Exemplo n.º 1
0
/** adds cut to separation storage and captures it;
 *  if the cut should be forced to enter the LP, an infinite score has to be used
 */
SCIP_RETCODE SCIPsepastoreAddCut(
   SCIP_SEPASTORE*       sepastore,          /**< separation storage */
   BMS_BLKMEM*           blkmem,             /**< block memory */
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_STAT*            stat,               /**< problem statistics data */
   SCIP_EVENTQUEUE*      eventqueue,         /**< event queue */
   SCIP_EVENTFILTER*     eventfilter,        /**< event filter for global events */
   SCIP_LP*              lp,                 /**< LP data */
   SCIP_SOL*             sol,                /**< primal solution that was separated, or NULL for LP solution */
   SCIP_ROW*             cut,                /**< separated cut */
   SCIP_Bool             forcecut,           /**< should the cut be forced to enter the LP? */
   SCIP_Bool             root                /**< are we at the root node? */
   )
{
   assert(sepastore != NULL);
   assert(cut != NULL);
   assert(!SCIProwIsInLP(cut));
   assert(!SCIPsetIsInfinity(set, -SCIProwGetLhs(cut)) || !SCIPsetIsInfinity(set, SCIProwGetRhs(cut)));

   /* debug: check cut for feasibility */
   SCIP_CALL( SCIPdebugCheckRow(set, cut) ); /*lint !e506 !e774*/

   /* update statistics of total number of found cuts */
   if( !sepastore->initiallp )
   {
      sepastore->ncutsfound++;
      sepastore->ncutsfoundround++;
   }

   /* add LP row cut to separation storage */
   SCIP_CALL( sepastoreAddCut(sepastore, blkmem, set, stat, eventqueue, eventfilter, lp, sol, cut, forcecut, root) );

   return SCIP_OKAY;
}
Exemplo n.º 2
0
/** checks cut for redundancy due to activity bounds */
static
SCIP_Bool sepastoreIsCutRedundant(
   SCIP_SEPASTORE*       sepastore,          /**< separation storage */
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_STAT*            stat,               /**< problem statistics data */
   SCIP_ROW*             cut                 /**< separated cut */
   )
{
   SCIP_Real minactivity;
   SCIP_Real maxactivity;
   SCIP_Real lhs;
   SCIP_Real rhs;

   assert(sepastore != NULL);
   assert(cut != NULL);

   /* modifiable cuts cannot be declared redundant, since we don't know all coefficients */
   if( SCIProwIsModifiable(cut) )
      return FALSE;

   /* check for activity redundancy */
   lhs = SCIProwGetLhs(cut);
   rhs = SCIProwGetRhs(cut);
   minactivity = SCIProwGetMinActivity(cut, set, stat);
   maxactivity = SCIProwGetMaxActivity(cut, set, stat);
   if( SCIPsetIsLE(set, lhs, minactivity) && SCIPsetIsLE(set, maxactivity, rhs) )
   {
      SCIPdebugMessage("ignoring activity redundant cut <%s> (sides=[%g,%g], act=[%g,%g]\n",
         SCIProwGetName(cut), lhs, rhs, minactivity, maxactivity);
      /*SCIPdebug(SCIProwPrint(cut, NULL));*/
      return TRUE;
   }

   return FALSE;
}
/** creates the rows of the subproblem */
static
SCIP_RETCODE createRows(
   SCIP*                 scip,               /**< original SCIP data structure */
   SCIP*                 subscip,            /**< SCIP data structure for the subproblem */
   SCIP_VAR**            subvars             /**< the variables of the subproblem */
   )
{
   SCIP_ROW** rows;                          /* original scip rows                       */
   SCIP_CONS* cons;                          /* new constraint                           */
   SCIP_VAR** consvars;                      /* new constraint's variables               */
   SCIP_COL** cols;                          /* original row's columns                   */

   SCIP_Real constant;                       /* constant added to the row                */
   SCIP_Real lhs;                            /* left hand side of the row                */
   SCIP_Real rhs;                            /* left right side of the row               */
   SCIP_Real* vals;                          /* variables' coefficient values of the row */

   int nrows;
   int nnonz;
   int i;
   int j;

   /* get the rows and their number */
   SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );

   /* copy all rows to linear constraints */
   for( i = 0; i < nrows; i++ )
   {
      /* ignore rows that are only locally valid */
      if( SCIProwIsLocal(rows[i]) )
         continue;

      /* get the row's data */
      constant = SCIProwGetConstant(rows[i]);
      lhs = SCIProwGetLhs(rows[i]) - constant;
      rhs = SCIProwGetRhs(rows[i]) - constant;
      vals = SCIProwGetVals(rows[i]);
      nnonz = SCIProwGetNNonz(rows[i]);
      cols = SCIProwGetCols(rows[i]);

      assert(lhs <= rhs);

      /* allocate memory array to be filled with the corresponding subproblem variables */
      SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nnonz) );
      for( j = 0; j < nnonz; j++ )
         consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))];

      /* create a new linear constraint and add it to the subproblem */
      SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs,
            TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) );
      SCIP_CALL( SCIPaddCons(subscip, cons) );
      SCIP_CALL( SCIPreleaseCons(subscip, &cons) );

      /* free temporary memory */
      SCIPfreeBufferArray(scip, &consvars);
   }

   return SCIP_OKAY;
}
/** update row violation arrays after a row's activity value changed */
static
void updateViolations(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_ROW*             row,                /**< LP row */
   SCIP_ROW**            violrows,           /**< array with currently violated rows */
   int*                  violrowpos,         /**< position of LP rows in violrows array */
   int*                  nviolrows,          /**< pointer to the number of currently violated rows */
   SCIP_Real             oldactivity,        /**< old activity value of LP row */
   SCIP_Real             newactivity         /**< new activity value of LP row */
   )
{
   SCIP_Real lhs;
   SCIP_Real rhs;
   SCIP_Bool oldviol;
   SCIP_Bool newviol;

   assert(violrows != NULL);
   assert(violrowpos != NULL);
   assert(nviolrows != NULL);

   lhs = SCIProwGetLhs(row);
   rhs = SCIProwGetRhs(row);
   oldviol = (SCIPisFeasLT(scip, oldactivity, lhs) || SCIPisFeasGT(scip, oldactivity, rhs));
   newviol = (SCIPisFeasLT(scip, newactivity, lhs) || SCIPisFeasGT(scip, newactivity, rhs));
   if( oldviol != newviol )
   {
      int rowpos;
      int violpos;

      rowpos = SCIProwGetLPPos(row);
      assert(rowpos >= 0);

      if( oldviol )
      {
         /* the row violation was repaired: remove row from violrows array, decrease violation count */
         violpos = violrowpos[rowpos];
         assert(0 <= violpos && violpos < *nviolrows);
         assert(violrows[violpos] == row);
         violrowpos[rowpos] = -1;
         if( violpos != *nviolrows-1 )
         {
            violrows[violpos] = violrows[*nviolrows-1];
            violrowpos[SCIProwGetLPPos(violrows[violpos])] = violpos;
         }
         (*nviolrows)--;
      }
      else
      {
         /* the row is now violated: add row to violrows array, increase violation count */
         assert(violrowpos[rowpos] == -1);
         violrows[*nviolrows] = row;
         violrowpos[rowpos] = *nviolrows;
         (*nviolrows)++;
      }
   }
}
Exemplo n.º 5
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecOneopt)
{  /*lint --e{715}*/

   SCIP_HEURDATA* heurdata;
   SCIP_SOL* bestsol;                        /* incumbent solution */
   SCIP_SOL* worksol;                        /* heuristic's working solution */
   SCIP_VAR** vars;                          /* SCIP variables                */
   SCIP_VAR** shiftcands;                    /* shiftable variables           */
   SCIP_ROW** lprows;                        /* SCIP LP rows                  */
   SCIP_Real* activities;                    /* row activities for working solution */
   SCIP_Real* shiftvals;

   SCIP_Real lb;
   SCIP_Real ub;
   SCIP_Bool localrows;
   SCIP_Bool valid;
   int nchgbound;
   int nbinvars;
   int nintvars;
   int nvars;
   int nlprows;
   int i;
   int nshiftcands;
   int shiftcandssize;
   SCIP_RETCODE retcode;

   assert(heur != NULL);
   assert(scip != NULL);
   assert(result != NULL);

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   *result = SCIP_DELAYED;

   /* we only want to process each solution once */
   bestsol = SCIPgetBestSol(scip);
   if( bestsol == NULL || heurdata->lastsolindex == SCIPsolGetIndex(bestsol) )
      return SCIP_OKAY;

   /* reset the timing mask to its default value (at the root node it could be different) */
   if( SCIPgetNNodes(scip) > 1 )
      SCIPheurSetTimingmask(heur, HEUR_TIMING);

   /* get problem variables */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );
   nintvars += nbinvars;

   /* do not run if there are no discrete variables */
   if( nintvars == 0 )
   {
      *result = SCIP_DIDNOTRUN;
      return SCIP_OKAY;
   }

   if( heurtiming == SCIP_HEURTIMING_BEFOREPRESOL )
   {
      SCIP*                 subscip;            /* the subproblem created by zeroobj              */
      SCIP_HASHMAP*         varmapfw;           /* mapping of SCIP variables to sub-SCIP variables */
      SCIP_VAR**            subvars;            /* subproblem's variables                          */
      SCIP_Real* subsolvals;                    /* solution values of the subproblem               */

      SCIP_Real timelimit;                      /* time limit for zeroobj subproblem              */
      SCIP_Real memorylimit;                    /* memory limit for zeroobj subproblem            */

      SCIP_SOL* startsol;
      SCIP_SOL** subsols;
      int nsubsols;

      if( !heurdata->beforepresol )
         return SCIP_OKAY;

      /* check whether there is enough time and memory left */
      timelimit = 0.0;
      memorylimit = 0.0;
      SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
      if( !SCIPisInfinity(scip, timelimit) )
         timelimit -= SCIPgetSolvingTime(scip);
      SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );

      /* substract the memory already used by the main SCIP and the estimated memory usage of external software */
      if( !SCIPisInfinity(scip, memorylimit) )
      {
         memorylimit -= SCIPgetMemUsed(scip)/1048576.0;
         memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0;
      }

      /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */
      if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 )
         return SCIP_OKAY;

      /* initialize the subproblem */
      SCIP_CALL( SCIPcreate(&subscip) );

      /* create the variable mapping hash map */
      SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) );
      SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) );

      /* copy complete SCIP instance */
      valid = FALSE;
      SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "oneopt", TRUE, FALSE, TRUE, &valid) );
      SCIP_CALL( SCIPtransformProb(subscip) );

      /* get variable image */
      for( i = 0; i < nvars; i++ )
         subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]);

      /* copy the solution */
      SCIP_CALL( SCIPallocBufferArray(scip, &subsolvals, nvars) );
      SCIP_CALL( SCIPgetSolVals(scip, bestsol, nvars, vars, subsolvals) );

      /* create start solution for the subproblem */
      SCIP_CALL( SCIPcreateOrigSol(subscip, &startsol, NULL) );
      SCIP_CALL( SCIPsetSolVals(subscip, startsol, nvars, subvars, subsolvals) );

      /* try to add new solution to sub-SCIP and free it immediately */
      valid = FALSE;
      SCIP_CALL( SCIPtrySolFree(subscip, &startsol, FALSE, FALSE, FALSE, FALSE, &valid) );
      SCIPfreeBufferArray(scip, &subsolvals);
      SCIPhashmapFree(&varmapfw);

      /* disable statistic timing inside sub SCIP */
      SCIP_CALL( SCIPsetBoolParam(subscip, "timing/statistictiming", FALSE) );

      /* deactivate basically everything except oneopt in the sub-SCIP */
      SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_OFF, TRUE) );
      SCIP_CALL( SCIPsetHeuristics(subscip, SCIP_PARAMSETTING_OFF, TRUE) );
      SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) );
      SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", 1LL) );
      SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
      SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );
      SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );
      SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );

      /* if necessary, some of the parameters have to be unfixed first */
      if( SCIPisParamFixed(subscip, "lp/solvefreq") )
      {
         SCIPwarningMessage(scip, "unfixing parameter lp/solvefreq in subscip of oneopt heuristic\n");
         SCIP_CALL( SCIPunfixParam(subscip, "lp/solvefreq") );
      }
      SCIP_CALL( SCIPsetIntParam(subscip, "lp/solvefreq", -1) );

      if( SCIPisParamFixed(subscip, "heuristics/oneopt/freq") )
      {
         SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/freq in subscip of oneopt heuristic\n");
         SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/freq") );
      }
      SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/oneopt/freq", 1) );

      if( SCIPisParamFixed(subscip, "heuristics/oneopt/forcelpconstruction") )
      {
         SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/forcelpconstruction in subscip of oneopt heuristic\n");
         SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/forcelpconstruction") );
      }
      SCIP_CALL( SCIPsetBoolParam(subscip, "heuristics/oneopt/forcelpconstruction", TRUE) );

      /* avoid recursive call, which would lead to an endless loop */
      if( SCIPisParamFixed(subscip, "heuristics/oneopt/beforepresol") )
      {
         SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/beforepresol in subscip of oneopt heuristic\n");
         SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/beforepresol") );
      }
      SCIP_CALL( SCIPsetBoolParam(subscip, "heuristics/oneopt/beforepresol", FALSE) );

      if( valid )
      {
         retcode = SCIPsolve(subscip);

         /* errors in solving the subproblem should not kill the overall solving process;
          * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
          */
         if( retcode != SCIP_OKAY )
         {
#ifndef NDEBUG
            SCIP_CALL( retcode );
#endif
            SCIPwarningMessage(scip, "Error while solving subproblem in zeroobj heuristic; sub-SCIP terminated with code <%d>\n",retcode);
         }

#ifdef SCIP_DEBUG
         SCIP_CALL( SCIPprintStatistics(subscip, NULL) );
#endif
      }

      /* check, whether a solution was found;
       * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted
       */
      nsubsols = SCIPgetNSols(subscip);
      subsols = SCIPgetSols(subscip);
      valid = FALSE;
      for( i = 0; i < nsubsols && !valid; ++i )
      {
         SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &valid) );
         if( valid )
            *result = SCIP_FOUNDSOL;
      }

      /* free subproblem */
      SCIPfreeBufferArray(scip, &subvars);
      SCIP_CALL( SCIPfree(&subscip) );

      return SCIP_OKAY;
   }

   /* we can only work on solutions valid in the transformed space */
   if( SCIPsolIsOriginal(bestsol) )
      return SCIP_OKAY;

   if( heurtiming == SCIP_HEURTIMING_BEFORENODE && (SCIPhasCurrentNodeLP(scip) || heurdata->forcelpconstruction) )
   {
      SCIP_Bool cutoff;
      cutoff = FALSE;
      SCIP_CALL( SCIPconstructLP(scip, &cutoff) );
      SCIP_CALL( SCIPflushLP(scip) );

      /* get problem variables again, SCIPconstructLP() might have added new variables */
      SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );
      nintvars += nbinvars;
   }

   /* we need an LP */
   if( SCIPgetNLPRows(scip) == 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   nchgbound = 0;

   /* initialize data */
   nshiftcands = 0;
   shiftcandssize = 8;
   heurdata->lastsolindex = SCIPsolGetIndex(bestsol);
   SCIP_CALL( SCIPcreateSolCopy(scip, &worksol, bestsol) );
   SCIPsolSetHeur(worksol,heur);

   SCIPdebugMessage("Starting bound adjustment in 1-opt heuristic\n");

   /* maybe change solution values due to global bound changes first */
   for( i = nvars - 1; i >= 0; --i )
   {
      SCIP_VAR* var;
      SCIP_Real solval;

      var = vars[i];
      lb = SCIPvarGetLbGlobal(var);
      ub = SCIPvarGetUbGlobal(var);

      solval = SCIPgetSolVal(scip, bestsol,var);
      /* old solution value is smaller than the actual lower bound */
      if( SCIPisFeasLT(scip, solval, lb) )
      {
         /* set the solution value to the global lower bound */
         SCIP_CALL( SCIPsetSolVal(scip, worksol, var, lb) );
         ++nchgbound;
         SCIPdebugMessage("var <%s> type %d, old solval %g now fixed to lb %g\n", SCIPvarGetName(var), SCIPvarGetType(var), solval, lb);
      }
      /* old solution value is greater than the actual upper bound */
      else if( SCIPisFeasGT(scip, solval, SCIPvarGetUbGlobal(var)) )
      {
         /* set the solution value to the global upper bound */
         SCIP_CALL( SCIPsetSolVal(scip, worksol, var, ub) );
         ++nchgbound;
         SCIPdebugMessage("var <%s> type %d, old solval %g now fixed to ub %g\n", SCIPvarGetName(var), SCIPvarGetType(var), solval, ub);
      }
   }

