Exemplo n.º 1
0
/** checks the consistency of the origbranch constraints in the problem */
void GCGconsOrigbranchCheckConsistency(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
#ifdef CHECKCONSISTENCY

   SCIP_CONSHDLR*     conshdlr;

#ifndef NDEBUG
   SCIP_CONS** conss;
   int nconss;
   int i;
   SCIP_CONSDATA* consdata;
#endif

   assert(scip != NULL);
   conshdlr = SCIPfindConshdlr(scip, CONSHDLR_NAME);
   if( conshdlr == NULL )
   {
      SCIPerrorMessage("origbranch constraint handler not found\n");
      return;
   }
#ifndef NDEBUG
   conss = SCIPconshdlrGetConss(conshdlr);
   nconss = SCIPconshdlrGetNConss(conshdlr);

   for( i = 0; i < nconss; i++ )
   {
      consdata = SCIPconsGetData(conss[i]);
      assert(consdata != NULL);
      assert(consdata->node != NULL);
      assert((consdata->parentcons == NULL) == (SCIPnodeGetDepth(consdata->node) == 0));
      assert(consdata->parentcons == NULL || SCIPconsGetData(consdata->parentcons)->child1cons == conss[i]
         || SCIPconsGetData(consdata->parentcons)->child2cons == conss[i]
         || ( SCIPinProbing(scip) && SCIPconsGetData(consdata->parentcons)->probingtmpcons == conss[i]));
      assert(consdata->child1cons == NULL || SCIPconsGetData(consdata->child1cons)->parentcons == conss[i]);
      assert(consdata->child2cons == NULL || SCIPconsGetData(consdata->child2cons)->parentcons == conss[i]);
      assert(consdata->probingtmpcons == NULL || SCIPinProbing(scip));
      assert(consdata->probingtmpcons == NULL || SCIPconsGetData(consdata->probingtmpcons)->parentcons == conss[i]);
      assert(consdata->mastercons == NULL ||
         GCGconsMasterbranchGetOrigcons(consdata->mastercons) == conss[i]);
   }
#endif
#endif
}
Exemplo n.º 2
0
/** writes problem data to file with given reader or returns SCIP_DIDNOTRUN */
SCIP_RETCODE SCIPreaderWrite(
   SCIP_READER*          reader,             /**< reader */
   SCIP_PROB*            prob,               /**< problem data */
   SCIP_SET*             set,                /**< global SCIP settings */
   FILE*                 file,               /**< output file (or NULL for standard output) */
   const char*           extension,          /**< file format */
   SCIP_Bool             genericnames,       /**< using generic variable and constraint names? */
   SCIP_RESULT*          result              /**< pointer to store the result of the callback method */
   )
{
   SCIP_RETCODE retcode;

   assert(reader != NULL);
   assert(set != NULL);
   assert(extension != NULL);
   assert(result != NULL);

   /* check, if reader is applicable on the given file */
   if( readerIsApplicable(reader, extension) && reader->readerwrite != NULL )
   {
      SCIP_VAR** vars;
      int nvars;
      SCIP_VAR** fixedvars;
      int nfixedvars;
      SCIP_CONS** conss;
      int nconss;
      int i;

      SCIP_CONS* cons;

      char* name;
      const char* consname;
      const char** varnames;
      const char** fixedvarnames;
      const char** consnames;

      varnames = NULL;
      fixedvarnames = NULL; 
      consnames = NULL;

      vars = prob->vars;
      nvars = prob->nvars;
      fixedvars = prob->fixedvars;
      nfixedvars = prob->nfixedvars;

      /* case of the transformed problem, we want to write currently valid problem */
      if( prob->transformed )
      {
         SCIP_CONSHDLR** conshdlrs;
         int nconshdlrs;

         conshdlrs = set->conshdlrs;
         nconshdlrs = set->nconshdlrs;

         /* collect number of constraints which have to be enforced; these are the constraints which currency (locally)
          * enabled; these also includes the local constraints
          */
         nconss = 0;
         for( i = 0; i < nconshdlrs; ++i )
         {
            /* check if all constraints of the constraint handler should be written */
            if( set->write_allconss )
               nconss += SCIPconshdlrGetNConss(conshdlrs[i]);
            else
               nconss += SCIPconshdlrGetNEnfoConss(conshdlrs[i]);
         }

         SCIPdebugMessage("Writing %d constraints.\n", nconss);


         SCIP_ALLOC( BMSallocMemoryArray(&conss, nconss) );

         /* copy the constraints */
         nconss = 0;
         for( i = 0; i < nconshdlrs; ++i )
         {
            SCIP_CONS** conshdlrconss;
            int nconshdlrconss;
            int c;

            /* check if all constraints of the constraint handler should be written */
            if( set->write_allconss )
            {
               conshdlrconss = SCIPconshdlrGetConss(conshdlrs[i]);
               nconshdlrconss = SCIPconshdlrGetNConss(conshdlrs[i]);
            }
            else
            {
               conshdlrconss = SCIPconshdlrGetEnfoConss(conshdlrs[i]);
               nconshdlrconss = SCIPconshdlrGetNEnfoConss(conshdlrs[i]);
            }

            SCIPdebugMessage("Conshdlr <%s> has %d constraints to write from all in all %d constraints.\n", SCIPconshdlrGetName(conshdlrs[i]), nconshdlrconss, SCIPconshdlrGetNConss(conshdlrs[i]));

            for( c = 0; c < nconshdlrconss; ++c )
            {
               conss[nconss] = conshdlrconss[c];
               nconss++;
            }
         }
      }
      else
      {
         conss = prob->conss;
         nconss = prob->nconss;
      }

      if( genericnames )
      {
         SCIP_VAR* var;
         int size;

         /* save variable and constraint names and replace these names by generic names */

         /* allocate memory for saving the original variable and constraint names */
         SCIP_ALLOC( BMSallocMemoryArray(&varnames, nvars) );
         SCIP_ALLOC( BMSallocMemoryArray(&fixedvarnames, nfixedvars) );
         SCIP_ALLOC( BMSallocMemoryArray(&consnames, nconss) );

         /* compute length of the generic variable names:
          * - nvars + 1 to avoid log of zero
          * - +3 (zero at end + 'x' + 1 because we round down)
          * Example: 10 -> need 4 chars ("x10\0") 
          */
         size = (int) log10(nvars+1.0) + 3;

         for( i = 0; i < nvars; ++i )
         {
            var = vars[i];
            varnames[i] = SCIPvarGetName(var);

