 */
	gettimeofday(&now, NULL);
	elapsed_time = ((double) ((pg_time_t) now.tv_sec - ckpt_start_time) +
					now.tv_usec / 1000000.0) / CheckPointTimeout;

	if (progress < elapsed_time)
	{
		ckpt_cached_elapsed = elapsed_time;
		return false;
	}

	/* It looks like we're on schedule. */
	return true;
}