   SCIPdebugMessage("number of bound changes (due to global bounds) = %d\n", nchgbound);
   SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) );

   localrows = FALSE;
   valid = TRUE;

   /* initialize activities */
   for( i = 0; i < nlprows; ++i )
   {
      SCIP_ROW* row;

      row = lprows[i];
      assert(SCIProwGetLPPos(row) == i);

      if( !SCIProwIsLocal(row) )
      {
         activities[i] = SCIPgetRowSolActivity(scip, row, worksol);
         SCIPdebugMessage("Row <%s> has activity %g\n", SCIProwGetName(row), activities[i]);
         if( SCIPisFeasLT(scip, activities[i], SCIProwGetLhs(row)) || SCIPisFeasGT(scip, activities[i], SCIProwGetRhs(row)) )
         {
            valid = FALSE;
            SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) );
            SCIPdebugMessage("row <%s> activity %g violates bounds, lhs = %g, rhs = %g\n", SCIProwGetName(row), activities[i], SCIProwGetLhs(row), SCIProwGetRhs(row));
            break;
         }
      }
      else
         localrows = TRUE;
   }

   if( !valid )
   {
      /** @todo try to correct lp rows */
      SCIPdebugMessage("Some global bound changes were not valid in lp rows.\n");
      goto TERMINATE;
   }

   SCIP_CALL( SCIPallocBufferArray(scip, &shiftcands, shiftcandssize) );
   SCIP_CALL( SCIPallocBufferArray(scip, &shiftvals, shiftcandssize) );


   SCIPdebugMessage("Starting 1-opt heuristic\n");

   /* enumerate all integer variables and find out which of them are shiftable */
   for( i = 0; i < nintvars; i++ )
   {
      if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN )
      {
         SCIP_Real shiftval;
         SCIP_Real solval;

         /* find out whether the variable can be shifted */
         solval = SCIPgetSolVal(scip, worksol, vars[i]);
         shiftval = calcShiftVal(scip, vars[i], solval, activities);

         /* insert the variable into the list of shifting candidates */
         if( !SCIPisFeasZero(scip, shiftval) )
         {
            SCIPdebugMessage(" -> Variable <%s> can be shifted by <%1.1f> \n", SCIPvarGetName(vars[i]), shiftval);

            if( nshiftcands == shiftcandssize)
            {
               shiftcandssize *= 8;
               SCIP_CALL( SCIPreallocBufferArray(scip, &shiftcands, shiftcandssize) );
               SCIP_CALL( SCIPreallocBufferArray(scip, &shiftvals, shiftcandssize) );
            }
            shiftcands[nshiftcands] = vars[i];
            shiftvals[nshiftcands] = shiftval;
            nshiftcands++;
         }
      }
   }

   /* if at least one variable can be shifted, shift variables sorted by their objective */
   if( nshiftcands > 0 )
   {
      SCIP_Real shiftval;
      SCIP_Real solval;
      SCIP_VAR* var;

      /* the case that exactly one variable can be shifted is slightly easier */
      if( nshiftcands == 1 )
      {
         var = shiftcands[0];
         assert(var != NULL);
         solval = SCIPgetSolVal(scip, worksol, var);
         shiftval = shiftvals[0];
         assert(!SCIPisFeasZero(scip,shiftval));
         SCIPdebugMessage(" Only one shiftcand found, var <%s>, which is now shifted by<%1.1f> \n",
            SCIPvarGetName(var), shiftval);
         SCIP_CALL( SCIPsetSolVal(scip, worksol, var, solval+shiftval) );
      }
      else
      {
         SCIP_Real* objcoeffs;

         SCIP_CALL( SCIPallocBufferArray(scip, &objcoeffs, nshiftcands) );

         SCIPdebugMessage(" %d shiftcands found \n", nshiftcands);

         /* sort the variables by their objective, optionally weighted with the shiftval */
         if( heurdata->weightedobj )
         {
            for( i = 0; i < nshiftcands; ++i )
               objcoeffs[i] = SCIPvarGetObj(shiftcands[i])*shiftvals[i];
         }
         else
         {
            for( i = 0; i < nshiftcands; ++i )
               objcoeffs[i] = SCIPvarGetObj(shiftcands[i]);
         }

         /* sort arrays with respect to the first one */
         SCIPsortRealPtr(objcoeffs, (void**)shiftcands, nshiftcands);

         /* try to shift each variable -> Activities have to be updated */
         for( i = 0; i < nshiftcands; ++i )
         {
            var = shiftcands[i];
            assert(var != NULL);
            solval = SCIPgetSolVal(scip, worksol, var);
            shiftval = calcShiftVal(scip, var, solval, activities);
            SCIPdebugMessage(" -> Variable <%s> is now shifted by <%1.1f> \n", SCIPvarGetName(vars[i]), shiftval);
            assert(i > 0 || !SCIPisFeasZero(scip, shiftval));
            assert(SCIPisFeasGE(scip, solval+shiftval, SCIPvarGetLbGlobal(var)) && SCIPisFeasLE(scip, solval+shiftval, SCIPvarGetUbGlobal(var)));
            SCIP_CALL( SCIPsetSolVal(scip, worksol, var, solval+shiftval) );
            SCIP_CALL( updateRowActivities(scip, activities, var, shiftval) );
         }

         SCIPfreeBufferArray(scip, &objcoeffs);
      }

      /* if the problem is a pure IP, try to install the solution, if it is a MIP, solve LP again to set the continuous
       * variables to the best possible value
       */
      if( nvars == nintvars || !SCIPhasCurrentNodeLP(scip) || SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      {
         SCIP_Bool success;

         /* since we ignore local rows, we cannot guarantee their feasibility and have to set the checklprows flag to
          * TRUE if local rows are present
          */
         SCIP_CALL( SCIPtrySol(scip, worksol, FALSE, FALSE, FALSE, localrows, &success) );

         if( success )
         {
            SCIPdebugMessage("found feasible shifted solution:\n");
            SCIPdebug( SCIP_CALL( SCIPprintSol(scip, worksol, NULL, FALSE) ) );
            heurdata->lastsolindex = SCIPsolGetIndex(bestsol);
            *result = SCIP_FOUNDSOL;
         }
      }
      else
      {
         SCIP_Bool lperror;
#ifdef NDEBUG
         SCIP_RETCODE retstat;
#endif

         SCIPdebugMessage("shifted solution should be feasible -> solve LP to fix continuous variables to best values\n");

         /* start diving to calculate the LP relaxation */
         SCIP_CALL( SCIPstartDive(scip) );

         /* set the bounds of the variables: fixed for integers, global bounds for continuous */
         for( i = 0; i < nvars; ++i )
         {
            if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN )
            {
               SCIP_CALL( SCIPchgVarLbDive(scip, vars[i], SCIPvarGetLbGlobal(vars[i])) );
               SCIP_CALL( SCIPchgVarUbDive(scip, vars[i], SCIPvarGetUbGlobal(vars[i])) );
            }
         }
         /* apply this after global bounds to not cause an error with intermediate empty domains */
         for( i = 0; i < nintvars; ++i )
         {
            if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN )
            {
               solval = SCIPgetSolVal(scip, worksol, vars[i]);
               SCIP_CALL( SCIPchgVarLbDive(scip, vars[i], solval) );
               SCIP_CALL( SCIPchgVarUbDive(scip, vars[i], solval) );
            }
         }

         /* solve LP */
         SCIPdebugMessage(" -> old LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip));

         /**@todo in case of an MINLP, if SCIPisNLPConstructed() is TRUE, say, rather solve the NLP instead of the LP */
         /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
          * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
          */
#ifdef NDEBUG
         retstat = SCIPsolveDiveLP(scip, -1, &lperror, NULL);
         if( retstat != SCIP_OKAY )
         { 
            SCIPwarningMessage(scip, "Error while solving LP in Oneopt heuristic; LP solve terminated with code <%d>\n",retstat);
         }
#else
         SCIP_CALL( SCIPsolveDiveLP(scip, -1, &lperror, NULL) );
#endif

         SCIPdebugMessage(" -> new LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip));
         SCIPdebugMessage(" -> error=%u, status=%d\n", lperror, SCIPgetLPSolstat(scip));

         /* check if this is a feasible solution */
         if( !lperror && SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_OPTIMAL )
         {
            SCIP_Bool success;

            /* copy the current LP solution to the working solution */
            SCIP_CALL( SCIPlinkLPSol(scip, worksol) );
            SCIP_CALL( SCIPtrySol(scip, worksol, FALSE, FALSE, FALSE, FALSE, &success) );

            /* check solution for feasibility */
            if( success )
            {
               SCIPdebugMessage("found feasible shifted solution:\n");
               SCIPdebug( SCIP_CALL( SCIPprintSol(scip, worksol, NULL, FALSE) ) );
               heurdata->lastsolindex = SCIPsolGetIndex(bestsol);
               *result = SCIP_FOUNDSOL;
            }
         }

         /* terminate the diving */
         SCIP_CALL( SCIPendDive(scip) );
      }
   }
   SCIPdebugMessage("Finished 1-opt heuristic\n");

   SCIPfreeBufferArray(scip, &shiftvals);
   SCIPfreeBufferArray(scip, &shiftcands);

 TERMINATE:
   SCIPfreeBufferArray(scip, &activities);
   SCIP_CALL( SCIPfreeSol(scip, &worksol) );

   return SCIP_OKAY;
}
Exemplo n.º 6
0
/** compute value by which the solution of variable @p var can be shifted */
static
SCIP_Real calcShiftVal(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_VAR*             var,                /**< variable that should be shifted */
   SCIP_Real             solval,             /**< current solution value */
   SCIP_Real*            activities          /**< LP row activities */
   )
{
   SCIP_Real lb;
   SCIP_Real ub;
   SCIP_Real obj;
   SCIP_Real shiftval;

   SCIP_COL* col;
   SCIP_ROW** colrows;
   SCIP_Real* colvals;
   SCIP_Bool shiftdown;

   int ncolrows;
   int i;


   /* get variable's solution value, global bounds and objective coefficient */
   lb = SCIPvarGetLbGlobal(var);
   ub = SCIPvarGetUbGlobal(var);
   obj = SCIPvarGetObj(var);
   shiftval = 0.0;
   shiftdown = TRUE;

   /* determine shifting direction and maximal possible shifting w.r.t. corresponding bound */
   if( obj > 0.0 && SCIPisFeasGE(scip, solval - 1.0, lb) )
      shiftval = SCIPfeasFloor(scip, solval - lb);
   else if( obj < 0.0 && SCIPisFeasLE(scip, solval + 1.0, ub) )
   {
      shiftval = SCIPfeasFloor(scip, ub - solval);
      shiftdown = FALSE;
   }
   else
      return 0.0;


   SCIPdebugMessage("Try to shift %s variable <%s> with\n", shiftdown ? "down" : "up", SCIPvarGetName(var) );
   SCIPdebugMessage("    lb:<%g> <= val:<%g> <= ub:<%g> and obj:<%g> by at most: <%g>\n", lb, solval, ub, obj, shiftval);

   /* get data of LP column */
   col = SCIPvarGetCol(var);
   colrows = SCIPcolGetRows(col);
   colvals = SCIPcolGetVals(col);
   ncolrows = SCIPcolGetNLPNonz(col);

   assert(ncolrows == 0 || (colrows != NULL && colvals != NULL));

   /* find minimal shift value, st. all rows stay valid */
   for( i = 0; i < ncolrows && shiftval > 0.0; ++i )
   {
      SCIP_ROW* row;
      int rowpos;

      row = colrows[i];
      rowpos = SCIProwGetLPPos(row);
      assert(-1 <= rowpos && rowpos < SCIPgetNLPRows(scip) );

      /* only global rows need to be valid */
      if( rowpos >= 0 && !SCIProwIsLocal(row) )
      {
         SCIP_Real shiftvalrow;

         assert(SCIProwIsInLP(row));

         if( shiftdown == (colvals[i] > 0) )
            shiftvalrow = SCIPfeasFloor(scip, (activities[rowpos] - SCIProwGetLhs(row)) / ABS(colvals[i]));
         else
            shiftvalrow = SCIPfeasFloor(scip, (SCIProwGetRhs(row) -  activities[rowpos]) / ABS(colvals[i]));
#ifdef SCIP_DEBUG
         if( shiftvalrow < shiftval )
         {
            SCIPdebugMessage(" -> The shift value had to be reduced to <%g>, because of row <%s>.\n",
               shiftvalrow, SCIProwGetName(row));
            SCIPdebugMessage("    lhs:<%g> <= act:<%g> <= rhs:<%g>, colval:<%g>\n",
               SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row), colvals[i]);
         }
#endif
         shiftval = MIN(shiftval, shiftvalrow);
         /* shiftvalrow might be negative, if we detected infeasibility -> make sure that shiftval is >= 0 */
         shiftval = MAX(shiftval, 0.0);
      }
   }
   if( shiftdown )
      shiftval *= -1.0;

   /* we must not shift variables to infinity */
   if( SCIPisInfinity(scip, solval + shiftval) )
      shiftval = 0.0;

   return shiftval;
}
Exemplo n.º 7
0
/** returns a score value for the given variable based on the active constraints that the variable appears in */
static
SCIP_Real getNActiveConsScore(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_SOL*             sol,                /**< working solution */
   SCIP_VAR*             var,                /**< variable to get the score value for */
   SCIP_Real*            downscore,          /**< pointer to store the score for branching downwards */
   SCIP_Real*            upscore             /**< pointer to store the score for branching upwards */
   )
{
   SCIP_COL* col;
   SCIP_ROW** rows;
   SCIP_Real* vals;
   int nrows;
   int r;
   int nactrows;
   SCIP_Real nlprows;
   SCIP_Real downcoefsum;
   SCIP_Real upcoefsum;
   SCIP_Real score;

   assert(downscore != NULL);
   assert(upscore != NULL);

   *downscore = 0.0;
   *upscore = 0.0;
   if( SCIPvarGetStatus(var) != SCIP_VARSTATUS_COLUMN )
      return 0.0;

   col = SCIPvarGetCol(var);
   assert(col != NULL);

   rows = SCIPcolGetRows(col);
   vals = SCIPcolGetVals(col);
   nrows = SCIPcolGetNLPNonz(col);
   nactrows = 0;
   downcoefsum = 0.0;
   upcoefsum = 0.0;
   for( r = 0; r < nrows; ++r )
   {
      SCIP_ROW* row;
      SCIP_Real activity;
      SCIP_Real lhs;
      SCIP_Real rhs;
      SCIP_Real dualsol;

      row = rows[r];
      /* calculate number of active constraint sides, i.e., count equations as two */
      lhs = SCIProwGetLhs(row);
      rhs = SCIProwGetRhs(row);

      /* @todo this is suboptimal because activity is calculated by looping over all nonzeros of this row, need to
       * store LP activities instead (which cannot be retrieved if no LP was solved at this node)
       */
      activity = SCIPgetRowSolActivity(scip, row, sol);

      dualsol = SCIProwGetDualsol(row);
      if( SCIPisFeasEQ(scip, activity, lhs) )
      {
         SCIP_Real coef;

         nactrows++;
         coef = vals[r] / SCIProwGetNorm(row);
         if( SCIPisFeasPositive(scip, dualsol) )
         {
            if( coef > 0.0 )
               downcoefsum += coef;
            else
               upcoefsum -= coef;
         }
      }
      else if( SCIPisFeasEQ(scip, activity, rhs) )
      {
         SCIP_Real coef;

         nactrows++;
         coef = vals[r] / SCIProwGetNorm(row);
         if( SCIPisFeasNegative(scip, dualsol) )
         {
            if( coef > 0.0 )
               upcoefsum += coef;
            else
               downcoefsum -= coef;
         }
      }
   }

   /* use the number of LP rows for normalization */
   nlprows = (SCIP_Real)SCIPgetNLPRows(scip);
   upcoefsum /= nlprows;
   downcoefsum /= nlprows;

   /* calculate the score using SCIP's branch score. Pass NULL as variable to not have the var branch factor influence
    * the result
    */
   score = nactrows / nlprows + SCIPgetBranchScore(scip, NULL, downcoefsum, upcoefsum);

   assert(score <= 3.0);
   assert(score >= 0.0);

   *downscore = downcoefsum;
   *upscore = upcoefsum;

   return score;
}
Exemplo n.º 8
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecRounding) /*lint --e{715}*/
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_SOL* sol;
   SCIP_VAR** lpcands;
   SCIP_Real* lpcandssol;
   SCIP_ROW** lprows;
   SCIP_Real* activities;
   SCIP_ROW** violrows;
   int* violrowpos;
   SCIP_Real obj;
   SCIP_Real bestroundval;
   SCIP_Real minobj;
   int nlpcands;
   int nlprows;
   int nfrac;
   int nviolrows;
   int c;
   int r;
   SCIP_Longint nlps;
   SCIP_Longint ncalls;
   SCIP_Longint nsolsfound;
   SCIP_Longint nnodes;