            SCIP_ALLOC( BMSallocMemoryArray(&name, size) );
            (void) SCIPsnprintf(name, size, "x%d", i + set->write_genoffset);
            SCIPvarSetNamePointer(var, name);
         }  

         /* compute length of the generic variable names */
         size = (int) log10(nfixedvars+1.0) + 3;

         for( i = 0; i < nfixedvars; ++i )
         {
            var = fixedvars[i];
            fixedvarnames[i] = SCIPvarGetName(var);

            SCIP_ALLOC( BMSallocMemoryArray(&name, size) );
            (void) SCIPsnprintf(name, size, "y%d", i);
            SCIPvarSetNamePointer(var, name);
         }

         /* compute length of the generic constraint names */
         size = (int) log10(nconss+1.0) + 3;

         for( i = 0; i < nconss; ++i )
         {
            cons = conss[i];
            consnames[i] = SCIPconsGetName(cons);

            SCIP_ALLOC( BMSallocMemoryArray(&name, size) );
            (void) SCIPsnprintf(name, size, "c%d", i);
            SCIPconsSetNamePointer(cons, name);
         }
      }

      /* call reader to write problem */
      retcode = reader->readerwrite(set->scip, reader, file, prob->name, prob->probdata, prob->transformed,
         prob->transformed ? SCIP_OBJSENSE_MINIMIZE : prob->objsense, prob->objscale, prob->objoffset,
         vars, nvars, prob->nbinvars, prob->nintvars, prob->nimplvars, prob->ncontvars, 
         fixedvars, nfixedvars, prob->startnvars, 
         conss, nconss, prob->maxnconss, prob->startnconss, genericnames, result);

      /* reset variable and constraint names to original names */
      if( genericnames )
      {  
         assert(varnames != NULL);
         assert(fixedvarnames != NULL);
         assert(consnames != NULL);

         for( i = 0; i < nvars; ++i )
            resetVarname(vars[i], varnames[i]);

         for( i = 0; i < nfixedvars; ++i )
            resetVarname(fixedvars[i], fixedvarnames[i]);

         for( i = 0; i < nconss; ++i )
         {
            cons = conss[i];

            /* get pointer to temporary generic name and free the memory */
            consname = SCIPconsGetName(cons);
            BMSfreeMemory(&consname);

            /* reset name */
            SCIPconsSetNamePointer(cons, consnames[i]);
         }

         /* free memory */
         BMSfreeMemoryArray(&varnames);
         BMSfreeMemoryArray(&fixedvarnames);
         BMSfreeMemoryArray(&consnames);
      }

      if( prob->transformed )
      {
         /* free memory */
         BMSfreeMemoryArray(&conss);
      }
   }
   else
   {
      *result = SCIP_DIDNOTRUN;
      retcode = SCIP_OKAY;
   }

   /* check for reader errors */
   if( retcode == SCIP_WRITEERROR )
      return retcode;

   SCIP_CALL( retcode );

   return SCIP_OKAY;
}
Exemplo n.º 3
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecIndicator)
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   int nfoundsols = 0;

   assert( heur != NULL );
   assert( scip != NULL );
   assert( result != NULL );

   *result = SCIP_DIDNOTRUN;

   if ( SCIPgetSubscipDepth(scip) > 0 )
      return SCIP_OKAY;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert( heurdata != NULL );

   /* call heuristic, if solution candidate is available */
   if ( heurdata->solcand != NULL )
   {
      assert( heurdata->nindconss > 0 );
      assert( heurdata->indconss != NULL );

      /* The heuristic will only be successful if there are no integral variables and no binary variables except the
       * indicator variables. */
      if ( SCIPgetNIntVars(scip) > 0 || heurdata->nindconss < SCIPgetNBinVars(scip) )
         return SCIP_OKAY;

      SCIP_CALL( trySolCandidate(scip, heur, heurdata, heurdata->nindconss, heurdata->indconss, heurdata->solcand, &nfoundsols) );

      if ( nfoundsols > 0 )
         *result = SCIP_FOUNDSOL;
      else
         *result = SCIP_DIDNOTFIND;

      /* free memory */
      SCIPfreeBlockMemoryArray(scip, &(heurdata->solcand), heurdata->nindconss);
      SCIPfreeBlockMemoryArray(scip, &(heurdata->indconss), heurdata->nindconss);
   }
   else
   {
      SCIP_CONS** indconss;
      SCIP_Bool* solcand;
      SCIP_SOL* bestsol;
      int nindconss;
      int i;

      if ( heurdata->indicatorconshdlr == NULL )
         return SCIP_OKAY;

      /* check whether a new best solution has been found */
      bestsol = SCIPgetBestSol(scip);
      if ( bestsol == heurdata->lastsol )
         return SCIP_OKAY;
      heurdata->lastsol = bestsol;

      /* avoid solutions produced by this heuristic */
      if ( SCIPsolGetHeur(bestsol) == heur )
         return SCIP_OKAY;

      /* The heuristic will only be successful if there are no integral variables and no binary variables except the
       * indicator variables. */
      if ( SCIPgetNIntVars(scip) > 0 || SCIPconshdlrGetNConss(heurdata->indicatorconshdlr) < SCIPgetNBinVars(scip) )
         return SCIP_OKAY;

      nindconss = SCIPconshdlrGetNConss(heurdata->indicatorconshdlr);
      if ( nindconss == 0 )
         return SCIP_OKAY;

      indconss = SCIPconshdlrGetConss(heurdata->indicatorconshdlr);
      assert( indconss != NULL );

      /* fill solutin candidate */
      SCIP_CALL( SCIPallocBufferArray(scip, &solcand, nindconss) );
      for (i = 0; i < nindconss; ++i)
      {
         SCIP_VAR* binvar;
         SCIP_Real val;

         solcand[i] = FALSE;
         if ( SCIPconsIsActive(indconss[i]) )
         {
            binvar = SCIPgetBinaryVarIndicator(indconss[i]);
            assert( binvar != NULL );

            val = SCIPgetSolVal(scip, bestsol, binvar);
            assert( SCIPisFeasIntegral(scip, val) );
            if ( val > 0.5 )
               solcand[i] = TRUE;
         }
      }

      SCIPdebugMessage("Trying to improve best solution of value %f.\n", SCIPgetSolOrigObj(scip, bestsol) );

      /* try one-opt heuristic */
      SCIP_CALL( tryOneOpt(scip, heur, heurdata, nindconss, indconss, solcand, &nfoundsols) );

      if ( nfoundsols > 0 )
         *result = SCIP_FOUNDSOL;
      else
         *result = SCIP_DIDNOTFIND;

      SCIPfreeBufferArray(scip, &solcand);
   }

   return SCIP_OKAY;
}
Exemplo n.º 4
0
/** add branching decisions constraints to the sub SCIP */
static
SCIP_RETCODE addBranchingDecisionConss(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP*                 subscip,            /**< pricing SCIP data structure */
   SCIP_VAR**            vars,               /**< variable array of the subscuip oder variables */
   SCIP_CONSHDLR*        conshdlr            /**< constraint handler for branching data */
   )
{
   SCIP_CONS** conss;
   SCIP_CONS* cons;
   int nconss;
   int id1;
   int id2;
   CONSTYPE type;

   SCIP_Real vbdcoef;
   SCIP_Real lhs;
   SCIP_Real rhs;

   int c;

   assert( scip != NULL );
   assert( subscip != NULL );
   assert( conshdlr != NULL );

   /* collect all branching decision constraints */
   conss = SCIPconshdlrGetConss(conshdlr);
   nconss = SCIPconshdlrGetNConss(conshdlr);

   /* loop over all branching decision constraints and apply the branching decision if the corresponding constraint is
    * active
    */
   for( c = 0; c < nconss; ++c )
   {
      cons = conss[c];

      /* ignore constraints which are not active since these are not laying on the current active path of the search
       * tree
       */
      if( !SCIPconsIsActive(cons) )
         continue;

      /* collect the two item ids and the branching type (SAME or DIFFER) on which the constraint branched */
      id1 = SCIPgetItemid1Samediff(scip, cons);
      id2 = SCIPgetItemid2Samediff(scip, cons);
      type = SCIPgetTypeSamediff(scip, cons);

      SCIPdebugMessage("create varbound for %s(%d,%d)\n", type == SAME ? "same" : "diff",
         SCIPprobdataGetIds(SCIPgetProbData(scip))[id1], SCIPprobdataGetIds(SCIPgetProbData(scip))[id2]);

      /* depending on the branching type select the correct left and right hand side for the linear constraint which
       * enforces this branching decision in the pricing problem MIP
       */
      if( type == SAME )
      {
         lhs = 0.0;
         rhs = 0.0;
         vbdcoef = -1.0;
      }
      else if( type == DIFFER )
      {
         lhs = -SCIPinfinity(scip);
         rhs = 1.0;
         vbdcoef = 1.0;
      }
      else
      {
         SCIPerrorMessage("unknow constraint type <%d>\n, type");
         return SCIP_INVALIDDATA;
      }

      /* add linear (in that case a variable bound) constraint to pricing MIP depending on the branching type:
       *
       * - branching type SAME:  x1 = x2 <=> x1 - x2 = 0 <=> 0 <= x1 - x2 <= 0
       *
       * - branching type DIFFER:  x1 - x2 <= 1 <=> -inf <= x1 - x2 <= 1
       *
       */
      SCIP_CALL( SCIPcreateConsBasicVarbound(subscip, &cons, SCIPconsGetName(conss[c]),
            vars[id1], vars[id2], vbdcoef, lhs, rhs) );
      
      SCIPdebug( SCIPprintCons(subscip, cons, NULL) );

      SCIP_CALL( SCIPaddCons(subscip, cons) );
      SCIP_CALL( SCIPreleaseCons(subscip, &cons) );
   }

   return SCIP_OKAY;
}
Exemplo n.º 5
0
/** LP solution separation method for disjunctive cuts */
static
SCIP_DECL_SEPAEXECLP(sepaExeclpDisjunctive)
{
   SCIP_SEPADATA* sepadata;
   SCIP_CONSHDLR* conshdlr;
   SCIP_DIGRAPH* conflictgraph;
   SCIP_ROW** rows;
   SCIP_COL** cols;
   SCIP_Real* cutcoefs = NULL;
   SCIP_Real* simplexcoefs1 = NULL;
   SCIP_Real* simplexcoefs2 = NULL;
   SCIP_Real* coef = NULL;
   SCIP_Real* binvrow = NULL;
   SCIP_Real* rowsmaxval = NULL;
   SCIP_Real* violationarray = NULL;
   int* fixings1 = NULL;
   int* fixings2 = NULL;
   int* basisind = NULL;
   int* basisrow = NULL;
   int* varrank = NULL;
   int* edgearray = NULL;
   int nedges;
   int ndisjcuts;
   int nrelevantedges;
   int nsos1vars;
   int nconss;
   int maxcuts;
   int ncalls;
   int depth;
   int ncols;
   int nrows;
   int ind;
   int j;
   int i;

   assert( sepa != NULL );
   assert( strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0 );
   assert( scip != NULL );
   assert( result != NULL );

   *result = SCIP_DIDNOTRUN;

   /* only generate disjunctive cuts if we are not close to terminating */
   if ( SCIPisStopped(scip) )
      return SCIP_OKAY;

   /* only generate disjunctive cuts if an optimal LP solution is at hand */
   if ( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only generate disjunctive cuts if the LP solution is basic */
   if ( ! SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* get LP data */
   SCIP_CALL( SCIPgetLPColsData(scip, &cols, &ncols) );
   SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );

   /* return if LP has no columns or no rows */
   if ( ncols == 0 || nrows == 0 )
      return SCIP_OKAY;

   assert( cols != NULL );
   assert( rows != NULL );

   /* get sepa data */
   sepadata = SCIPsepaGetData(sepa);
   assert( sepadata != NULL );

   /* get constraint handler */
   conshdlr = sepadata->conshdlr;
   if ( conshdlr == NULL )
      return SCIP_OKAY;

   /* get number of constraints */
   nconss = SCIPconshdlrGetNConss(conshdlr);
   if ( nconss == 0 )
      return SCIP_OKAY;

   /* check for maxdepth < depth, maxinvcutsroot = 0 and maxinvcuts = 0 */
   depth = SCIPgetDepth(scip);
   if ( ( sepadata->maxdepth >= 0 && sepadata->maxdepth < depth )
      || ( depth == 0 && sepadata->maxinvcutsroot == 0 )
      || ( depth > 0 && sepadata->maxinvcuts == 0 ) )
      return SCIP_OKAY;

   /* only call the cut separator a given number of times at each node */
   ncalls = SCIPsepaGetNCallsAtNode(sepa);
   if ( (depth == 0 && sepadata->maxroundsroot >= 0 && ncalls >= sepadata->maxroundsroot)
      || (depth > 0 && sepadata->maxrounds >= 0 && ncalls >= sepadata->maxrounds) )
      return SCIP_OKAY;

   /* get conflict graph and number of conflict graph edges (note that the digraph arcs were added in both directions) */
   conflictgraph = SCIPgetConflictgraphSOS1(conshdlr);
   nedges = (int)SCIPceil(scip, (SCIP_Real)SCIPdigraphGetNArcs(conflictgraph)/2);