   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DIDNOTRUN;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
   if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
      return SCIP_OKAY;

   /* get heuristic data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* don't call heuristic, if we have already processed the current LP solution */
   nlps = SCIPgetNLPs(scip);
   if( nlps == heurdata->lastlp )
      return SCIP_OKAY;
   heurdata->lastlp = nlps;

   /* don't call heuristic, if it was not successful enough in the past */
   ncalls = SCIPheurGetNCalls(heur);
   nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + SCIPheurGetNSolsFound(heur);
   nnodes = SCIPgetNNodes(scip);
   if( nnodes % ((ncalls/heurdata->successfactor)/(nsolsfound+1)+1) != 0 )
      return SCIP_OKAY;

   /* get fractional variables, that should be integral */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, NULL) );
   nfrac = nlpcands;

   /* only call heuristic, if LP solution is fractional */
   if( nfrac == 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   /* get LP rows */
   SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) );

   SCIPdebugMessage("executing rounding heuristic: %d LP rows, %d fractionals\n", nlprows, nfrac);

   /* get memory for activities, violated rows, and row violation positions */
   SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &violrows, nlprows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &violrowpos, nlprows) );

   /* get the activities for all globally valid rows;
    * the rows should be feasible, but due to numerical inaccuracies in the LP solver, they can be violated
    */
   nviolrows = 0;
   for( r = 0; r < nlprows; ++r )
   {
      SCIP_ROW* row;

      row = lprows[r];
      assert(SCIProwGetLPPos(row) == r);

      if( !SCIProwIsLocal(row) )
      {
         activities[r] = SCIPgetRowActivity(scip, row);
         if( SCIPisFeasLT(scip, activities[r], SCIProwGetLhs(row))
            || SCIPisFeasGT(scip, activities[r], SCIProwGetRhs(row)) )
         {
            violrows[nviolrows] = row;
            violrowpos[r] = nviolrows;
            nviolrows++;
         }
         else
            violrowpos[r] = -1;
      }
   }

   /* get the working solution from heuristic's local data */
   sol = heurdata->sol;
   assert(sol != NULL);

   /* copy the current LP solution to the working solution */
   SCIP_CALL( SCIPlinkLPSol(scip, sol) );

   /* calculate the minimal objective value possible after rounding fractional variables */
   minobj = SCIPgetSolTransObj(scip, sol);
   assert(minobj < SCIPgetCutoffbound(scip));
   for( c = 0; c < nlpcands; ++c )
   {
      obj = SCIPvarGetObj(lpcands[c]);
      bestroundval = obj > 0.0 ? SCIPfeasFloor(scip, lpcandssol[c]) : SCIPfeasCeil(scip, lpcandssol[c]);
      minobj += obj * (bestroundval - lpcandssol[c]);
   }

   /* try to round remaining variables in order to become/stay feasible */
   while( nfrac > 0 )
   {
      SCIP_VAR* roundvar;
      SCIP_Real oldsolval;
      SCIP_Real newsolval;

      SCIPdebugMessage("rounding heuristic: nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n",
         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj));

      /* minobj < SCIPgetCutoffbound(scip) should be true, otherwise the rounding variable selection
       * should have returned NULL. Due to possible cancellation we use SCIPisLE. */
      assert( SCIPisLE(scip, minobj, SCIPgetCutoffbound(scip)) );

      /* choose next variable to process:
       *  - if a violated row exists, round a variable decreasing the violation, that has least impact on other rows
       *  - otherwise, round a variable, that has strongest devastating impact on rows in opposite direction
       */
      if( nviolrows > 0 )
      {
         SCIP_ROW* row;
         int rowpos;

         row = violrows[nviolrows-1];
         rowpos = SCIProwGetLPPos(row);
         assert(0 <= rowpos && rowpos < nlprows);
         assert(violrowpos[rowpos] == nviolrows-1);

         SCIPdebugMessage("rounding heuristic: try to fix violated row <%s>: %g <= %g <= %g\n",
            SCIProwGetName(row), SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row));
         if( SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) )
         {
            /* lhs is violated: select a variable rounding, that increases the activity */
            SCIP_CALL( selectIncreaseRounding(scip, sol, minobj, row, &roundvar, &oldsolval, &newsolval) );
         }
         else
         {
            assert(SCIPisFeasGT(scip, activities[rowpos], SCIProwGetRhs(row)));
            /* rhs is violated: select a variable rounding, that decreases the activity */
            SCIP_CALL( selectDecreaseRounding(scip, sol, minobj, row, &roundvar, &oldsolval, &newsolval) );
         }
      }
      else
      {
         SCIPdebugMessage("rounding heuristic: search rounding variable and try to stay feasible\n");
         SCIP_CALL( selectEssentialRounding(scip, sol, minobj, lpcands, nlpcands, &roundvar, &oldsolval, &newsolval) );
      }

      /* check, whether rounding was possible */
      if( roundvar == NULL )
      {
         SCIPdebugMessage("rounding heuristic:  -> didn't find a rounding variable\n");
         break;
      }

      SCIPdebugMessage("rounding heuristic:  -> round var <%s>, oldval=%g, newval=%g, obj=%g\n",
         SCIPvarGetName(roundvar), oldsolval, newsolval, SCIPvarGetObj(roundvar));

      /* update row activities of globally valid rows */
      SCIP_CALL( updateActivities(scip, activities, violrows, violrowpos, &nviolrows, nlprows, 
            roundvar, oldsolval, newsolval) );

      /* store new solution value and decrease fractionality counter */
      SCIP_CALL( SCIPsetSolVal(scip, sol, roundvar, newsolval) );
      nfrac--;

      /* update minimal objective value possible after rounding remaining variables */
      obj = SCIPvarGetObj(roundvar);
      if( obj > 0.0 && newsolval > oldsolval )
         minobj += obj;
      else if( obj < 0.0 && newsolval < oldsolval )
         minobj -= obj;

      SCIPdebugMessage("rounding heuristic:  -> nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n",
         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj));
   }

   /* check, if the new solution is feasible */
   if( nfrac == 0 && nviolrows == 0 )
   {
      SCIP_Bool stored;

      /* check solution for feasibility, and add it to solution store if possible
       * neither integrality nor feasibility of LP rows has to be checked, because this is already
       * done in the rounding heuristic itself; however, be better check feasibility of LP rows,
       * because of numerical problems with activity updating
       */
      SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) );

      if( stored )
      {
#ifdef SCIP_DEBUG
         SCIPdebugMessage("found feasible rounded solution:\n");
         SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) );
#endif
         *result = SCIP_FOUNDSOL;
      }
   }

   /* free memory buffers */
   SCIPfreeBufferArray(scip, &violrowpos);
   SCIPfreeBufferArray(scip, &violrows);
   SCIPfreeBufferArray(scip, &activities);

   return SCIP_OKAY;
}
Exemplo n.º 9
0
/** returns a score value for the given variable based on the active constraints that the variable appears in */
static
SCIP_Real getNActiveConsScore(
    SCIP*                 scip,               /**< SCIP data structure */
    SCIP_VAR*             var,                /**< variable to get the score value for */
    SCIP_Real*            downscore,          /**< pointer to store the score for branching downwards */
    SCIP_Real*            upscore             /**< pointer to store the score for branching upwards */
)
{
    SCIP_COL* col;
    SCIP_ROW** rows;
    SCIP_Real* vals;
    int nrows;
    int r;
    int nactrows;
    SCIP_Real downcoefsum;
    SCIP_Real upcoefsum;
    SCIP_Real score;

    assert(downscore != NULL);
    assert(upscore != NULL);

    *downscore = 0.0;
    *upscore = 0.0;
    if( SCIPvarGetStatus(var) != SCIP_VARSTATUS_COLUMN )
        return 0.0;

    col = SCIPvarGetCol(var);
    assert(col != NULL);

    rows = SCIPcolGetRows(col);
    vals = SCIPcolGetVals(col);
    nrows = SCIPcolGetNLPNonz(col);
    nactrows = 0;
    downcoefsum = 0.0;
    upcoefsum = 0.0;
    for( r = 0; r < nrows; ++r )
    {
        SCIP_Real activity;
        SCIP_Real lhs;
        SCIP_Real rhs;
        SCIP_Real dualsol;

        /* calculate number of active constraint sides, i.e., count equations as two */
        lhs = SCIProwGetLhs(rows[r]);
        rhs = SCIProwGetRhs(rows[r]);
        activity = SCIPgetRowLPActivity(scip, rows[r]);
        dualsol = SCIProwGetDualsol(rows[r]);
        if( SCIPisFeasEQ(scip, activity, lhs) )
        {
            SCIP_Real coef;

            nactrows++;
            coef = vals[r] / SCIProwGetNorm(rows[r]);
            if( SCIPisFeasPositive(scip, dualsol) )
            {
                if( coef > 0.0 )
                    downcoefsum += coef;
                else
                    upcoefsum -= coef;
            }
        }
        else if( SCIPisFeasEQ(scip, activity, rhs) )
        {
            SCIP_Real coef;

            nactrows++;
            coef = vals[r] / SCIProwGetNorm(rows[r]);
            if( SCIPisFeasNegative(scip, dualsol) )
            {
                if( coef > 0.0 )
                    upcoefsum += coef;
                else
                    downcoefsum -= coef;
            }
        }
    }
    score = 1e-3*nactrows + (downcoefsum + 1e-6) * (upcoefsum + 1e-6);
    *downscore = -downcoefsum;
    *upscore = -upcoefsum;

    return score;
}
Exemplo n.º 10
0
/**  when a variable is shifted, the activities and slacks of all rows it appears in have to be updated */
static
SCIP_RETCODE updateSlacks(
   SCIP*                 scip,               /**< pointer to current SCIP data structure */
   SCIP_SOL*             sol,                /**< working solution */
   SCIP_VAR*             var,                /**< pointer to variable to be modified */
   SCIP_Real             shiftvalue,         /**< the value by which the variable is shifted */
   SCIP_Real*            upslacks,           /**< upslacks of all rows the variable appears in */
   SCIP_Real*            downslacks,         /**< downslacks of all rows the variable appears in */
   SCIP_Real*            activities,         /**< activities of the LP rows */
   SCIP_VAR**            slackvars,          /**< the slack variables for equality rows */
   SCIP_Real*            slackcoeffs,        /**< the slack variable coefficients */
   int                   nslacks             /**< size of the arrays */
   )
{
   SCIP_COL*    col;        /* the corresponding column of variable var */
   SCIP_ROW**   rows;       /* pointer to the nonzero coefficient rows for variable var */
   int          nrows;      /* the number of nonzeros */
   SCIP_Real*   colvals;    /* array to store the nonzero coefficients */
   int i;

   assert(scip != NULL);
   assert(sol != NULL);
   assert(var != NULL);
   assert(upslacks != NULL);
   assert(downslacks != NULL);
   assert(activities != NULL);
   assert(nslacks >= 0);

   col = SCIPvarGetCol(var);
   assert(col != NULL);

   rows     = SCIPcolGetRows(col);
   nrows    = SCIPcolGetNLPNonz(col);
   colvals  = SCIPcolGetVals(col);
   assert(nrows == 0 || (rows != NULL && colvals != NULL));

   /* go through all rows the shifted variable appears in */
   for( i = 0; i < nrows; ++i )
   {
      int rowpos;

      rowpos = SCIProwGetLPPos(rows[i]);
      assert(-1 <= rowpos && rowpos < nslacks);

      /* if the row is in the LP, update its activity, up and down slack */
      if( rowpos >= 0 )
      {
         SCIP_Real val;

         val = colvals[i] * shiftvalue;

         /* if the row is an equation, we update its slack variable instead of its activities */
         if( SCIPisFeasEQ(scip, SCIProwGetLhs(rows[i]), SCIProwGetRhs(rows[i])) )
         {
            SCIP_Real slackvarshiftval;
            SCIP_Real slackvarsolval;

            assert(slackvars[rowpos] != NULL);
            assert(!SCIPisFeasZero(scip, slackcoeffs[rowpos]));

            slackvarsolval = SCIPgetSolVal(scip, sol, slackvars[rowpos]);
            slackvarshiftval = -val / slackcoeffs[rowpos];

            assert(SCIPisFeasGE(scip, slackvarsolval + slackvarshiftval, SCIPvarGetLbGlobal(slackvars[rowpos])));
            assert(SCIPisFeasLE(scip, slackvarsolval + slackvarshiftval, SCIPvarGetUbGlobal(slackvars[rowpos])));

            SCIP_CALL( SCIPsetSolVal(scip, sol, slackvars[rowpos], slackvarsolval + slackvarshiftval) );
         }
         else if( !SCIPisInfinity(scip, -activities[rowpos]) && !SCIPisInfinity(scip, activities[rowpos]) )
            activities[rowpos] += val;

         /* the slacks of the row now can be updated independently of its type */
         if( !SCIPisInfinity(scip, upslacks[rowpos]) )
            upslacks[rowpos] -= val;
         if( !SCIPisInfinity(scip, -downslacks[rowpos]) )
            downslacks[rowpos] += val;

         assert(!SCIPisFeasNegative(scip, upslacks[rowpos]));
         assert(!SCIPisFeasNegative(scip, downslacks[rowpos]));
      }
   }
   return SCIP_OKAY;
}
Exemplo n.º 11
0
/** gets the nonbasic coefficients of a simplex row */
static
SCIP_RETCODE getSimplexCoefficients(
   SCIP*                 scip,               /**< SCIP pointer */
   SCIP_ROW**            rows,               /**< LP rows */
   int                   nrows,              /**< number LP rows */
   SCIP_COL**            cols,               /**< LP columns */
   int                   ncols,              /**< number of LP columns */
   SCIP_Real*            coef,               /**< row of \f$B^{-1} \cdot A\f$ */
   SCIP_Real*            binvrow,            /**< row of \f$B^{-1}\f$ */
   SCIP_Real*            simplexcoefs,       /**< pointer to store the nonbasic simplex-coefficients */
   int*                  nonbasicnumber      /**< pointer to store the number of nonbasic simplex-coefficients */
   )
{
   int r;
   int c;

   assert( scip != NULL );
   assert( rows != NULL );
   assert( nonbasicnumber != NULL );
   assert( simplexcoefs != NULL );
   assert( cols != NULL );

   *nonbasicnumber = 0;

   /* note: the non-slack variables have to be added first (see the function generateDisjCutSOS1()) */

   /* get simplex-coefficients of the non-basic non-slack variables */
   for (c = 0; c < ncols; ++c)
   {
      SCIP_COL* col;

      col = cols[c];
      assert( col != NULL );
      if ( SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_LOWER  || SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_UPPER )
         simplexcoefs[(*nonbasicnumber)++] = coef[c];
   }

   /* get simplex-coefficients of the non-basic slack variables */
   for (r = 0; r < nrows; ++r)
   {
      SCIP_ROW* row;
      row = rows[r];
      assert( row != NULL );

      if ( SCIProwGetBasisStatus(row) == SCIP_BASESTAT_LOWER || SCIProwGetBasisStatus(row) == SCIP_BASESTAT_UPPER )
      {
         assert( SCIPisFeasZero(scip, SCIPgetRowLPActivity(scip, row) - SCIProwGetRhs(row)) || SCIPisFeasZero(scip, SCIPgetRowLPActivity(scip, row) - SCIProwGetLhs(row)) );

         simplexcoefs[(*nonbasicnumber)++] = binvrow[r];
      }
   }

   return SCIP_OKAY;
}
Exemplo n.º 12
0
SCIP_RETCODE SCIPconshdlrBenders::sepaBenders(
		SCIP * scip,
		SCIP_CONSHDLR * conshdlr,
		SCIP_SOL * sol,
		whereFrom where,
		SCIP_RESULT * result)
{
	OsiCuts cs; /**< Benders cut placeholder */
	SCIP_Real * vals = NULL; /**< current solution */

#if 1
	if (scip_checkpriority_ < 0)
	{
		/** consider incumbent solutions only */
		double primObj = SCIPgetPrimalbound(scip);
		double currObj = SCIPgetSolOrigObj(scip, sol);
		if (SCIPisLT(scip, primObj, currObj))
		{
			DSPdebugMessage(" -> primObj %e currObj %e\n", primObj, currObj);
			return SCIP_OKAY;
		}
	}
#endif

	/** allocate memory */
	SCIP_CALL(SCIPallocMemoryArray(scip, &vals, nvars_));

	/** get current solution */
	SCIP_CALL(SCIPgetSolVals(scip, sol, nvars_, vars_, vals));