   /* if too many conflict graph edges, the separator can be slow: delay it until no other cuts have been found */
   if ( sepadata->maxconfsdelay >= 0 && nedges >= sepadata->maxconfsdelay )
   {
      int ncutsfound;

      ncutsfound = SCIPgetNCutsFound(scip);
      if ( ncutsfound > sepadata->lastncutsfound || ! SCIPsepaWasLPDelayed(sepa) )
      {
         sepadata->lastncutsfound = ncutsfound;
         *result = SCIP_DELAYED;
         return SCIP_OKAY;
      }
   }

   /* check basis status */
   for (j = 0; j < ncols; ++j)
   {
      if ( SCIPcolGetBasisStatus(cols[j]) == SCIP_BASESTAT_ZERO )
         return SCIP_OKAY;
   }

   /* get number of SOS1 variables */
   nsos1vars = SCIPgetNSOS1Vars(conshdlr);

   /* allocate buffer arrays */
   SCIP_CALL( SCIPallocBufferArray(scip, &edgearray, nedges) );
   SCIP_CALL( SCIPallocBufferArray(scip, &fixings1, nedges) );
   SCIP_CALL( SCIPallocBufferArray(scip, &fixings2, nedges) );
   SCIP_CALL( SCIPallocBufferArray(scip, &violationarray, nedges) );

   /* get all violated conflicts {i, j} in the conflict graph and sort them based on the degree of a violation value */
   nrelevantedges = 0;
   for (j = 0; j < nsos1vars; ++j)
   {
      SCIP_VAR* var;

      var = SCIPnodeGetVarSOS1(conflictgraph, j);

      if ( SCIPvarIsActive(var) && ! SCIPisFeasZero(scip, SCIPcolGetPrimsol(SCIPvarGetCol(var))) && SCIPcolGetBasisStatus(SCIPvarGetCol(var)) == SCIP_BASESTAT_BASIC )
      {
         int* succ;
         int nsucc;

         /* get successors and number of successors */
         nsucc = SCIPdigraphGetNSuccessors(conflictgraph, j);
         succ = SCIPdigraphGetSuccessors(conflictgraph, j);

         for (i = 0; i < nsucc; ++i)
         {
            SCIP_VAR* varsucc;
            int succind;

            succind = succ[i];
            varsucc = SCIPnodeGetVarSOS1(conflictgraph, succind);
            if ( SCIPvarIsActive(varsucc) && succind < j && ! SCIPisFeasZero(scip, SCIPgetSolVal(scip, NULL, varsucc) ) &&
                 SCIPcolGetBasisStatus(SCIPvarGetCol(varsucc)) == SCIP_BASESTAT_BASIC )
            {
               fixings1[nrelevantedges] = j;
               fixings2[nrelevantedges] = succind;
               edgearray[nrelevantedges] = nrelevantedges;
               violationarray[nrelevantedges++] = SCIPgetSolVal(scip, NULL, var) * SCIPgetSolVal(scip, NULL, varsucc);
            }
         }
      }
   }

   /* sort violation score values */
   if ( nrelevantedges > 0)
      SCIPsortDownRealInt(violationarray, edgearray, nrelevantedges);
   else
   {
      SCIPfreeBufferArrayNull(scip, &violationarray);
      SCIPfreeBufferArrayNull(scip, &fixings2);
      SCIPfreeBufferArrayNull(scip, &fixings1);
      SCIPfreeBufferArrayNull(scip, &edgearray);

      return SCIP_OKAY;
   }
   SCIPfreeBufferArrayNull(scip, &violationarray);

   /* compute maximal number of cuts */
   if ( SCIPgetDepth(scip) == 0 )
      maxcuts = MIN(sepadata->maxinvcutsroot, nrelevantedges);
   else
      maxcuts = MIN(sepadata->maxinvcuts, nrelevantedges);
   assert( maxcuts > 0 );

   /* allocate buffer arrays */
   SCIP_CALL( SCIPallocBufferArray(scip, &varrank, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &rowsmaxval, nrows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &basisrow, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &binvrow, nrows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &coef, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &simplexcoefs1, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &simplexcoefs2, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &cutcoefs, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &basisind, nrows) );

   /* get basis indices */
   SCIP_CALL( SCIPgetLPBasisInd(scip, basisind) );

   /* create vector "basisrow" with basisrow[column of non-slack basis variable] = corresponding row of B^-1;
    * compute maximum absolute value of nonbasic row coefficients */
   for (j = 0; j < nrows; ++j)
   {
      SCIP_COL** rowcols;
      SCIP_Real* rowvals;
      SCIP_ROW* row;
      SCIP_Real val;
      SCIP_Real max = 0.0;
      int nnonz;

      /* fill basisrow vector */
      ind = basisind[j];
      if ( ind >= 0 )
         basisrow[ind] = j;

      /* compute maximum absolute value of nonbasic row coefficients */
      row = rows[j];
      assert( row != NULL );
      rowvals = SCIProwGetVals(row);
      nnonz = SCIProwGetNNonz(row);
      rowcols = SCIProwGetCols(row);

      for (i = 0; i < nnonz; ++i)
      {
         if ( SCIPcolGetBasisStatus(rowcols[i]) == SCIP_BASESTAT_LOWER  || SCIPcolGetBasisStatus(rowcols[i]) == SCIP_BASESTAT_UPPER )
         {
            val = REALABS(rowvals[i]);
            if ( SCIPisFeasGT(scip, val, max) )
               max = REALABS(val);
         }
      }

      /* handle slack variable coefficient and save maximum value */
      rowsmaxval[j] = MAX(max, 1.0);
   }

   /* initialize variable ranks with -1 */
   for (j = 0; j < ncols; ++j)
      varrank[j] = -1;

   /* free buffer array */
   SCIPfreeBufferArrayNull(scip, &basisind);

   /* for the most promising disjunctions: try to generate disjunctive cuts */
   ndisjcuts = 0;
   for (i = 0; i < maxcuts; ++i)
   {
      SCIP_Bool madeintegral;
      SCIP_Real cutlhs1;
      SCIP_Real cutlhs2;
      SCIP_Real bound1;
      SCIP_Real bound2;
      SCIP_ROW* row = NULL;
      SCIP_VAR* var;
      SCIP_COL* col;

      int nonbasicnumber;
      int cutrank = 0;
      int edgenumber;
      int rownnonz;

      edgenumber = edgearray[i];