	/** TODO The following filter does not work, meaning that it provides suboptimal solution.
	 * I do not know the reason. */
#if 0
	double maxviol = 1.e-10;
	for (int j = 0; j < nvars_ - naux_; ++j)
	{
		SCIP_VARTYPE vartype = SCIPvarGetType(vars_[j]);
		if (vartype == SCIP_VARTYPE_CONTINUOUS) continue;

		double viol = 0.5 - fabs(vals[j] - floor(vals[j]) - 0.5);
		if (viol > maxviol)
			maxviol = viol;
	}
	DSPdebugMessage("maximum violation %e\n", maxviol);

	if (where != from_scip_check &&
		where != from_scip_enfolp &&
		where != from_scip_enfops &&
		maxviol > 1.e-7)
	{
		printf("where %d maxviol %e\n", where, maxviol);
		/** free memory */
		SCIPfreeMemoryArray(scip, &vals);
		return SCIP_OKAY;
	}
#endif

#ifdef DSP_DEBUG2
	double minvals = COIN_DBL_MAX;
	double maxvals = -COIN_DBL_MAX;
	double sumvals = 0.;
	double ssvals  = 0.;
	//printf("nvars_ %d naux_ %d nAuxvars_ %d\n", nvars_, naux_, tss_->nAuxvars_);
	for (int j = 0; j < nvars_ - naux_; ++j)
	{
//		if (vals[j] < 0 || vals[j] > 1)
//			printf("solution %d has value %e.\n", j, vals[j]);
		sumvals += vals[j];
		ssvals  += vals[j] * vals[j];
		minvals = minvals > vals[j] ? vals[j] : minvals;
		maxvals = maxvals < vals[j] ? vals[j] : maxvals;
	}
	DSPdebugMessage("solution: min %e max %e avg %e sum %e two-norm %e\n",
			minvals, maxvals, sumvals / nvars_, sumvals, sqrt(ssvals));
#endif

#define SCAN_GLOBAL_CUT_POOL
#ifdef SCAN_GLOBAL_CUT_POOL
	if (SCIPgetStage(scip) == SCIP_STAGE_SOLVING ||
		SCIPgetStage(scip) == SCIP_STAGE_SOLVED ||
		SCIPgetStage(scip) == SCIP_STAGE_EXITSOLVE)
	{
		bool addedPoolCut = false;
		int numPoolCuts = SCIPgetNPoolCuts(scip);
		int numCutsToScan = 100;
		SCIP_CUT ** poolcuts = SCIPgetPoolCuts(scip);
		for (int i = numPoolCuts - 1; i >= 0; --i)
		{
			if (i < 0) break;
			if (numCutsToScan == 0) break;

			/** retrieve row */
			SCIP_ROW * poolcutrow = SCIPcutGetRow(poolcuts[i]);

			/** benders? */
			if (strcmp(SCIProwGetName(poolcutrow), "benders") != 0)
				continue;

			/** counter */
			numCutsToScan--;

			if (SCIPgetCutEfficacy(scip, sol, poolcutrow) > 1.e-6)
			{
				if (where == from_scip_sepalp ||
					where == from_scip_sepasol ||
					where == from_scip_enfolp)
				{
					/** add cut */
					SCIP_Bool infeasible;
					SCIP_CALL(SCIPaddCut(scip, sol, poolcutrow,
							FALSE, /**< force cut */
							&infeasible));

					if (infeasible)
						*result = SCIP_CUTOFF;
					else //if (*result != SCIP_CUTOFF)
						*result = SCIP_SEPARATED;
				}
				else
					*result = SCIP_INFEASIBLE;
				addedPoolCut = true;
				break;
			}
		}
		if (addedPoolCut)
		{
			DSPdebugMessage("Added pool cut\n");
			/** free memory */
			SCIPfreeMemoryArray(scip, &vals);
			return SCIP_OKAY;
		}
	}
#endif

	/** generate Benders cuts */
	assert(tss_);
	tss_->generateCuts(nvars_, vals, &cs);

	/** If found Benders cuts */
	for (int i = 0; i < cs.sizeCuts(); ++i)
	{
		/** get cut pointer */
		OsiRowCut * rc = cs.rowCutPtr(i);
		if (!rc) continue;

		const CoinPackedVector cutrow = rc->row();
		if (cutrow.getNumElements() == 0) continue;

		/** is optimality cut? */
		bool isOptimalityCut = false;
		for (int j = nvars_ - naux_; j < nvars_; ++j)
		{
			if (cutrow.getMaxIndex() == j)
			{
				isOptimalityCut = true;
				break;
			}
		}

		double efficacy = rc->violated(vals) / cutrow.twoNorm();
		SCIP_Bool isEfficacious = efficacy > 1.e-6;

#define KK_TEST
#ifdef KK_TEST
		if (SCIPgetStage(scip) == SCIP_STAGE_INITSOLVE ||
			SCIPgetStage(scip) == SCIP_STAGE_SOLVING)
		{
			/** create empty row */
			SCIP_ROW * row = NULL;
			SCIP_CALL(SCIPcreateEmptyRowCons(scip, &row, conshdlr, "benders", rc->lb(), SCIPinfinity(scip),
					FALSE, /**< is row local? */
					FALSE, /**< is row modifiable? */
					FALSE  /**< is row removable? can this be TRUE? */));

			/** cache the row extension and only flush them if the cut gets added */
			SCIP_CALL(SCIPcacheRowExtensions(scip, row));

			/** collect all non-zero coefficients */
			for (int j = 0; j < cutrow.getNumElements(); ++j)
				SCIP_CALL(SCIPaddVarToRow(scip, row, vars_[cutrow.getIndices()[j]], cutrow.getElements()[j]));

			DSPdebugMessage("found Benders (%s) cut: act=%f, lhs=%f, norm=%f, eff=%f, min=%f, max=%f (range=%f)\n",
				isOptimalityCut ? "opti" : "feas",
				SCIPgetRowLPActivity(scip, row), SCIProwGetLhs(row), SCIProwGetNorm(row),
				SCIPgetCutEfficacy(scip, sol, row),
				SCIPgetRowMinCoef(scip, row), SCIPgetRowMaxCoef(scip, row),
				SCIPgetRowMaxCoef(scip, row)/SCIPgetRowMinCoef(scip, row));

			/** flush all changes before adding cut */
			SCIP_CALL(SCIPflushRowExtensions(scip, row));

			DSPdebugMessage("efficacy %e isEfficatious %d\n", efficacy, isEfficacious);

			if (isEfficacious)
			{
				if (where == from_scip_sepalp ||
					where == from_scip_sepasol ||
					where == from_scip_enfolp)
				{
					/** add cut */
					SCIP_Bool infeasible;
					SCIP_CALL(SCIPaddCut(scip, sol, row,
							FALSE, /**< force cut */
							&infeasible));

					if (infeasible)
						*result = SCIP_CUTOFF;
					else //if (*result != SCIP_CUTOFF)
						*result = SCIP_SEPARATED;
				}
				else
					*result = SCIP_INFEASIBLE;
			}

			/** add cut to global pool */
			SCIP_CALL(SCIPaddPoolCut(scip, row));
			DSPdebugMessage("number of cuts in global cut pool: %d\n", SCIPgetNPoolCuts(scip));

			/** release the row */
			SCIP_CALL(SCIPreleaseRow(scip, &row));
		}
		else if (isEfficacious &&
					where != from_scip_sepalp &&
					where != from_scip_sepasol &&
					where != from_scip_enfolp)
			*result = SCIP_INFEASIBLE;
#else
		if (where == from_scip_sepalp ||
			where == from_scip_sepasol ||
			where == from_scip_enfolp)
		{
			/** create empty row */
			SCIP_ROW * row = NULL;
			SCIP_CALL(SCIPcreateEmptyRowCons(scip, &row, conshdlr, "benders", rc->lb(), SCIPinfinity(scip),
					FALSE, /**< is row local? */
					FALSE, /**< is row modifiable? */
					FALSE  /**< is row removable? can this be TRUE? */));

			/** cache the row extension and only flush them if the cut gets added */
			SCIP_CALL(SCIPcacheRowExtensions(scip, row));

			/** collect all non-zero coefficients */
			for (int j = 0; j < cutrow.getNumElements(); ++j)
				SCIP_CALL(SCIPaddVarToRow(scip, row, vars_[cutrow.getIndices()[j]], cutrow.getElements()[j]));

			DSPdebugMessage("found Benders (%s) cut: act=%f, lhs=%f, norm=%f, eff=%f, min=%f, max=%f (range=%f)\n",
				isOptimalityCut ? "opti" : "feas",
				SCIPgetRowLPActivity(scip, row), SCIProwGetLhs(row), SCIProwGetNorm(row),
				SCIPgetCutEfficacy(scip, NULL, row),
				SCIPgetRowMinCoef(scip, row), SCIPgetRowMaxCoef(scip, row),
				SCIPgetRowMaxCoef(scip, row)/SCIPgetRowMinCoef(scip, row));

			/** flush all changes before adding cut */
			SCIP_CALL(SCIPflushRowExtensions(scip, row));

			/** is cut efficacious? */
			if (isOptimalityCut)
			{
				efficacy = SCIPgetCutEfficacy(scip, sol, row);
				isEfficacious = SCIPisCutEfficacious(scip, sol, row);
			}
			else
			{
				efficacy = rc->violated(vals);
				isEfficacious = efficacy > 1.e-6;
			}

			if (isEfficacious)
			{
				/** add cut */
				SCIP_Bool infeasible;
				SCIP_CALL(SCIPaddCut(scip, sol, row,
						FALSE, /**< force cut */
						&infeasible));

				if (infeasible)
					*result = SCIP_CUTOFF;
				else if (*result != SCIP_CUTOFF)
					*result = SCIP_SEPARATED;
			}

			/** add cut to global pool */
			SCIP_CALL(SCIPaddPoolCut(scip, row));

			/** release the row */
			SCIP_CALL(SCIPreleaseRow(scip, &row));
		}
		else
		{
			if (isOptimalityCut)
			{
				efficacy = rc->violated(vals) / cutrow.twoNorm();
				isEfficacious = efficacy > 0.05;
			}
			else
			{
				efficacy = rc->violated(vals);
				isEfficacious = efficacy > 1.e-6;
			}
			DSPdebugMessage("%s efficacy %e\n", isOptimalityCut ? "Opti" : "Feas", efficacy);

			if (isEfficacious == TRUE)
				*result = SCIP_INFEASIBLE;
		}
#endif
	}

	/** free memory */
	SCIPfreeMemoryArray(scip, &vals);

	return SCIP_OKAY;
}
Exemplo n.º 13
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecShifting) /*lint --e{715}*/
{   /*lint --e{715}*/
    SCIP_HEURDATA* heurdata;
    SCIP_SOL* sol;
    SCIP_VAR** lpcands;
    SCIP_Real* lpcandssol;
    SCIP_ROW** lprows;
    SCIP_Real* activities;
    SCIP_ROW** violrows;
    SCIP_Real* nincreases;
    SCIP_Real* ndecreases;
    int* violrowpos;
    int* nfracsinrow;
    SCIP_Real increaseweight;
    SCIP_Real obj;
    SCIP_Real bestshiftval;
    SCIP_Real minobj;
    int nlpcands;
    int nlprows;
    int nvars;
    int nfrac;
    int nviolrows;
    int nprevviolrows;
    int minnviolrows;
    int nnonimprovingshifts;
    int c;
    int r;
    SCIP_Longint nlps;
    SCIP_Longint ncalls;
    SCIP_Longint nsolsfound;
    SCIP_Longint nnodes;

    assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
    assert(scip != NULL);
    assert(result != NULL);
    assert(SCIPhasCurrentNodeLP(scip));

    *result = SCIP_DIDNOTRUN;

    /* only call heuristic, if an optimal LP solution is at hand */
    if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
        return SCIP_OKAY;

    /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
    if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
        return SCIP_OKAY;

    /* get heuristic data */
    heurdata = SCIPheurGetData(heur);
    assert(heurdata != NULL);

    /* don't call heuristic, if we have already processed the current LP solution */
    nlps = SCIPgetNLPs(scip);
    if( nlps == heurdata->lastlp )
        return SCIP_OKAY;
    heurdata->lastlp = nlps;

    /* don't call heuristic, if it was not successful enough in the past */
    ncalls = SCIPheurGetNCalls(heur);
    nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + SCIPheurGetNSolsFound(heur);
    nnodes = SCIPgetNNodes(scip);
    if( nnodes % ((ncalls/100)/(nsolsfound+1)+1) != 0 )
        return SCIP_OKAY;

    /* get fractional variables, that should be integral */
    /* todo check if heuristic should include implicit integer variables for its calculations */
    SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, NULL) );
    nfrac = nlpcands;

    /* only call heuristic, if LP solution is fractional */
    if( nfrac == 0 )
        return SCIP_OKAY;

    *result = SCIP_DIDNOTFIND;

    /* get LP rows */
    SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) );

    SCIPdebugMessage("executing shifting heuristic: %d LP rows, %d fractionals\n", nlprows, nfrac);

    /* get memory for activities, violated rows, and row violation positions */
    nvars = SCIPgetNVars(scip);
    SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &violrows, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &violrowpos, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &nfracsinrow, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &nincreases, nvars) );
    SCIP_CALL( SCIPallocBufferArray(scip, &ndecreases, nvars) );
    BMSclearMemoryArray(nfracsinrow, nlprows);
    BMSclearMemoryArray(nincreases, nvars);
    BMSclearMemoryArray(ndecreases, nvars);

    /* get the activities for all globally valid rows;
     * the rows should be feasible, but due to numerical inaccuracies in the LP solver, they can be violated
     */
    nviolrows = 0;
    for( r = 0; r < nlprows; ++r )
    {
        SCIP_ROW* row;

        row = lprows[r];
        assert(SCIProwGetLPPos(row) == r);

        if( !SCIProwIsLocal(row) )
        {
            activities[r] = SCIPgetRowActivity(scip, row);
            if( SCIPisFeasLT(scip, activities[r], SCIProwGetLhs(row))
                    || SCIPisFeasGT(scip, activities[r], SCIProwGetRhs(row)) )
            {
                violrows[nviolrows] = row;
                violrowpos[r] = nviolrows;
                nviolrows++;
            }
            else
                violrowpos[r] = -1;
        }
    }

    /* calc the current number of fractional variables in rows */
    for( c = 0; c < nlpcands; ++c )
        addFracCounter(nfracsinrow, nlprows, lpcands[c], +1);

    /* get the working solution from heuristic's local data */
    sol = heurdata->sol;
    assert(sol != NULL);

    /* copy the current LP solution to the working solution */
    SCIP_CALL( SCIPlinkLPSol(scip, sol) );

    /* calculate the minimal objective value possible after rounding fractional variables */
    minobj = SCIPgetSolTransObj(scip, sol);
    assert(minobj < SCIPgetCutoffbound(scip));
    for( c = 0; c < nlpcands; ++c )
    {
        obj = SCIPvarGetObj(lpcands[c]);
        bestshiftval = obj > 0.0 ? SCIPfeasFloor(scip, lpcandssol[c]) : SCIPfeasCeil(scip, lpcandssol[c]);
        minobj += obj * (bestshiftval - lpcandssol[c]);
    }

    /* try to shift remaining variables in order to become/stay feasible */
    nnonimprovingshifts = 0;
    minnviolrows = INT_MAX;
    increaseweight = 1.0;
    while( (nfrac > 0 || nviolrows > 0) && nnonimprovingshifts < MAXSHIFTINGS )
    {
        SCIP_VAR* shiftvar;
        SCIP_Real oldsolval;
        SCIP_Real newsolval;
        SCIP_Bool oldsolvalisfrac;
        int probindex;

        SCIPdebugMessage("shifting heuristic: nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g), cutoff=%g\n",
                         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj),
                         SCIPretransformObj(scip, SCIPgetCutoffbound(scip)));

        nprevviolrows = nviolrows;

        /* choose next variable to process:
         *  - if a violated row exists, shift a variable decreasing the violation, that has least impact on other rows
         *  - otherwise, shift a variable, that has strongest devastating impact on rows in opposite direction
         */
        shiftvar = NULL;
        oldsolval = 0.0;
        newsolval = 0.0;
        if( nviolrows > 0 && (nfrac == 0 || nnonimprovingshifts < MAXSHIFTINGS-1) )
        {
            SCIP_ROW* row;
            int rowidx;
            int rowpos;
            int direction;

            rowidx = -1;
            rowpos = -1;
            row = NULL;
            if( nfrac > 0 )
            {
                for( rowidx = nviolrows-1; rowidx >= 0; --rowidx )
                {
                    row = violrows[rowidx];
                    rowpos = SCIProwGetLPPos(row);
                    assert(violrowpos[rowpos] == rowidx);
                    if( nfracsinrow[rowpos] > 0 )
                        break;
                }
            }
            if( rowidx == -1 )
            {
                rowidx = SCIPgetRandomInt(0, nviolrows-1, &heurdata->randseed);
                row = violrows[rowidx];
                rowpos = SCIProwGetLPPos(row);
                assert(0 <= rowpos && rowpos < nlprows);
                assert(violrowpos[rowpos] == rowidx);
                assert(nfracsinrow[rowpos] == 0);
            }
            assert(violrowpos[rowpos] == rowidx);