      /* determine first simplex row */
      var = SCIPnodeGetVarSOS1(conflictgraph, fixings1[edgenumber]);
      col = SCIPvarGetCol(var);
      ind = SCIPcolGetLPPos(col);
      assert( ind >= 0 );
      assert( SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_BASIC );

      /* get the 'ind'th row of B^-1 and B^-1 \cdot A */
      SCIP_CALL( SCIPgetLPBInvRow(scip, basisrow[ind], binvrow, NULL, NULL) );
      SCIP_CALL( SCIPgetLPBInvARow(scip, basisrow[ind], binvrow, coef, NULL, NULL) );

      /* get the simplex-coefficients of the non-basic variables */
      SCIP_CALL( getSimplexCoefficients(scip, rows, nrows, cols, ncols, coef, binvrow, simplexcoefs1, &nonbasicnumber) );

      /* get rank of variable if not known already */
      if ( varrank[ind] < 0 )
         varrank[ind] = getVarRank(scip, binvrow, rowsmaxval, sepadata->maxweightrange, rows, nrows);
      cutrank = MAX(cutrank, varrank[ind]);

      /* get right hand side and bound of simplex talbeau row */
      cutlhs1 = SCIPcolGetPrimsol(col);
      if ( SCIPisFeasPositive(scip, cutlhs1) )
         bound1 = SCIPcolGetUb(col);
      else
         bound1 = SCIPcolGetLb(col);


      /* determine second simplex row */
      var = SCIPnodeGetVarSOS1(conflictgraph, fixings2[edgenumber]);
      col = SCIPvarGetCol(var);
      ind = SCIPcolGetLPPos(col);
      assert( ind >= 0 );
      assert( SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_BASIC );

      /* get the 'ind'th row of B^-1 and B^-1 \cdot A */
      SCIP_CALL( SCIPgetLPBInvRow(scip, basisrow[ind], binvrow, NULL, NULL) );
      SCIP_CALL( SCIPgetLPBInvARow(scip, basisrow[ind], binvrow, coef, NULL, NULL) );

      /* get the simplex-coefficients of the non-basic variables */
      SCIP_CALL( getSimplexCoefficients(scip, rows, nrows, cols, ncols, coef, binvrow, simplexcoefs2, &nonbasicnumber) );

      /* get rank of variable if not known already */
      if ( varrank[ind] < 0 )
         varrank[ind] = getVarRank(scip, binvrow, rowsmaxval, sepadata->maxweightrange, rows, nrows);
      cutrank = MAX(cutrank, varrank[ind]);

      /* get right hand side and bound of simplex talbeau row */
      cutlhs2 = SCIPcolGetPrimsol(col);
      if ( SCIPisFeasPositive(scip, cutlhs2) )
         bound2 = SCIPcolGetUb(col);
      else
         bound2 = SCIPcolGetLb(col);

      /* add coefficients to cut */
      SCIP_CALL( generateDisjCutSOS1(scip, sepa, rows, nrows, cols, ncols, ndisjcuts, TRUE, sepadata->strengthen, cutlhs1, cutlhs2, bound1, bound2, simplexcoefs1, simplexcoefs2, cutcoefs, &row, &madeintegral) );
      if ( row == NULL )
         continue;

      /* raise cutrank for present cut */
      ++cutrank;

      /* check if there are numerical evidences */
      if ( ( madeintegral && ( sepadata->maxrankintegral == -1 || cutrank <= sepadata->maxrankintegral ) )
         || ( ! madeintegral && ( sepadata->maxrank == -1 || cutrank <= sepadata->maxrank ) ) )
      {
         /* possibly add cut to LP if it is useful; in case the lhs of the cut is minus infinity (due to scaling) the cut is useless */
         rownnonz = SCIProwGetNNonz(row);
         if ( rownnonz > 0 && ! SCIPisInfinity(scip, -SCIProwGetLhs(row)) && ! SCIProwIsInLP(row) && SCIPisCutEfficacious(scip, NULL, row) )
         {
            SCIP_Bool infeasible;

            /* set cut rank */
            SCIProwChgRank(row, cutrank);

            /* add cut */
            SCIP_CALL( SCIPaddCut(scip, NULL, row, FALSE, &infeasible) );
            SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) );
            if ( infeasible )
            {
               *result = SCIP_CUTOFF;
               break;
            }
            ++ndisjcuts;
         }
      }

      /* release row */
      SCIP_CALL( SCIPreleaseRow(scip, &row) );
   }

   /* save total number of cuts found so far */
   sepadata->lastncutsfound = SCIPgetNCutsFound(scip);

   /* evaluate the result of the separation */
   if ( *result != SCIP_CUTOFF )
   {
      if ( ndisjcuts > 0 )
         *result = SCIP_SEPARATED;
      else
         *result = SCIP_DIDNOTFIND;
   }

   SCIPdebugMessage("Number of found disjunctive cuts: %d.\n", ndisjcuts);

   /* free buffer arrays */
   SCIPfreeBufferArrayNull(scip, &cutcoefs);
   SCIPfreeBufferArrayNull(scip, &simplexcoefs2);
   SCIPfreeBufferArrayNull(scip, &simplexcoefs1);
   SCIPfreeBufferArrayNull(scip, &coef);
   SCIPfreeBufferArrayNull(scip, &binvrow);
   SCIPfreeBufferArrayNull(scip, &basisrow);
   SCIPfreeBufferArrayNull(scip, &fixings2);
   SCIPfreeBufferArrayNull(scip, &fixings1);
   SCIPfreeBufferArrayNull(scip, &edgearray);
   SCIPfreeBufferArrayNull(scip, &rowsmaxval);
   SCIPfreeBufferArrayNull(scip, &varrank);

   return SCIP_OKAY;
}
/** LP solution separation method of separator */
static
SCIP_DECL_SEPAEXECLP(sepaExeclpRapidlearning)
{/*lint --e{715}*/
   SCIP* subscip;                            /* the subproblem created by rapid learning       */
   SCIP_SEPADATA* sepadata;                  /* separator's private data                       */

   SCIP_VAR** vars;                          /* original problem's variables                   */
   SCIP_VAR** subvars;                       /* subproblem's variables                         */
   SCIP_HASHMAP* varmapfw;                   /* mapping of SCIP variables to sub-SCIP variables */    
   SCIP_HASHMAP* varmapbw;                   /* mapping of sub-SCIP variables to SCIP variables */

   SCIP_CONSHDLR** conshdlrs;                /* array of constraint handler's that might that might obtain conflicts */
   int* oldnconss;                           /* number of constraints without rapid learning conflicts               */