            SCIPdebugMessage("shifting heuristic: try to fix violated row <%s>: %g <= %g <= %g\n",
                             SCIProwGetName(row), SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row));
            SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) );

            /* get direction in which activity must be shifted */
            assert(SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row))
                   || SCIPisFeasGT(scip, activities[rowpos], SCIProwGetRhs(row)));
            direction = SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) ? +1 : -1;

            /* search a variable that can shift the activity in the necessary direction */
            SCIP_CALL( selectShifting(scip, sol, row, activities[rowpos], direction,
                                      nincreases, ndecreases, increaseweight, &shiftvar, &oldsolval, &newsolval) );
        }

        if( shiftvar == NULL && nfrac > 0 )
        {
            SCIPdebugMessage("shifting heuristic: search rounding variable and try to stay feasible\n");
            SCIP_CALL( selectEssentialRounding(scip, sol, minobj, lpcands, nlpcands, &shiftvar, &oldsolval, &newsolval) );
        }

        /* check, whether shifting was possible */
        if( shiftvar == NULL || SCIPisEQ(scip, oldsolval, newsolval) )
        {
            SCIPdebugMessage("shifting heuristic:  -> didn't find a shifting variable\n");
            break;
        }

        SCIPdebugMessage("shifting heuristic:  -> shift var <%s>[%g,%g], type=%d, oldval=%g, newval=%g, obj=%g\n",
                         SCIPvarGetName(shiftvar), SCIPvarGetLbGlobal(shiftvar), SCIPvarGetUbGlobal(shiftvar), SCIPvarGetType(shiftvar),
                         oldsolval, newsolval, SCIPvarGetObj(shiftvar));

        /* update row activities of globally valid rows */
        SCIP_CALL( updateActivities(scip, activities, violrows, violrowpos, &nviolrows, nlprows,
                                    shiftvar, oldsolval, newsolval) );
        if( nviolrows >= nprevviolrows )
            nnonimprovingshifts++;
        else if( nviolrows < minnviolrows )
        {
            minnviolrows = nviolrows;
            nnonimprovingshifts = 0;
        }

        /* store new solution value and decrease fractionality counter */
        SCIP_CALL( SCIPsetSolVal(scip, sol, shiftvar, newsolval) );

        /* update fractionality counter and minimal objective value possible after shifting remaining variables */
        oldsolvalisfrac = !SCIPisFeasIntegral(scip, oldsolval)
                          && (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER);
        obj = SCIPvarGetObj(shiftvar);
        if( (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER)
                && oldsolvalisfrac )
        {
            assert(SCIPisFeasIntegral(scip, newsolval));
            nfrac--;
            nnonimprovingshifts = 0;
            minnviolrows = INT_MAX;
            addFracCounter(nfracsinrow, nlprows, shiftvar, -1);

            /* the rounding was already calculated into the minobj -> update only if rounding in "wrong" direction */
            if( obj > 0.0 && newsolval > oldsolval )
                minobj += obj;
            else if( obj < 0.0 && newsolval < oldsolval )
                minobj -= obj;
        }
        else
        {
            /* update minimal possible objective value */
            minobj += obj * (newsolval - oldsolval);
        }

        /* update increase/decrease arrays */
        if( !oldsolvalisfrac )
        {
            probindex = SCIPvarGetProbindex(shiftvar);
            assert(0 <= probindex && probindex < nvars);
            increaseweight *= WEIGHTFACTOR;
            if( newsolval < oldsolval )
                ndecreases[probindex] += increaseweight;
            else
                nincreases[probindex] += increaseweight;
            if( increaseweight >= 1e+09 )
            {
                int i;

                for( i = 0; i < nvars; ++i )
                {
                    nincreases[i] /= increaseweight;
                    ndecreases[i] /= increaseweight;
                }
                increaseweight = 1.0;
            }
        }

        SCIPdebugMessage("shifting heuristic:  -> nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n",
                         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj));
    }

    /* check, if the new solution is feasible */
    if( nfrac == 0 && nviolrows == 0 )
    {
        SCIP_Bool stored;

        /* check solution for feasibility, and add it to solution store if possible
         * neither integrality nor feasibility of LP rows has to be checked, because this is already
         * done in the shifting heuristic itself; however, we better check feasibility of LP rows,
         * because of numerical problems with activity updating
         */
        SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) );

        if( stored )
        {
            SCIPdebugMessage("found feasible shifted solution:\n");
            SCIPdebug( SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) ) );
            *result = SCIP_FOUNDSOL;
        }
    }

    /* free memory buffers */
    SCIPfreeBufferArray(scip, &ndecreases);
    SCIPfreeBufferArray(scip, &nincreases);
    SCIPfreeBufferArray(scip, &nfracsinrow);
    SCIPfreeBufferArray(scip, &violrowpos);
    SCIPfreeBufferArray(scip, &violrows);
    SCIPfreeBufferArray(scip, &activities);

    return SCIP_OKAY;
}
Exemplo n.º 14
0
/** returns a variable, that pushes activity of the row in the given direction with minimal negative impact on other rows;
 *  if variables have equal impact, chooses the one with best objective value improvement in corresponding direction;
 *  prefer fractional integers over other variables in order to become integral during the process;
 *  shifting in a direction is forbidden, if this forces the objective value over the upper bound, or if the variable
 *  was already shifted in the opposite direction
 */
static
SCIP_RETCODE selectShifting(
    SCIP*                 scip,               /**< SCIP data structure */
    SCIP_SOL*             sol,                /**< primal solution */
    SCIP_ROW*             row,                /**< LP row */
    SCIP_Real             rowactivity,        /**< activity of LP row */
    int                   direction,          /**< should the activity be increased (+1) or decreased (-1)? */
    SCIP_Real*            nincreases,         /**< array with weighted number of increasings per variables */
    SCIP_Real*            ndecreases,         /**< array with weighted number of decreasings per variables */
    SCIP_Real             increaseweight,     /**< current weight of increase/decrease updates */
    SCIP_VAR**            shiftvar,           /**< pointer to store the shifting variable, returns NULL if impossible */
    SCIP_Real*            oldsolval,          /**< pointer to store old solution value of shifting variable */
    SCIP_Real*            newsolval           /**< pointer to store new (shifted) solution value of shifting variable */
)
{
    SCIP_COL** rowcols;
    SCIP_Real* rowvals;
    int nrowcols;
    SCIP_Real activitydelta;
    SCIP_Real bestshiftscore;
    SCIP_Real bestdeltaobj;
    int c;

    assert(direction == +1 || direction == -1);
    assert(nincreases != NULL);
    assert(ndecreases != NULL);
    assert(shiftvar != NULL);
    assert(oldsolval != NULL);
    assert(newsolval != NULL);

    /* get row entries */
    rowcols = SCIProwGetCols(row);
    rowvals = SCIProwGetVals(row);
    nrowcols = SCIProwGetNLPNonz(row);

    /* calculate how much the activity must be shifted in order to become feasible */
    activitydelta = (direction == +1 ? SCIProwGetLhs(row) - rowactivity : SCIProwGetRhs(row) - rowactivity);
    assert((direction == +1 && SCIPisPositive(scip, activitydelta))
           || (direction == -1 && SCIPisNegative(scip, activitydelta)));

    /* select shifting variable */
    bestshiftscore = SCIP_REAL_MAX;
    bestdeltaobj = SCIPinfinity(scip);
    *shiftvar = NULL;
    *newsolval = 0.0;
    *oldsolval = 0.0;
    for( c = 0; c < nrowcols; ++c )
    {
        SCIP_COL* col;
        SCIP_VAR* var;
        SCIP_Real val;
        SCIP_Real solval;
        SCIP_Real shiftval;
        SCIP_Real shiftscore;
        SCIP_Bool isinteger;
        SCIP_Bool isfrac;
        SCIP_Bool increase;

        col = rowcols[c];
        var = SCIPcolGetVar(col);
        val = rowvals[c];
        assert(!SCIPisZero(scip, val));
        solval = SCIPgetSolVal(scip, sol, var);

        isinteger = (SCIPvarGetType(var) == SCIP_VARTYPE_BINARY || SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER);
        isfrac = isinteger && !SCIPisFeasIntegral(scip, solval);
        increase = (direction * val > 0.0);

        /* calculate the score of the shifting (prefer smaller values) */
        if( isfrac )
            shiftscore = increase ? -1.0 / (SCIPvarGetNLocksUp(var) + 1.0) :
                         -1.0 / (SCIPvarGetNLocksDown(var) + 1.0);
        else
        {
            int probindex;
            probindex = SCIPvarGetProbindex(var);

            if( increase )
                shiftscore = ndecreases[probindex]/increaseweight;
            else
                shiftscore = nincreases[probindex]/increaseweight;
            if( isinteger )
                shiftscore += 1.0;
        }

        if( shiftscore <= bestshiftscore )
        {
            SCIP_Real deltaobj;

            if( !increase )
            {
                /* shifting down */
                assert(direction * val < 0.0);
                if( isfrac )
                    shiftval = SCIPfeasFloor(scip, solval);
                else
                {
                    SCIP_Real lb;

                    assert(activitydelta/val < 0.0);
                    shiftval = solval + activitydelta/val;
                    assert(shiftval <= solval); /* may be equal due to numerical digit erasement in the subtraction */
                    if( SCIPvarIsIntegral(var) )
                        shiftval = SCIPfeasFloor(scip, shiftval);
                    lb = SCIPvarGetLbGlobal(var);
                    shiftval = MAX(shiftval, lb);
                }
            }
            else
            {
                /* shifting up */
                assert(direction * val > 0.0);
                if( isfrac )
                    shiftval = SCIPfeasCeil(scip, solval);
                else
                {
                    SCIP_Real ub;

                    assert(activitydelta/val > 0.0);
                    shiftval = solval + activitydelta/val;
                    assert(shiftval >= solval); /* may be equal due to numerical digit erasement in the subtraction */
                    if( SCIPvarIsIntegral(var) )
                        shiftval = SCIPfeasCeil(scip, shiftval);
                    ub = SCIPvarGetUbGlobal(var);
                    shiftval = MIN(shiftval, ub);
                }
            }

            if( SCIPisEQ(scip, shiftval, solval) )
                continue;

            deltaobj = SCIPvarGetObj(var) * (shiftval - solval);
            if( shiftscore < bestshiftscore || deltaobj < bestdeltaobj )
            {
                bestshiftscore = shiftscore;
                bestdeltaobj = deltaobj;
                *shiftvar = var;
                *oldsolval = solval;
                *newsolval = shiftval;
            }
        }
    }

    return SCIP_OKAY;
}
Exemplo n.º 15
0
/** checks whether given row is valid for the debugging solution */
SCIP_RETCODE SCIPdebugCheckRow(
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_ROW*             row                 /**< row to check for validity */
   )
{
   SCIP_COL** cols;
   SCIP_Real* vals;
   SCIP_Real lhs;
   SCIP_Real rhs;
   int nnonz;
   int i;
   SCIP_Real minactivity;
   SCIP_Real maxactivity;
   SCIP_Real solval;

   assert(set != NULL);
   assert(row != NULL);

   /* check if we are in the original problem and not in a sub MIP */
   if( !isSolutionInMip(set) )
      return SCIP_OKAY;

   /* check if the incumbent solution is at least as good as the debug solution, so we can stop to check the debug solution */
   if( debugSolIsAchieved(set) )
      return SCIP_OKAY;

   /* if the row is only locally valid, check whether the debugging solution is contained in the local subproblem */
   if( SCIProwIsLocal(row) )
   {
      SCIP_Bool solcontained;

      SCIP_CALL( isSolutionInNode(SCIPblkmem(set->scip), set, SCIPgetCurrentNode(set->scip), &solcontained) );
      if( !solcontained )
         return SCIP_OKAY;
   }

   cols = SCIProwGetCols(row);
   vals = SCIProwGetVals(row);
   nnonz = SCIProwGetNNonz(row);
   lhs = SCIProwGetLhs(row);
   rhs = SCIProwGetRhs(row);

   /* calculate row's activity on debugging solution */
   minactivity = SCIProwGetConstant(row);
   maxactivity = minactivity;
   for( i = 0; i < nnonz; ++i )
   {
      SCIP_VAR* var;

      /* get solution value of variable in debugging solution */
      var = SCIPcolGetVar(cols[i]);
      SCIP_CALL( getSolutionValue(set, var, &solval) );

      if( solval != SCIP_UNKNOWN ) /*lint !e777*/
      {
         minactivity += vals[i] * solval;
         maxactivity += vals[i] * solval;
      }
      else if( vals[i] > 0.0 )
      {
         minactivity += vals[i] * SCIPvarGetLbGlobal(var);
         maxactivity += vals[i] * SCIPvarGetUbGlobal(var);
      }
      else if( vals[i] < 0.0 )
      {
         minactivity += vals[i] * SCIPvarGetUbGlobal(var);
         maxactivity += vals[i] * SCIPvarGetLbGlobal(var);
      }
   }
   SCIPdebugMessage("debugging solution on row <%s>: %g <= [%g,%g] <= %g\n",
      SCIProwGetName(row), lhs, minactivity, maxactivity, rhs);

   /* check row for violation */
   if( SCIPsetIsFeasLT(set, maxactivity, lhs) || SCIPsetIsFeasGT(set, minactivity, rhs) )
   {
      printf("***** debug: row <%s> violates debugging solution (lhs=%.15g, rhs=%.15g, activity=[%.15g,%.15g], local=%d)\n",
         SCIProwGetName(row), lhs, rhs, minactivity, maxactivity, SCIProwIsLocal(row));
      SCIProwPrint(row, NULL);

      /* output row with solution values */
      printf("\n\n");
      printf("***** debug: violated row <%s>:\n", SCIProwGetName(row));
      printf(" %.15g <= %.15g", lhs, SCIProwGetConstant(row));
      for( i = 0; i < nnonz; ++i )
      {
         /* get solution value of variable in debugging solution */
         SCIP_CALL( getSolutionValue(set, SCIPcolGetVar(cols[i]), &solval) );
         printf(" %+.15g<%s>[%.15g]", vals[i], SCIPvarGetName(SCIPcolGetVar(cols[i])), solval);
      }
      printf(" <= %.15g\n", rhs);

      SCIPABORT();
   }

   return SCIP_OKAY;
}
Exemplo n.º 16
0
/** computes a disjunctive cut inequality based on two simplex taubleau rows */
static
SCIP_RETCODE generateDisjCutSOS1(
   SCIP*                 scip,               /**< SCIP pointer */
   SCIP_SEPA*            sepa,               /**< separator */
   SCIP_ROW**            rows,               /**< LP rows */
   int                   nrows,              /**< number of LP rows */
   SCIP_COL**            cols,               /**< LP columns */
   int                   ncols,              /**< number of LP columns */
   int                   ndisjcuts,          /**< number of disjunctive cuts found so far */
   SCIP_Bool             scale,              /**< should cut be scaled */
   SCIP_Bool             strengthen,         /**< should cut be strengthened if integer variables are present */
   SCIP_Real             cutlhs1,            /**< left hand side of the first simplex row */
   SCIP_Real             cutlhs2,            /**< left hand side of the second simplex row */
   SCIP_Real             bound1,             /**< bound of first simplex row */
   SCIP_Real             bound2,             /**< bound of second simplex row */
   SCIP_Real*            simplexcoefs1,      /**< simplex coefficients of first row */
   SCIP_Real*            simplexcoefs2,      /**< simplex coefficients of second row */
   SCIP_Real*            cutcoefs,           /**< pointer to store cut coefficients (length: nscipvars) */
   SCIP_ROW**            row,                /**< pointer to store disjunctive cut inequality */
   SCIP_Bool*            madeintegral        /**< pointer to store whether cut has been scaled to integral values */
   )
{
   char cutname[SCIP_MAXSTRLEN];
   SCIP_COL** rowcols;
   SCIP_COL* col;
   SCIP_Real* rowvals;
   SCIP_Real lhsrow;
   SCIP_Real rhsrow;
   SCIP_Real cutlhs;
   SCIP_Real sgn;
   SCIP_Real lb;
   SCIP_Real ub;
   int nonbasicnumber = 0;
   int rownnonz;
   int ind;
   int r;
   int c;

   assert( scip != NULL );
   assert( row != NULL );
   assert( rows != NULL );
   assert( cols != NULL );
   assert( simplexcoefs1 != NULL );
   assert( simplexcoefs2 != NULL );
   assert( cutcoefs != NULL );
   assert( sepa != NULL );
   assert( madeintegral != NULL );

   *madeintegral = FALSE;

   /* check signs */
   if ( SCIPisFeasPositive(scip, cutlhs1) == SCIPisFeasPositive(scip, cutlhs2) )
      sgn = 1.0;
   else
      sgn = -1.0;

   /* check bounds */
   if ( SCIPisInfinity(scip, REALABS(bound1)) || SCIPisInfinity(scip, REALABS(bound2)) )
      strengthen = FALSE;

   /* compute left hand side of row (a later update is possible, see below) */
   cutlhs = sgn * cutlhs1 * cutlhs2;

   /* add cut-coefficients of the non-basic non-slack variables */
   for (c = 0; c < ncols; ++c)
   {
      col = cols[c];
      assert( col != NULL );
      ind = SCIPcolGetLPPos(col);
      assert( ind >= 0 );

      if ( SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_LOWER )
      {
         lb = SCIPcolGetLb(col);

         /* for integer variables we may obtain stronger coefficients */
         if ( strengthen && SCIPcolIsIntegral(col) )
         {
            SCIP_Real mval;
            SCIP_Real mvalfloor;
            SCIP_Real mvalceil;

            mval = (cutlhs2 * simplexcoefs1[nonbasicnumber] - cutlhs1 * simplexcoefs2[nonbasicnumber]) / (cutlhs2 * bound1 + cutlhs1 * bound2);
            mvalfloor = SCIPfloor(scip, mval);
            mvalceil = SCIPceil(scip, mval);

            cutcoefs[ind] = MIN(sgn * cutlhs2 * (simplexcoefs1[nonbasicnumber] - mvalfloor * bound1), sgn * cutlhs1 * (simplexcoefs2[nonbasicnumber] + mvalceil * bound2));
            assert( SCIPisFeasLE(scip, cutcoefs[ind], MAX(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber])) );
         }
         else
            cutcoefs[ind] = MAX(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber]);

         cutlhs += cutcoefs[ind] * lb;
         ++nonbasicnumber;
      }
      else if ( SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_UPPER )
      {
         ub = SCIPcolGetUb(col);

         /* for integer variables we may obtain stronger coefficients */
         if ( strengthen && SCIPcolIsIntegral(col) )
         {
            SCIP_Real mval;
            SCIP_Real mvalfloor;
            SCIP_Real mvalceil;

            mval = (cutlhs2 * simplexcoefs1[nonbasicnumber] - cutlhs1 * simplexcoefs2[nonbasicnumber]) / (cutlhs2 * bound1 + cutlhs1 * bound2);
            mvalfloor = SCIPfloor(scip, -mval);
            mvalceil = SCIPceil(scip, -mval);

            cutcoefs[ind] = MAX(sgn * cutlhs2 * (simplexcoefs1[nonbasicnumber] + mvalfloor * bound1), sgn * cutlhs1 * (simplexcoefs2[nonbasicnumber] - mvalceil * bound2));
            assert( SCIPisFeasLE(scip, -cutcoefs[ind], -MIN(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber])) );
         }
         else
            cutcoefs[ind] = MIN(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber]);

         cutlhs += cutcoefs[ind] * ub;
         ++nonbasicnumber;
      }
      else
      {
         assert( SCIPcolGetBasisStatus(col) != SCIP_BASESTAT_ZERO );
         cutcoefs[ind] = 0.0;
      }
   }

   /* add cut-coefficients of the non-basic slack variables */
   for (r = 0; r < nrows; ++r)
   {
      rhsrow = SCIProwGetRhs(rows[r]) - SCIProwGetConstant(rows[r]);
      lhsrow = SCIProwGetLhs(rows[r]) - SCIProwGetConstant(rows[r]);

      assert( SCIProwGetBasisStatus(rows[r]) != SCIP_BASESTAT_ZERO );
      assert( SCIPisFeasZero(scip, lhsrow - rhsrow) || SCIPisNegative(scip, lhsrow - rhsrow) );
      assert( SCIProwIsInLP(rows[r]) );

      if ( SCIProwGetBasisStatus(rows[r]) != SCIP_BASESTAT_BASIC )
      {
         SCIP_Real cutcoef;

         if ( SCIProwGetBasisStatus(rows[r]) == SCIP_BASESTAT_UPPER )
         {
            assert( SCIPisFeasZero(scip, SCIPgetRowLPActivity(scip, rows[r]) - SCIProwGetRhs(rows[r])) );

            cutcoef = MAX(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber]);
            cutlhs -= cutcoef * rhsrow;
            ++nonbasicnumber;
         }
         else /* SCIProwGetBasisStatus(rows[r]) == SCIP_BASESTAT_LOWER */
         {
            assert( SCIProwGetBasisStatus(rows[r]) == SCIP_BASESTAT_LOWER );
            assert( SCIPisFeasZero(scip, SCIPgetRowLPActivity(scip, rows[r]) - SCIProwGetLhs(rows[r])) );

            cutcoef = MIN(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber]);
            cutlhs -= cutcoef * lhsrow;
            ++nonbasicnumber;
         }

         rownnonz = SCIProwGetNNonz(rows[r]);
         rowvals = SCIProwGetVals(rows[r]);
         rowcols = SCIProwGetCols(rows[r]);

         for (c = 0; c < rownnonz; ++c)
         {
            ind = SCIPcolGetLPPos(rowcols[c]);

            /* if column is not in LP, then return without generating cut */
            if ( ind < 0 )
            {
               *row = NULL;
               return SCIP_OKAY;
            }

            cutcoefs[ind] -= cutcoef * rowvals[c];
         }
      }
   }

   /* create cut */
   (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "%s_%d_%d", SCIPsepaGetName(sepa), SCIPgetNLPs(scip), ndisjcuts);
   if ( SCIPgetDepth(scip) == 0 )
      SCIP_CALL( SCIPcreateEmptyRowSepa(scip, row, sepa, cutname, cutlhs, SCIPinfinity(scip), FALSE, FALSE, TRUE) );
   else
      SCIP_CALL( SCIPcreateEmptyRowSepa(scip, row, sepa, cutname, cutlhs, SCIPinfinity(scip), TRUE, FALSE, TRUE) );

   SCIP_CALL( SCIPcacheRowExtensions(scip, *row) );
   for (c = 0; c < ncols; ++c)
   {
      ind = SCIPcolGetLPPos(cols[c]);
      assert( ind >= 0 );
      if ( ! SCIPisFeasZero(scip, cutcoefs[ind]) )
      {
         SCIP_CALL( SCIPaddVarToRow(scip, *row, SCIPcolGetVar(cols[c]), cutcoefs[ind] ) );
      }
   }
   SCIP_CALL( SCIPflushRowExtensions(scip, *row) );

   /* try to scale the cut to integral values
    * @todo find better but still stable disjunctive cut settings
    */
   if ( scale )
   {
      int maxdepth;
      int depth;
      SCIP_Longint maxdnom;
      SCIP_Real maxscale;

      depth = SCIPgetDepth(scip);
      assert( depth >= 0 );
      maxdepth = SCIPgetMaxDepth(scip);
      if ( depth == 0 )
      {
         maxdnom = 1000;
         maxscale = 1000.0;
      }
      else if ( depth <= maxdepth/4 )
      {
         maxdnom = 1000;
         maxscale = 1000.0;
      }
      else if ( depth <= maxdepth/2 )
      {
         maxdnom = 100;
         maxscale = 100.0;
      }
      else
      {
         maxdnom = 10;
         maxscale = 10.0;
      }

      SCIP_CALL( SCIPmakeRowIntegral(scip, *row, -SCIPepsilon(scip), SCIPsumepsilon(scip), maxdnom, maxscale, TRUE, madeintegral) );
   }

   return SCIP_OKAY;
}
Exemplo n.º 17
0
/** adds cut stored as LP row to separation storage and captures it;
 *  if the cut should be forced to be used, an infinite score has to be used
 */
static
SCIP_RETCODE sepastoreAddCut(
   SCIP_SEPASTORE*       sepastore,          /**< separation storage */
   BMS_BLKMEM*           blkmem,             /**< block memory */
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_STAT*            stat,               /**< problem statistics data */
   SCIP_EVENTQUEUE*      eventqueue,         /**< event queue */
   SCIP_EVENTFILTER*     eventfilter,        /**< event filter for global events */
   SCIP_LP*              lp,                 /**< LP data */
   SCIP_SOL*             sol,                /**< primal solution that was separated, or NULL for LP solution */
   SCIP_ROW*             cut,                /**< separated cut */
   SCIP_Bool             forcecut,           /**< should the cut be forced to enter the LP? */
   SCIP_Bool             root                /**< are we at the root node? */
   )
{
   SCIP_Real cutefficacy;
   SCIP_Real cutobjparallelism;
   SCIP_Real cutscore;
   int pos;

   assert(sepastore != NULL);
   assert(sepastore->nforcedcuts <= sepastore->ncuts);
   assert(set != NULL);
   assert(cut != NULL);
   assert(sol != NULL || !SCIProwIsInLP(cut));
   assert(!SCIPsetIsInfinity(set, -SCIProwGetLhs(cut)) || !SCIPsetIsInfinity(set, SCIProwGetRhs(cut)));
   assert(eventqueue != NULL);
   assert(eventfilter != NULL);

   /* in the root node, every local cut is a global cut, and global cuts are nicer in many ways...*/
   if( root && SCIProwIsLocal(cut) )
   {
      SCIPdebugMessage("change local flag of cut <%s> to FALSE due to addition in root node\n", SCIProwGetName(cut));

      SCIP_CALL( SCIProwChgLocal(cut, FALSE) );

      assert(!SCIProwIsLocal(cut));
   }

   /* check cut for redundancy
    * in each separation round, make sure that at least one (even redundant) cut enters the LP to avoid cycling
    */
   if( !forcecut && sepastore->ncuts > 0 && sepastoreIsCutRedundant(sepastore, set, stat, cut) )
      return SCIP_OKAY;

   /* if only one cut is currently present in the cut store, it could be redundant; in this case, it can now be removed
    * again, because now a non redundant cut enters the store
    */
   if( sepastore->ncuts == 1 && sepastoreIsCutRedundant(sepastore, set, stat, sepastore->cuts[0]) )
   {
      /* check, if the row deletions from separation storage events are tracked
       * if so, issue ROWDELETEDSEPA event
       */
      if( eventfilter->len > 0 && (eventfilter->eventmask & SCIP_EVENTTYPE_ROWDELETEDSEPA) != 0 )
      {
         SCIP_EVENT* event;

         SCIP_CALL( SCIPeventCreateRowDeletedSepa(&event, blkmem, sepastore->cuts[0]) );
         SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
      }
      
      SCIP_CALL( SCIProwRelease(&sepastore->cuts[0], blkmem, set, lp) );
      sepastore->ncuts = 0;
      sepastore->nforcedcuts = 0;
   }

   /* a cut is forced to enter the LP if
    *  - we construct the initial LP, or
    *  - it has infinite score factor, or
    *  - it is a bound change
    * if it is a non-forced cut and no cuts should be added, abort
    */
   forcecut = forcecut || sepastore->initiallp || sepastore->forcecuts
      || (!SCIProwIsModifiable(cut) && SCIProwGetNNonz(cut) == 1);
   if( !forcecut && SCIPsetGetSepaMaxcuts(set, root) == 0 )
      return SCIP_OKAY;

   /* get enough memory to store the cut */
   SCIP_CALL( sepastoreEnsureCutsMem(sepastore, set, sepastore->ncuts+1) );
   assert(sepastore->ncuts < sepastore->cutssize);

   if( forcecut )
   {
      cutefficacy = SCIPsetInfinity(set);
      cutscore = SCIPsetInfinity(set);
      cutobjparallelism = 1.0;
   }
   else
   {
      /* initialize values to invalid (will be initialized during cut filtering) */
      cutefficacy = SCIP_INVALID;
      cutscore = SCIP_INVALID;

      /* initialize parallelism to objective (constant throughout filtering) */
      if( set->sepa_objparalfac > 0.0 )
         cutobjparallelism = SCIProwGetObjParallelism(cut, set, lp);
      else
         cutobjparallelism = 0.0; /* no need to calculate it */
   }

   SCIPdebugMessage("adding cut <%s> to separation storage of size %d (forcecut=%u, len=%d)\n",
      SCIProwGetName(cut), sepastore->ncuts, forcecut, SCIProwGetNNonz(cut));
   /*SCIPdebug(SCIProwPrint(cut, NULL));*/

   /* capture the cut */
   SCIProwCapture(cut);

   /* add cut to arrays */
   if( forcecut )
   {
      /* make room at the beginning of the array for forced cut */
      pos = sepastore->nforcedcuts;
      sepastore->cuts[sepastore->ncuts] = sepastore->cuts[pos];
      sepastore->efficacies[sepastore->ncuts] = sepastore->efficacies[pos];
      sepastore->objparallelisms[sepastore->ncuts] = sepastore->objparallelisms[pos];
      sepastore->orthogonalities[sepastore->ncuts] = sepastore->orthogonalities[pos];
      sepastore->scores[sepastore->ncuts] = sepastore->scores[pos];
      sepastore->nforcedcuts++;
   }
   else
      pos = sepastore->ncuts;

   sepastore->cuts[pos] = cut;
   sepastore->efficacies[pos] = cutefficacy;
   sepastore->objparallelisms[pos] = cutobjparallelism;
   sepastore->orthogonalities[pos] = 1.0;
   sepastore->scores[pos] = cutscore;
   sepastore->ncuts++;

   /* check, if the row addition to separation storage events are tracked
    * if so, issue ROWADDEDSEPA event
    */
   if( eventfilter->len > 0 && (eventfilter->eventmask & SCIP_EVENTTYPE_ROWADDEDSEPA) != 0 )
   {
      SCIP_EVENT* event;

      SCIP_CALL( SCIPeventCreateRowAddedSepa(&event, blkmem, cut) );
      SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
   }

   return SCIP_OKAY;
}
Exemplo n.º 18
0
/** LP solution separation method for disjunctive cuts */
static
SCIP_DECL_SEPAEXECLP(sepaExeclpDisjunctive)
{
   SCIP_SEPADATA* sepadata;
   SCIP_CONSHDLR* conshdlr;
   SCIP_DIGRAPH* conflictgraph;
   SCIP_ROW** rows;
   SCIP_COL** cols;
   SCIP_Real* cutcoefs = NULL;
   SCIP_Real* simplexcoefs1 = NULL;
   SCIP_Real* simplexcoefs2 = NULL;
   SCIP_Real* coef = NULL;
   SCIP_Real* binvrow = NULL;
   SCIP_Real* rowsmaxval = NULL;
   SCIP_Real* violationarray = NULL;
   int* fixings1 = NULL;
   int* fixings2 = NULL;
   int* basisind = NULL;
   int* basisrow = NULL;
   int* varrank = NULL;
   int* edgearray = NULL;
   int nedges;
   int ndisjcuts;
   int nrelevantedges;
   int nsos1vars;
   int nconss;
   int maxcuts;
   int ncalls;
   int depth;
   int ncols;
   int nrows;
   int ind;
   int j;
   int i;

   assert( sepa != NULL );
   assert( strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0 );
   assert( scip != NULL );
   assert( result != NULL );

   *result = SCIP_DIDNOTRUN;

   /* only generate disjunctive cuts if we are not close to terminating */
   if ( SCIPisStopped(scip) )
      return SCIP_OKAY;

   /* only generate disjunctive cuts if an optimal LP solution is at hand */
   if ( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only generate disjunctive cuts if the LP solution is basic */
   if ( ! SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* get LP data */
   SCIP_CALL( SCIPgetLPColsData(scip, &cols, &ncols) );
   SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );

   /* return if LP has no columns or no rows */
   if ( ncols == 0 || nrows == 0 )
      return SCIP_OKAY;

   assert( cols != NULL );
   assert( rows != NULL );

   /* get sepa data */
   sepadata = SCIPsepaGetData(sepa);
   assert( sepadata != NULL );

   /* get constraint handler */
   conshdlr = sepadata->conshdlr;
   if ( conshdlr == NULL )
      return SCIP_OKAY;

   /* get number of constraints */
   nconss = SCIPconshdlrGetNConss(conshdlr);
   if ( nconss == 0 )
      return SCIP_OKAY;

   /* check for maxdepth < depth, maxinvcutsroot = 0 and maxinvcuts = 0 */
   depth = SCIPgetDepth(scip);
   if ( ( sepadata->maxdepth >= 0 && sepadata->maxdepth < depth )
      || ( depth == 0 && sepadata->maxinvcutsroot == 0 )
      || ( depth > 0 && sepadata->maxinvcuts == 0 ) )
      return SCIP_OKAY;