   SCIP_Longint nodelimit;                   /* node limit for the subproblem                  */
   SCIP_Real timelimit;                      /* time limit for the subproblem                  */
   SCIP_Real memorylimit;                    /* memory limit for the subproblem                */

   int nconshdlrs;                           /* size of conshdlr and oldnconss array                      */
   int nfixedvars;                           /* number of variables that could be fixed by rapid learning */
   int nvars;                                /* number of variables                                       */           
   int restartnum;                           /* maximal number of conflicts that should be created        */
   int i;                                    /* counter                                                   */

   SCIP_Bool success;                        /* was problem creation / copying constraint successful? */
   SCIP_RETCODE retcode;                     /* used for catching sub-SCIP errors in debug mode */

   int nconflicts;                          /* statistic: number of conflicts applied         */
   int nbdchgs;                             /* statistic: number of bound changes applied     */
   int n1startinfers;                       /* statistic: number of one side infer values     */
   int n2startinfers;                       /* statistic: number of both side infer values    */

   SCIP_Bool soladded;                      /* statistic: was a new incumbent found?          */
   SCIP_Bool dualboundchg;                  /* statistic: was a new dual bound found?         */
   SCIP_Bool disabledualreductions;         /* TRUE, if dual reductions in sub-SCIP are not valid for original SCIP,
                                             * e.g., because a constraint could not be copied or a primal solution
                                             * could not be copied back 
                                             */

   int ndiscvars;

   soladded = FALSE;

   assert(sepa != NULL);
   assert(scip != NULL);
   assert(result != NULL);

   *result = SCIP_DIDNOTRUN;
   
   ndiscvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip)+SCIPgetNImplVars(scip);

   /* only run when still not fixed binary variables exists */
   if( ndiscvars == 0 )
      return SCIP_OKAY;

   /* get separator's data */
   sepadata = SCIPsepaGetData(sepa);
   assert(sepadata != NULL);

   /* only run for integer programs */
   if( !sepadata->contvars && ndiscvars != SCIPgetNVars(scip) )
      return SCIP_OKAY;

   /* only run if there are few enough continuous variables */
   if( sepadata->contvars && SCIPgetNContVars(scip) > sepadata->contvarsquot * SCIPgetNVars(scip) )
      return SCIP_OKAY;

   /* do not run if pricers are present */
   if( SCIPgetNActivePricers(scip) > 0 )
      return SCIP_OKAY;

   /* if the separator should be exclusive to the root node, this prevents multiple calls due to restarts */
   if(  SCIPsepaGetFreq(sepa) == 0 && SCIPsepaGetNCalls(sepa) > 0)
      return SCIP_OKAY;

   /* call separator at most once per node */
   if( SCIPsepaGetNCallsAtNode(sepa) > 0 )
      return SCIP_OKAY;

   /* do not call rapid learning, if the problem is too big */
   if( SCIPgetNVars(scip) > sepadata->maxnvars || SCIPgetNConss(scip) > sepadata->maxnconss )
      return SCIP_OKAY; 

   if( SCIPisStopped(scip) )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;
   
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );

   /* initializing the subproblem */  
   SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); 
   SCIP_CALL( SCIPcreate(&subscip) );
   SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) );
   success = FALSE;

   /* copy the subproblem */
   SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "rapid", FALSE, FALSE, &success) );
   
   if( sepadata->copycuts )
   {
      /** copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */
      SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, FALSE) );
   }

   for( i = 0; i < nvars; i++ )
      subvars[i] = (SCIP_VAR*) (size_t) SCIPhashmapGetImage(varmapfw, vars[i]);
   
   SCIPhashmapFree(&varmapfw);
   
   /* this avoids dual presolving */
   if( !success )
   {
      for( i = 0; i < nvars; i++ )
      {     
         SCIP_CALL( SCIPaddVarLocks(subscip, subvars[i], 1, 1 ) );
      }
   }

   SCIPdebugMessage("Copying SCIP was%s successful.\n", success ? "" : " not");
   
   /* mimic an FD solver: DFS, no LP solving, 1-FUIP instead of all-FUIP */
   SCIP_CALL( SCIPsetIntParam(subscip, "lp/solvefreq", -1) );
   SCIP_CALL( SCIPsetIntParam(subscip, "conflict/fuiplevels", 1) );
   SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/dfs/stdpriority", INT_MAX/4) ); 
   SCIP_CALL( SCIPsetBoolParam(subscip, "constraints/disableenfops", TRUE) );
   SCIP_CALL( SCIPsetIntParam(subscip, "propagating/pseudoobj/freq", -1) );

   /* use inference branching */
   SCIP_CALL( SCIPsetBoolParam(subscip, "branching/inference/useweightedsum", FALSE) );

   /* only create short conflicts */
   SCIP_CALL( SCIPsetRealParam(subscip, "conflict/maxvarsfac", 0.05) );
  
   /* set limits for the subproblem */
   nodelimit = SCIPgetNLPIterations(scip);
   nodelimit = MAX(sepadata->minnodes, nodelimit);
   nodelimit = MIN(sepadata->maxnodes, nodelimit);

   restartnum = 1000;
   
   /* check whether there is enough time and memory left */
   SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
   if( !SCIPisInfinity(scip, timelimit) )
      timelimit -= SCIPgetSolvingTime(scip);
   SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );
   if( !SCIPisInfinity(scip, memorylimit) )   
      memorylimit -= SCIPgetMemUsed(scip)/1048576.0;
   if( timelimit <= 0.0 || memorylimit <= 0.0 )
      goto TERMINATE;

   SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nodelimit/5) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );
   SCIP_CALL( SCIPsetIntParam(subscip, "limits/restarts", 0) );
   SCIP_CALL( SCIPsetIntParam(subscip, "conflict/restartnum", restartnum) );

   /* forbid recursive call of heuristics and separators solving subMIPs */
   SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) );

   /* disable cutting plane separation */
   SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) );

   /* disable expensive presolving */
   SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) );

   /* do not abort subproblem on CTRL-C */
   SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );

#ifndef SCIP_DEBUG
   /* disable output to console */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );
#endif

   /* add an objective cutoff */
   SCIP_CALL( SCIPsetObjlimit(subscip, SCIPgetUpperbound(scip)) );

   /* create the variable mapping hash map */
   SCIP_CALL( SCIPhashmapCreate(&varmapbw, SCIPblkmem(scip), SCIPcalcHashtableSize(5 * nvars)) );

   /* store reversing mapping of variables */
   SCIP_CALL( SCIPtransformProb(subscip) );
   for( i = 0; i < nvars; ++i)
   {  
      SCIP_CALL( SCIPhashmapInsert(varmapbw, SCIPvarGetTransVar(subvars[i]), vars[i]) );
   }

   /** allocate memory for constraints storage. Each constraint that will be created from now on will be a conflict.
    *  Therefore, we need to remember oldnconss to get the conflicts from the FD search. 
    */
   nconshdlrs = 4;
   SCIP_CALL( SCIPallocBufferArray(scip, &conshdlrs, nconshdlrs) );
   SCIP_CALL( SCIPallocBufferArray(scip, &oldnconss, nconshdlrs) );

   /* store number of constraints before rapid learning search */
   conshdlrs[0] = SCIPfindConshdlr(subscip, "bounddisjunction");
   conshdlrs[1] = SCIPfindConshdlr(subscip, "setppc");
   conshdlrs[2] = SCIPfindConshdlr(subscip, "linear");
   conshdlrs[3] = SCIPfindConshdlr(subscip, "logicor");

   /* redundant constraints might be eliminated in presolving */
   SCIP_CALL( SCIPpresolve(subscip));

   for( i = 0; i < nconshdlrs; ++i)
   {
      if( conshdlrs[i] != NULL )
         oldnconss[i] = SCIPconshdlrGetNConss(conshdlrs[i]);
   }

   nfixedvars = SCIPgetNFixedVars(scip);
   
   /* solve the subproblem */
   retcode = SCIPsolve(subscip);
   
   /* Errors in solving the subproblem should not kill the overall solving process 
    * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
    */
   if( retcode != SCIP_OKAY )
   { 
#ifndef NDEBUG
      SCIP_CALL( retcode );     
#endif
      SCIPwarningMessage("Error while solving subproblem in rapid learning separator; sub-SCIP terminated with code <%d>\n",retcode);
   }
 
   /* abort solving, if limit of applied conflicts is reached */
   if( SCIPgetNConflictConssApplied(subscip) >= restartnum )
   {
      SCIPdebugMessage("finish after %lld successful conflict calls.\n", SCIPgetNConflictConssApplied(subscip)); 
   }
   /* if the first 20% of the solution process were successful, proceed */
   else if( (sepadata->applyprimalsol && SCIPgetNSols(subscip) > 0 && SCIPisFeasLT(scip, SCIPgetUpperbound(subscip), SCIPgetUpperbound(scip) ) )
      || (sepadata->applybdchgs && SCIPgetNFixedVars(subscip) > nfixedvars)
      || (sepadata->applyconflicts && SCIPgetNConflictConssApplied(subscip) > 0) ) 
   {
      SCIPdebugMessage("proceed solving after the first 20%% of the solution process, since:\n");

      if( SCIPgetNSols(subscip) > 0 && SCIPisFeasLE(scip, SCIPgetUpperbound(subscip), SCIPgetUpperbound(scip) ) )
      {
         SCIPdebugMessage("   - there was a better solution (%f < %f)\n",SCIPgetUpperbound(subscip), SCIPgetUpperbound(scip));
      }
      if( SCIPgetNFixedVars(subscip) > nfixedvars )
      {
         SCIPdebugMessage("   - there were %d variables fixed\n", SCIPgetNFixedVars(scip)-nfixedvars );
      }
      if( SCIPgetNConflictConssFound(subscip) > 0 )
      {
         SCIPdebugMessage("   - there were %lld conflict constraints created\n", SCIPgetNConflictConssApplied(subscip));
      }

      /* set node limit to 100% */
      SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nodelimit) );

      /* solve the subproblem */
      retcode = SCIPsolve(subscip);
   
      /* Errors in solving the subproblem should not kill the overall solving process 
       * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
       */
      if( retcode != SCIP_OKAY )
      { 
#ifndef NDEBUG
         SCIP_CALL( retcode );     
#endif
         SCIPwarningMessage("Error while solving subproblem in rapid learning separator; sub-SCIP terminated with code <%d>\n",retcode);
      }
   }
   else
   {
      SCIPdebugMessage("do not proceed solving after the first 20%% of the solution process.\n");
   }

#ifdef SCIP_DEBUG
   SCIP_CALL( SCIPprintStatistics(subscip, NULL) );
#endif

   disabledualreductions = FALSE;

   /* check, whether a solution was found */
   if( sepadata->applyprimalsol && SCIPgetNSols(subscip) > 0 && SCIPfindHeur(scip, "trysol") != NULL )
   {
      SCIP_HEUR* heurtrysol;
      SCIP_SOL** subsols;
      int nsubsols;

      /* check, whether a solution was found;
       * due to numerics, it might happen that not all solutions are feasible -> try all solutions until was declared to be feasible 
       */
      nsubsols = SCIPgetNSols(subscip);
      subsols = SCIPgetSols(subscip);
      soladded = FALSE;
      heurtrysol = SCIPfindHeur(scip, "trysol");

      /* sequentially add solutions to trysol heuristic */
      for( i = 0; i < nsubsols && !soladded; ++i )
      {
         SCIPdebugMessage("Try to create new solution by copying subscip solution.\n");
         SCIP_CALL( createNewSol(scip, subscip, subvars, heurtrysol, subsols[i], &soladded) );
      }
      if( !soladded || !SCIPisEQ(scip, SCIPgetSolOrigObj(subscip, subsols[i-1]), SCIPgetSolOrigObj(subscip, subsols[0])) )
         disabledualreductions = TRUE;
   }

   /* if the sub problem was solved completely, we update the dual bound */
   dualboundchg = FALSE;
   if( sepadata->applysolved && !disabledualreductions 
      && (SCIPgetStatus(subscip) == SCIP_STATUS_OPTIMAL || SCIPgetStatus(subscip) == SCIP_STATUS_INFEASIBLE) )
   {
      /* we need to multiply the dualbound with the scaling factor and add the offset, 
       * because this information has been disregarded in the sub-SCIP */
      SCIPdebugMessage("Update old dualbound %g to new dualbound %g.\n", SCIPgetDualbound(scip), SCIPgetTransObjscale(scip) * SCIPgetDualbound(subscip) + SCIPgetTransObjoffset(scip));

      SCIP_CALL( SCIPupdateLocalDualbound(scip, SCIPgetDualbound(subscip) * SCIPgetTransObjscale(scip) + SCIPgetTransObjoffset(scip)) );
      dualboundchg = TRUE;
   }

   /* check, whether conflicts were created */
   nconflicts = 0;
   if( sepadata->applyconflicts && !disabledualreductions && SCIPgetNConflictConssApplied(subscip) > 0 )
   {
      SCIP_HASHMAP* consmap;
      int hashtablesize;

      assert(SCIPgetNConflictConssApplied(subscip) < (SCIP_Longint) INT_MAX);
      hashtablesize = (int) SCIPgetNConflictConssApplied(subscip);
      assert(hashtablesize < INT_MAX/5);
      hashtablesize *= 5;