   /* only call the cut separator a given number of times at each node */
   ncalls = SCIPsepaGetNCallsAtNode(sepa);
   if ( (depth == 0 && sepadata->maxroundsroot >= 0 && ncalls >= sepadata->maxroundsroot)
      || (depth > 0 && sepadata->maxrounds >= 0 && ncalls >= sepadata->maxrounds) )
      return SCIP_OKAY;

   /* get conflict graph and number of conflict graph edges (note that the digraph arcs were added in both directions) */
   conflictgraph = SCIPgetConflictgraphSOS1(conshdlr);
   nedges = (int)SCIPceil(scip, (SCIP_Real)SCIPdigraphGetNArcs(conflictgraph)/2);

   /* if too many conflict graph edges, the separator can be slow: delay it until no other cuts have been found */
   if ( sepadata->maxconfsdelay >= 0 && nedges >= sepadata->maxconfsdelay )
   {
      int ncutsfound;

      ncutsfound = SCIPgetNCutsFound(scip);
      if ( ncutsfound > sepadata->lastncutsfound || ! SCIPsepaWasLPDelayed(sepa) )
      {
         sepadata->lastncutsfound = ncutsfound;
         *result = SCIP_DELAYED;
         return SCIP_OKAY;
      }
   }

   /* check basis status */
   for (j = 0; j < ncols; ++j)
   {
      if ( SCIPcolGetBasisStatus(cols[j]) == SCIP_BASESTAT_ZERO )
         return SCIP_OKAY;
   }

   /* get number of SOS1 variables */
   nsos1vars = SCIPgetNSOS1Vars(conshdlr);

   /* allocate buffer arrays */
   SCIP_CALL( SCIPallocBufferArray(scip, &edgearray, nedges) );
   SCIP_CALL( SCIPallocBufferArray(scip, &fixings1, nedges) );
   SCIP_CALL( SCIPallocBufferArray(scip, &fixings2, nedges) );
   SCIP_CALL( SCIPallocBufferArray(scip, &violationarray, nedges) );

   /* get all violated conflicts {i, j} in the conflict graph and sort them based on the degree of a violation value */
   nrelevantedges = 0;
   for (j = 0; j < nsos1vars; ++j)
   {
      SCIP_VAR* var;

      var = SCIPnodeGetVarSOS1(conflictgraph, j);

      if ( SCIPvarIsActive(var) && ! SCIPisFeasZero(scip, SCIPcolGetPrimsol(SCIPvarGetCol(var))) && SCIPcolGetBasisStatus(SCIPvarGetCol(var)) == SCIP_BASESTAT_BASIC )
      {
         int* succ;
         int nsucc;

         /* get successors and number of successors */
         nsucc = SCIPdigraphGetNSuccessors(conflictgraph, j);
         succ = SCIPdigraphGetSuccessors(conflictgraph, j);

         for (i = 0; i < nsucc; ++i)
         {
            SCIP_VAR* varsucc;
            int succind;

            succind = succ[i];
            varsucc = SCIPnodeGetVarSOS1(conflictgraph, succind);
            if ( SCIPvarIsActive(varsucc) && succind < j && ! SCIPisFeasZero(scip, SCIPgetSolVal(scip, NULL, varsucc) ) &&
                 SCIPcolGetBasisStatus(SCIPvarGetCol(varsucc)) == SCIP_BASESTAT_BASIC )
            {
               fixings1[nrelevantedges] = j;
               fixings2[nrelevantedges] = succind;
               edgearray[nrelevantedges] = nrelevantedges;
               violationarray[nrelevantedges++] = SCIPgetSolVal(scip, NULL, var) * SCIPgetSolVal(scip, NULL, varsucc);
            }
         }
      }
   }

   /* sort violation score values */
   if ( nrelevantedges > 0)
      SCIPsortDownRealInt(violationarray, edgearray, nrelevantedges);
   else
   {
      SCIPfreeBufferArrayNull(scip, &violationarray);
      SCIPfreeBufferArrayNull(scip, &fixings2);
      SCIPfreeBufferArrayNull(scip, &fixings1);
      SCIPfreeBufferArrayNull(scip, &edgearray);

      return SCIP_OKAY;
   }
   SCIPfreeBufferArrayNull(scip, &violationarray);

   /* compute maximal number of cuts */
   if ( SCIPgetDepth(scip) == 0 )
      maxcuts = MIN(sepadata->maxinvcutsroot, nrelevantedges);
   else
      maxcuts = MIN(sepadata->maxinvcuts, nrelevantedges);
   assert( maxcuts > 0 );

   /* allocate buffer arrays */
   SCIP_CALL( SCIPallocBufferArray(scip, &varrank, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &rowsmaxval, nrows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &basisrow, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &binvrow, nrows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &coef, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &simplexcoefs1, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &simplexcoefs2, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &cutcoefs, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &basisind, nrows) );

   /* get basis indices */
   SCIP_CALL( SCIPgetLPBasisInd(scip, basisind) );

   /* create vector "basisrow" with basisrow[column of non-slack basis variable] = corresponding row of B^-1;
    * compute maximum absolute value of nonbasic row coefficients */
   for (j = 0; j < nrows; ++j)
   {
      SCIP_COL** rowcols;
      SCIP_Real* rowvals;
      SCIP_ROW* row;
      SCIP_Real val;
      SCIP_Real max = 0.0;
      int nnonz;

      /* fill basisrow vector */
      ind = basisind[j];
      if ( ind >= 0 )
         basisrow[ind] = j;

      /* compute maximum absolute value of nonbasic row coefficients */
      row = rows[j];
      assert( row != NULL );
      rowvals = SCIProwGetVals(row);
      nnonz = SCIProwGetNNonz(row);
      rowcols = SCIProwGetCols(row);

      for (i = 0; i < nnonz; ++i)
      {
         if ( SCIPcolGetBasisStatus(rowcols[i]) == SCIP_BASESTAT_LOWER  || SCIPcolGetBasisStatus(rowcols[i]) == SCIP_BASESTAT_UPPER )
         {
            val = REALABS(rowvals[i]);
            if ( SCIPisFeasGT(scip, val, max) )
               max = REALABS(val);
         }
      }

      /* handle slack variable coefficient and save maximum value */
      rowsmaxval[j] = MAX(max, 1.0);
   }

   /* initialize variable ranks with -1 */
   for (j = 0; j < ncols; ++j)
      varrank[j] = -1;

   /* free buffer array */
   SCIPfreeBufferArrayNull(scip, &basisind);

   /* for the most promising disjunctions: try to generate disjunctive cuts */
   ndisjcuts = 0;
   for (i = 0; i < maxcuts; ++i)
   {
      SCIP_Bool madeintegral;
      SCIP_Real cutlhs1;
      SCIP_Real cutlhs2;
      SCIP_Real bound1;
      SCIP_Real bound2;
      SCIP_ROW* row = NULL;
      SCIP_VAR* var;
      SCIP_COL* col;

      int nonbasicnumber;
      int cutrank = 0;
      int edgenumber;
      int rownnonz;

      edgenumber = edgearray[i];

      /* determine first simplex row */
      var = SCIPnodeGetVarSOS1(conflictgraph, fixings1[edgenumber]);
      col = SCIPvarGetCol(var);
      ind = SCIPcolGetLPPos(col);
      assert( ind >= 0 );
      assert( SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_BASIC );

      /* get the 'ind'th row of B^-1 and B^-1 \cdot A */
      SCIP_CALL( SCIPgetLPBInvRow(scip, basisrow[ind], binvrow, NULL, NULL) );
      SCIP_CALL( SCIPgetLPBInvARow(scip, basisrow[ind], binvrow, coef, NULL, NULL) );

      /* get the simplex-coefficients of the non-basic variables */
      SCIP_CALL( getSimplexCoefficients(scip, rows, nrows, cols, ncols, coef, binvrow, simplexcoefs1, &nonbasicnumber) );

      /* get rank of variable if not known already */
      if ( varrank[ind] < 0 )
         varrank[ind] = getVarRank(scip, binvrow, rowsmaxval, sepadata->maxweightrange, rows, nrows);
      cutrank = MAX(cutrank, varrank[ind]);

      /* get right hand side and bound of simplex talbeau row */
      cutlhs1 = SCIPcolGetPrimsol(col);
      if ( SCIPisFeasPositive(scip, cutlhs1) )
         bound1 = SCIPcolGetUb(col);
      else
         bound1 = SCIPcolGetLb(col);


      /* determine second simplex row */
      var = SCIPnodeGetVarSOS1(conflictgraph, fixings2[edgenumber]);
      col = SCIPvarGetCol(var);
      ind = SCIPcolGetLPPos(col);
      assert( ind >= 0 );
      assert( SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_BASIC );

      /* get the 'ind'th row of B^-1 and B^-1 \cdot A */
      SCIP_CALL( SCIPgetLPBInvRow(scip, basisrow[ind], binvrow, NULL, NULL) );
      SCIP_CALL( SCIPgetLPBInvARow(scip, basisrow[ind], binvrow, coef, NULL, NULL) );

      /* get the simplex-coefficients of the non-basic variables */
      SCIP_CALL( getSimplexCoefficients(scip, rows, nrows, cols, ncols, coef, binvrow, simplexcoefs2, &nonbasicnumber) );

      /* get rank of variable if not known already */
      if ( varrank[ind] < 0 )
         varrank[ind] = getVarRank(scip, binvrow, rowsmaxval, sepadata->maxweightrange, rows, nrows);
      cutrank = MAX(cutrank, varrank[ind]);

      /* get right hand side and bound of simplex talbeau row */
      cutlhs2 = SCIPcolGetPrimsol(col);
      if ( SCIPisFeasPositive(scip, cutlhs2) )
         bound2 = SCIPcolGetUb(col);
      else
         bound2 = SCIPcolGetLb(col);

      /* add coefficients to cut */
      SCIP_CALL( generateDisjCutSOS1(scip, sepa, rows, nrows, cols, ncols, ndisjcuts, TRUE, sepadata->strengthen, cutlhs1, cutlhs2, bound1, bound2, simplexcoefs1, simplexcoefs2, cutcoefs, &row, &madeintegral) );
      if ( row == NULL )
         continue;

      /* raise cutrank for present cut */
      ++cutrank;

      /* check if there are numerical evidences */
      if ( ( madeintegral && ( sepadata->maxrankintegral == -1 || cutrank <= sepadata->maxrankintegral ) )
         || ( ! madeintegral && ( sepadata->maxrank == -1 || cutrank <= sepadata->maxrank ) ) )
      {
         /* possibly add cut to LP if it is useful; in case the lhs of the cut is minus infinity (due to scaling) the cut is useless */
         rownnonz = SCIProwGetNNonz(row);
         if ( rownnonz > 0 && ! SCIPisInfinity(scip, -SCIProwGetLhs(row)) && ! SCIProwIsInLP(row) && SCIPisCutEfficacious(scip, NULL, row) )
         {
            SCIP_Bool infeasible;

            /* set cut rank */
            SCIProwChgRank(row, cutrank);

            /* add cut */
            SCIP_CALL( SCIPaddCut(scip, NULL, row, FALSE, &infeasible) );
            SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) );
            if ( infeasible )
            {
               *result = SCIP_CUTOFF;
               break;
            }
            ++ndisjcuts;
         }
      }

      /* release row */
      SCIP_CALL( SCIPreleaseRow(scip, &row) );
   }

   /* save total number of cuts found so far */
   sepadata->lastncutsfound = SCIPgetNCutsFound(scip);

   /* evaluate the result of the separation */
   if ( *result != SCIP_CUTOFF )
   {
      if ( ndisjcuts > 0 )
         *result = SCIP_SEPARATED;
      else
         *result = SCIP_DIDNOTFIND;
   }

   SCIPdebugMessage("Number of found disjunctive cuts: %d.\n", ndisjcuts);

   /* free buffer arrays */
   SCIPfreeBufferArrayNull(scip, &cutcoefs);
   SCIPfreeBufferArrayNull(scip, &simplexcoefs2);
   SCIPfreeBufferArrayNull(scip, &simplexcoefs1);
   SCIPfreeBufferArrayNull(scip, &coef);
   SCIPfreeBufferArrayNull(scip, &binvrow);
   SCIPfreeBufferArrayNull(scip, &basisrow);
   SCIPfreeBufferArrayNull(scip, &fixings2);
   SCIPfreeBufferArrayNull(scip, &fixings1);
   SCIPfreeBufferArrayNull(scip, &edgearray);
   SCIPfreeBufferArrayNull(scip, &rowsmaxval);
   SCIPfreeBufferArrayNull(scip, &varrank);

   return SCIP_OKAY;
}
Exemplo n.º 19
0
/** applies a cut that is a bound change directly as bound change instead of adding it as row to the LP */
static
SCIP_RETCODE sepastoreApplyBdchg(
   SCIP_SEPASTORE*       sepastore,          /**< separation storage */
   BMS_BLKMEM*           blkmem,             /**< block memory */
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_STAT*            stat,               /**< problem statistics */
   SCIP_TREE*            tree,               /**< branch and bound tree */
   SCIP_LP*              lp,                 /**< LP data */
   SCIP_BRANCHCAND*      branchcand,         /**< branching candidate storage */
   SCIP_EVENTQUEUE*      eventqueue,         /**< event queue */
   SCIP_ROW*             cut,                /**< cut with a single variable */
   SCIP_Bool*            cutoff              /**< pointer to store whether an empty domain was created */
   )
{
   SCIP_COL** cols;
   SCIP_Real* vals;
   SCIP_VAR* var;
   SCIP_Real lhs;
   SCIP_Real rhs;

   assert(sepastore != NULL);
   assert(!SCIProwIsModifiable(cut));
   assert(SCIProwGetNNonz(cut) == 1);
   assert(cutoff != NULL);

   *cutoff = FALSE;

   /* get the single variable and its coefficient of the cut */
   cols = SCIProwGetCols(cut);
   assert(cols != NULL);
   var = SCIPcolGetVar(cols[0]);
   vals = SCIProwGetVals(cut);
   assert(vals != NULL);
   assert(!SCIPsetIsZero(set, vals[0]));

   /* if the coefficient is nearly zero, we better ignore this cut for numerical reasons */
   if( SCIPsetIsFeasZero(set, vals[0]) )
      return SCIP_OKAY;

   /* get the left hand side of the cut and convert it to a bound */
   lhs = SCIProwGetLhs(cut);
   if( !SCIPsetIsInfinity(set, -lhs) )
   {
      lhs -= SCIProwGetConstant(cut);
      if( vals[0] > 0.0 )
      {
         /* coefficient is positive -> lhs corresponds to lower bound */
         SCIP_CALL( sepastoreApplyLb(sepastore, blkmem, set, stat, tree, lp, branchcand, eventqueue,
               var, lhs/vals[0], cutoff) );
      }
      else
      {
         /* coefficient is negative -> lhs corresponds to upper bound */
         SCIP_CALL( sepastoreApplyUb(sepastore, blkmem, set, stat, tree, lp, branchcand, eventqueue,
               var, lhs/vals[0], cutoff) );
      }
   }

   /* get the right hand side of the cut and convert it to a bound */
   rhs = SCIProwGetRhs(cut);
   if( !SCIPsetIsInfinity(set, rhs) )
   {
      rhs -= SCIProwGetConstant(cut);
      if( vals[0] > 0.0 )
      {
         /* coefficient is positive -> rhs corresponds to upper bound */
         SCIP_CALL( sepastoreApplyUb(sepastore, blkmem, set, stat, tree, lp, branchcand, eventqueue,
               var, rhs/vals[0], cutoff) );
      }
      else
      {
         /* coefficient is negative -> rhs corresponds to lower bound */
         SCIP_CALL( sepastoreApplyLb(sepastore, blkmem, set, stat, tree, lp, branchcand, eventqueue,
               var, rhs/vals[0], cutoff) );
      }
   }

   /* count the bound change as applied cut */
   if( !sepastore->initiallp )
      sepastore->ncutsapplied++;

   return SCIP_OKAY;
}
Exemplo n.º 20
0
/** LP solution separation method of separator */
static
SCIP_DECL_SEPAEXECLP(sepaExeclpGomory)
{  /*lint --e{715}*/
   SCIP_SEPADATA* sepadata;
   SCIP_VAR** vars;
   SCIP_COL** cols;
   SCIP_ROW** rows;
   SCIP_Real* binvrow;
   SCIP_Real* cutcoefs;
   SCIP_Real maxscale;
   SCIP_Real minfrac;
   SCIP_Real maxfrac;
   SCIP_Longint maxdnom;
   SCIP_Bool cutoff;
   int* basisind;
   int naddedcuts;
   int nvars;
   int ncols;
   int nrows;
   int ncalls;
   int depth;
   int maxdepth;
   int maxsepacuts;
   int c;
   int i;

   assert(sepa != NULL);
   assert(strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);