      /* create the variable mapping hash map */
      SCIP_CALL( SCIPhashmapCreate(&consmap, SCIPblkmem(scip), SCIPcalcHashtableSize(hashtablesize)) );

      /* loop over all constraint handlers that might contain conflict constraints */
      for( i = 0; i < nconshdlrs; ++i)
      {
         /* copy constraints that have been created in FD run */
         if( conshdlrs[i] != NULL && SCIPconshdlrGetNConss(conshdlrs[i]) > oldnconss[i] )
         {
            SCIP_CONS** conss;
            int c;
            int nconss;
            
            nconss = SCIPconshdlrGetNConss(conshdlrs[i]);
            conss = SCIPconshdlrGetConss(conshdlrs[i]);

            /* loop over all constraints that have been added in sub-SCIP run, these are the conflicts */            
            for( c = oldnconss[i]; c < nconss; ++c)
            {
               SCIP_CONS* cons;
               SCIP_CONS* conscopy;
               
               cons = conss[c];
               assert(cons != NULL);        

               success = FALSE;

               SCIP_CALL( SCIPgetConsCopy(subscip, scip, cons, &conscopy, conshdlrs[i], varmapbw, consmap, NULL,
                     SCIPconsIsInitial(cons), SCIPconsIsSeparated(cons), SCIPconsIsEnforced(cons), SCIPconsIsChecked(cons),
                     SCIPconsIsPropagated(cons), TRUE, FALSE, SCIPconsIsDynamic(cons), 
                     SCIPconsIsRemovable(cons), FALSE, TRUE, &success) );

               if( success )
               {
                  nconflicts++;
                  SCIP_CALL( SCIPaddCons(scip, conscopy) );
                  SCIP_CALL( SCIPreleaseCons(scip, &conscopy) );
               }
               else
               {
                  SCIPdebugMessage("failed to copy conflict constraint %s back to original SCIP\n", SCIPconsGetName(cons));
               }
            }
         }
      }   
      SCIPhashmapFree(&consmap);
   }

   /* check, whether tighter global bounds were detected */
   nbdchgs = 0;
   if( sepadata->applybdchgs && !disabledualreductions )
      for( i = 0; i < nvars; ++i )
      {
         SCIP_Bool infeasible;
         SCIP_Bool tightened;
         
         assert(SCIPisLE(scip, SCIPvarGetLbGlobal(vars[i]), SCIPvarGetLbGlobal(subvars[i]))); 
         assert(SCIPisLE(scip, SCIPvarGetLbGlobal(subvars[i]), SCIPvarGetUbGlobal(subvars[i])));
         assert(SCIPisLE(scip, SCIPvarGetUbGlobal(subvars[i]), SCIPvarGetUbGlobal(vars[i])));  
         
         /* update the bounds of the original SCIP, if a better bound was proven in the sub-SCIP */
         SCIP_CALL( SCIPtightenVarUb(scip, vars[i], SCIPvarGetUbGlobal(subvars[i]), FALSE, &infeasible, &tightened) );
         if( tightened ) 
            nbdchgs++;
         
         SCIP_CALL( SCIPtightenVarLb(scip, vars[i], SCIPvarGetLbGlobal(subvars[i]), FALSE, &infeasible, &tightened) );
         if( tightened )
            nbdchgs++;   
      }

   n1startinfers = 0;
   n2startinfers = 0;

   /* install start values for inference branching */
   if( sepadata->applyinfervals && (!sepadata->reducedinfer || soladded || nbdchgs+nconflicts > 0) )
   {
      for( i = 0; i < nvars; ++i )
      {
         SCIP_Real downinfer;
         SCIP_Real upinfer;
         SCIP_Real downvsids;
         SCIP_Real upvsids;
         SCIP_Real downconflen;
         SCIP_Real upconflen;
        
         /* copy downwards branching statistics */
         downvsids = SCIPgetVarVSIDS(subscip, subvars[i], SCIP_BRANCHDIR_DOWNWARDS);            
         downconflen = SCIPgetVarAvgConflictlength(subscip, subvars[i], SCIP_BRANCHDIR_DOWNWARDS);
         downinfer = SCIPgetVarAvgInferences(subscip, subvars[i], SCIP_BRANCHDIR_DOWNWARDS);            
         
         /* copy upwards branching statistics */
         upvsids = SCIPgetVarVSIDS(subscip, subvars[i], SCIP_BRANCHDIR_UPWARDS);                     
         upconflen = SCIPgetVarAvgConflictlength(subscip, subvars[i], SCIP_BRANCHDIR_UPWARDS);
         upinfer = SCIPgetVarAvgInferences(subscip, subvars[i], SCIP_BRANCHDIR_UPWARDS);            
        
         /* memorize statistics */
         if( downinfer+downconflen+downvsids > 0.0 || upinfer+upconflen+upvsids != 0 )
            n1startinfers++;
         
         if( downinfer+downconflen+downvsids > 0.0 && upinfer+upconflen+upvsids != 0 )
            n2startinfers++;
         
         SCIP_CALL( SCIPinitVarBranchStats(scip, vars[i], 0.0, 0.0, downvsids, upvsids, downconflen, upconflen, downinfer, upinfer, 0.0, 0.0) );
      }   
   }
   
   SCIPdebugPrintf("XXX Rapidlearning added %d conflicts, changed %d bounds, %s primal solution, %s dual bound improvement.\n", nconflicts, nbdchgs, soladded ? "found" : "no", 
      dualboundchg ? "found" : "no");

   SCIPdebugPrintf("YYY Infervalues initialized on one side: %5.2f %% of variables, %5.2f %% on both sides\n", 
      100.0 * n1startinfers/(SCIP_Real)nvars, 100.0 * n2startinfers/(SCIP_Real)nvars);

   /* change result pointer */
   if( nconflicts > 0 || dualboundchg )
      *result = SCIP_CONSADDED;
   else if( nbdchgs > 0 )
      *result = SCIP_REDUCEDDOM;
  
   /* free local data */
   SCIPfreeBufferArray(scip, &oldnconss);
   SCIPfreeBufferArray(scip, &conshdlrs);

   SCIPhashmapFree(&varmapbw);

 TERMINATE:
   /* free subproblem */
   SCIPfreeBufferArray(scip, &subvars);
   SCIP_CALL( SCIPfree(&subscip) );
  
   return SCIP_OKAY;
}