   *result = SCIP_DIDNOTRUN;

   sepadata = SCIPsepaGetData(sepa);
   assert(sepadata != NULL);

   depth = SCIPgetDepth(scip);
   ncalls = SCIPsepaGetNCallsAtNode(sepa);

   minfrac = sepadata->away;
   maxfrac = 1.0 - sepadata->away;

   /* only call separator, if we are not close to terminating */
   if( SCIPisStopped(scip) )
      return SCIP_OKAY;

   /* only call the gomory cut separator a given number of times at each node */
   if( (depth == 0 && sepadata->maxroundsroot >= 0 && ncalls >= sepadata->maxroundsroot)
      || (depth > 0 && sepadata->maxrounds >= 0 && ncalls >= sepadata->maxrounds) )
      return SCIP_OKAY;

   /* only call separator, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call separator, if the LP solution is basic */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* only call separator, if there are fractional variables */
   if( SCIPgetNLPBranchCands(scip) == 0 )
      return SCIP_OKAY;

   /* get variables data */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );

   /* get LP data */
   SCIP_CALL( SCIPgetLPColsData(scip, &cols, &ncols) );
   SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );
   if( ncols == 0 || nrows == 0 )
      return SCIP_OKAY;

#if 0 /* if too many columns, separator is usually very slow: delay it until no other cuts have been found */
   if( ncols >= 50*nrows )
      return SCIP_OKAY;

   if( ncols >= 5*nrows )
   {
      int ncutsfound;

      ncutsfound = SCIPgetNCutsFound(scip);
      if( ncutsfound > sepadata->lastncutsfound || !SCIPsepaWasLPDelayed(sepa) )
      {
         sepadata->lastncutsfound = ncutsfound;
         *result = SCIP_DELAYED;
         return SCIP_OKAY;
      }
   }
#endif

   /* set the maximal denominator in rational representation of gomory cut and the maximal scale factor to
    * scale resulting cut to integral values to avoid numerical instabilities
    */
   /**@todo find better but still stable gomory cut settings: look at dcmulti, gesa3, khb0525, misc06, p2756 */
   maxdepth = SCIPgetMaxDepth(scip);
   if( depth == 0 )
   {
      maxdnom = 1000;
      maxscale = 1000.0;
   }
   else if( depth <= maxdepth/4 )
   {
      maxdnom = 1000;
      maxscale = 1000.0;
   }
   else if( depth <= maxdepth/2 )
   {
      maxdnom = 100;
      maxscale = 100.0;
   }
   else
   {
      maxdnom = 10;
      maxscale = 10.0;
   }

   /* allocate temporary memory */
   SCIP_CALL( SCIPallocBufferArray(scip, &cutcoefs, nvars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &basisind, nrows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &binvrow, nrows) );

   /* get basis indices */
   SCIP_CALL( SCIPgetLPBasisInd(scip, basisind) );

   /* get the maximal number of cuts allowed in a separation round */
   if( depth == 0 )
      maxsepacuts = sepadata->maxsepacutsroot;
   else
      maxsepacuts = sepadata->maxsepacuts;

   SCIPdebugMessage("searching gomory cuts: %d cols, %d rows, maxdnom=%"SCIP_LONGINT_FORMAT", maxscale=%g, maxcuts=%d\n",
      ncols, nrows, maxdnom, maxscale, maxsepacuts);

   cutoff = FALSE;
   naddedcuts = 0;

   /* for all basic columns belonging to integer variables, try to generate a gomory cut */
   for( i = 0; i < nrows && naddedcuts < maxsepacuts && !SCIPisStopped(scip) && !cutoff; ++i )
   {
      SCIP_Bool tryrow;

      tryrow = FALSE;
      c = basisind[i];
      if( c >= 0 )
      {
         SCIP_VAR* var;

         assert(c < ncols);
         var = SCIPcolGetVar(cols[c]);
         if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS )
         {
            SCIP_Real primsol;

            primsol = SCIPcolGetPrimsol(cols[c]);
            assert(SCIPgetVarSol(scip, var) == primsol); /*lint !e777*/

            if( SCIPfeasFrac(scip, primsol) >= minfrac )
            {
               SCIPdebugMessage("trying gomory cut for col <%s> [%g]\n", SCIPvarGetName(var), primsol);
               tryrow = TRUE;
            }
         }
      }
      else if( sepadata->separaterows )
      {
         SCIP_ROW* row;

         assert(0 <= -c-1 && -c-1 < nrows);
         row = rows[-c-1];
         if( SCIProwIsIntegral(row) && !SCIProwIsModifiable(row) )
         {
            SCIP_Real primsol;

            primsol = SCIPgetRowActivity(scip, row);
            if( SCIPfeasFrac(scip, primsol) >= minfrac )
            {
               SCIPdebugMessage("trying gomory cut for row <%s> [%g]\n", SCIProwGetName(row), primsol);
               tryrow = TRUE;
            }
         }
      }

      if( tryrow )
      {
         SCIP_Real cutrhs;
         SCIP_Real cutact;
         SCIP_Bool success;
         SCIP_Bool cutislocal;

         /* get the row of B^-1 for this basic integer variable with fractional solution value */
         SCIP_CALL( SCIPgetLPBInvRow(scip, i, binvrow) );

         cutact = 0.0;
         cutrhs = SCIPinfinity(scip);

         /* create a MIR cut out of the weighted LP rows using the B^-1 row as weights */
         SCIP_CALL( SCIPcalcMIR(scip, NULL, BOUNDSWITCH, USEVBDS, ALLOWLOCAL, FIXINTEGRALRHS, NULL, NULL,
               (int) MAXAGGRLEN(nvars), sepadata->maxweightrange, minfrac, maxfrac,
               binvrow, 1.0, NULL, NULL, cutcoefs, &cutrhs, &cutact, &success, &cutislocal) );
         assert(ALLOWLOCAL || !cutislocal);

         /* @todo Currently we are using the SCIPcalcMIR() function to compute the coefficients of the Gomory
          *       cut. Alternatively, we could use the direct version (see thesis of Achterberg formula (8.4)) which
          *       leads to cut a of the form \sum a_i x_i \geq 1. Rumor has it that these cuts are better.
          */

         SCIPdebugMessage(" -> success=%u: %g <= %g\n", success, cutact, cutrhs);

         /* if successful, convert dense cut into sparse row, and add the row as a cut */
         if( success && SCIPisFeasGT(scip, cutact, cutrhs) )
         {
            SCIP_ROW* cut;
            char cutname[SCIP_MAXSTRLEN];
            int v;

            /* construct cut name */
            if( c >= 0 )
               (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "gom%d_x%d", SCIPgetNLPs(scip), c);
            else
               (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "gom%d_s%d", SCIPgetNLPs(scip), -c-1);

            /* create empty cut */
            SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &cut, sepa, cutname, -SCIPinfinity(scip), cutrhs,
                  cutislocal, FALSE, sepadata->dynamiccuts) );

            /* cache the row extension and only flush them if the cut gets added */
            SCIP_CALL( SCIPcacheRowExtensions(scip, cut) );

            /* collect all non-zero coefficients */
            for( v = 0; v < nvars; ++v )
            {
               if( !SCIPisZero(scip, cutcoefs[v]) )
               {
                  SCIP_CALL( SCIPaddVarToRow(scip, cut, vars[v], cutcoefs[v]) );
               }
            }

            if( SCIProwGetNNonz(cut) == 0 )
            {
               assert(SCIPisFeasNegative(scip, cutrhs));
               SCIPdebugMessage(" -> gomory cut detected infeasibility with cut 0 <= %f\n", cutrhs);
               cutoff = TRUE;
            }
            else if( SCIProwGetNNonz(cut) == 1 )
            {
               /* add the bound change as cut to avoid that the LP gets modified. that would mean the LP is not flushed
                * and the method SCIPgetLPBInvRow() fails; SCIP internally will apply that bound change automatically
                */
               SCIP_CALL( SCIPaddCut(scip, NULL, cut, TRUE) );
               naddedcuts++;
            }
            else
            {
               /* Only take efficacious cuts, except for cuts with one non-zero coefficients (= bound
                * changes); the latter cuts will be handeled internally in sepastore.
                */
               if( SCIPisCutEfficacious(scip, NULL, cut) )
               {
                  assert(success == TRUE);

                  SCIPdebugMessage(" -> gomory cut for <%s>: act=%f, rhs=%f, eff=%f\n",
                     c >= 0 ? SCIPvarGetName(SCIPcolGetVar(cols[c])) : SCIProwGetName(rows[-c-1]),
                     cutact, cutrhs, SCIPgetCutEfficacy(scip, NULL, cut));

                  if( sepadata->makeintegral )
                  {
                     /* try to scale the cut to integral values */
                     SCIP_CALL( SCIPmakeRowIntegral(scip, cut, -SCIPepsilon(scip), SCIPsumepsilon(scip),
                           maxdnom, maxscale, MAKECONTINTEGRAL, &success) );

                     if( sepadata->forcecuts )
                        success = TRUE;

                     /* in case the left hand side in minus infinity and the right hand side is plus infinity the cut is
                      * useless so we are not taking it at all
                      */
                     if( (SCIPisInfinity(scip, -SCIProwGetLhs(cut)) && SCIPisInfinity(scip, SCIProwGetRhs(cut))) )
                        success = FALSE;

                     /* @todo Trying to make the Gomory cut integral might fail. Due to numerical reasons/arguments we
                      *       currently ignore such cuts. If the cut, however, has small support (let's say smaller or equal to
                      *       5), we might want to add that cut (even it does not have integral coefficients). To be able to
                      *       do that we need to add a rank to the data structure of a row. The rank of original rows are
                      *       zero and for aggregated rows it is the maximum over all used rows plus one.
                      */
                  }

                  if( success )
                  {
                     SCIPdebugMessage(" -> found gomory cut <%s>: act=%f, rhs=%f, norm=%f, eff=%f, min=%f, max=%f (range=%f)\n",
                        cutname, SCIPgetRowLPActivity(scip, cut), SCIProwGetRhs(cut), SCIProwGetNorm(cut),
                        SCIPgetCutEfficacy(scip, NULL, cut),
                        SCIPgetRowMinCoef(scip, cut), SCIPgetRowMaxCoef(scip, cut),
                        SCIPgetRowMaxCoef(scip, cut)/SCIPgetRowMinCoef(scip, cut));

                     /* flush all changes before adding the cut */
                     SCIP_CALL( SCIPflushRowExtensions(scip, cut) );

                     /* add global cuts which are not implicit bound changes to the cut pool */
                     if( !cutislocal )
                     {
                        if( sepadata->delayedcuts )
                        {
                           SCIP_CALL( SCIPaddDelayedPoolCut(scip, cut) );
                        }
                        else
                        {
                           SCIP_CALL( SCIPaddPoolCut(scip, cut) );
                        }
                     }
                     else
                     {
                        /* local cuts we add to the sepastore */
                        SCIP_CALL( SCIPaddCut(scip, NULL, cut, FALSE) );
                     }

                     naddedcuts++;
                  }
               }
            }

            /* release the row */
            SCIP_CALL( SCIPreleaseRow(scip, &cut) );
         }
      }
   }

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &binvrow);
   SCIPfreeBufferArray(scip, &basisind);
   SCIPfreeBufferArray(scip, &cutcoefs);

   SCIPdebugMessage("end searching gomory cuts: found %d cuts\n", naddedcuts);

   sepadata->lastncutsfound = SCIPgetNCutsFound(scip);

   /* evalute the result of the separation */
   if( cutoff )
      *result = SCIP_CUTOFF;
   else if ( naddedcuts > 0 )
      *result = SCIP_SEPARATED;
   else
      *result = SCIP_DIDNOTFIND;

   return SCIP_OKAY;
}
Exemplo n.º 21
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecZirounding)
{  /*lint --e{715}*/
   SCIP_HEURDATA*     heurdata;
   SCIP_SOL*          sol;
   SCIP_VAR**         lpcands;
   SCIP_VAR**         zilpcands;

   SCIP_VAR**         slackvars;
   SCIP_Real*         upslacks;
   SCIP_Real*         downslacks;
   SCIP_Real*         activities;
   SCIP_Real*         slackvarcoeffs;
   SCIP_Bool*         rowneedsslackvar;

   SCIP_ROW**         rows;
   SCIP_Real*         lpcandssol;
   SCIP_Real*         solarray;

   SCIP_Longint       nlps;
   int                currentlpcands;
   int                nlpcands;
   int                nimplfracs;
   int                i;
   int                c;
   int                nslacks;
   int                nroundings;

   SCIP_RETCODE       retcode;

   SCIP_Bool          improvementfound;
   SCIP_Bool          numericalerror;

   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DIDNOTRUN;

   /* do not call heuristic of node was already detected to be infeasible */
   if( nodeinfeasible )
      return SCIP_OKAY;

   /* only call heuristic if an optimal LP-solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
   if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
      return SCIP_OKAY;

   /* get heuristic data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* Do not call heuristic if deactivation check is enabled and percentage of found solutions in relation
    * to number of calls falls below heurdata->stoppercentage */
   if( heurdata->stopziround && SCIPheurGetNCalls(heur) >= heurdata->minstopncalls
      && SCIPheurGetNSolsFound(heur)/(SCIP_Real)SCIPheurGetNCalls(heur) < heurdata->stoppercentage )
      return SCIP_OKAY;

   /* assure that heuristic has not already been called after the last LP had been solved */
   nlps = SCIPgetNLPs(scip);
   if( nlps == heurdata->lastlp )
      return SCIP_OKAY;

   heurdata->lastlp = nlps;

   /* get fractional variables */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, &nimplfracs) );
   nlpcands = nlpcands + nimplfracs;
   /* make sure that there is at least one fractional variable that should be integral */
   if( nlpcands == 0 )
      return SCIP_OKAY;

   assert(nlpcands > 0);
   assert(lpcands != NULL);
   assert(lpcandssol != NULL);

   /* get LP rows data */
   rows    = SCIPgetLPRows(scip);
   nslacks = SCIPgetNLPRows(scip);

   /* cannot do anything if LP is empty */
   if( nslacks == 0 )
      return SCIP_OKAY;

   assert(rows != NULL);
   assert(nslacks > 0);

   /* get the working solution from heuristic's local data */
   sol = heurdata->sol;
   assert(sol != NULL);

   *result = SCIP_DIDNOTFIND;

   solarray = NULL;
   zilpcands = NULL;

   retcode = SCIP_OKAY;
   /* copy the current LP solution to the working solution and allocate memory for local data */
   SCIP_CALL( SCIPlinkLPSol(scip, sol) );
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &solarray, nlpcands), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &zilpcands, nlpcands), TERMINATE);

   /* copy necessary data to local arrays */
   BMScopyMemoryArray(solarray, lpcandssol, nlpcands);
   BMScopyMemoryArray(zilpcands, lpcands, nlpcands);

   /* allocate buffer data arrays */
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &slackvars, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &upslacks, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &downslacks, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &slackvarcoeffs, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &rowneedsslackvar, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &activities, nslacks), TERMINATE);

   BMSclearMemoryArray(slackvars, nslacks);
   BMSclearMemoryArray(slackvarcoeffs, nslacks);
   BMSclearMemoryArray(rowneedsslackvar, nslacks);

   numericalerror = FALSE;
   nroundings = 0;

   /* loop over fractional variables and involved LP rows to find all rows which require a slack variable */
   for( c = 0; c < nlpcands; ++c )
   {
      SCIP_VAR* cand;
      SCIP_ROW** candrows;
      int r;
      int ncandrows;

      cand = zilpcands[c];
      assert(cand != NULL);
      assert(SCIPcolGetLPPos(SCIPvarGetCol(cand)) >= 0);

      candrows = SCIPcolGetRows(SCIPvarGetCol(cand));
      ncandrows = SCIPcolGetNLPNonz(SCIPvarGetCol(cand));

      assert(candrows == NULL || ncandrows > 0);

      for( r = 0; r < ncandrows; ++r )
      {
         int rowpos;

         assert(candrows != NULL); /* to please flexelint */
         assert(candrows[r] != NULL);
         rowpos = SCIProwGetLPPos(candrows[r]);

         if( rowpos >= 0 && SCIPisFeasEQ(scip, SCIProwGetLhs(candrows[r]), SCIProwGetRhs(candrows[r])) )
         {
            rowneedsslackvar[rowpos] = TRUE;
            SCIPdebugMessage("  Row %s needs slack variable for variable %s\n", SCIProwGetName(candrows[r]), SCIPvarGetName(cand));
         }
      }
   }

   /* calculate row slacks for every every row that belongs to the current LP and ensure, that the current solution
    * has no violated constraint -- if any constraint is violated, i.e. a slack is significantly smaller than zero,
    * this will cause the termination of the heuristic because Zirounding does not provide feasibility recovering
    */
   for( i = 0; i < nslacks; ++i )
   {
      SCIP_ROW*          row;
      SCIP_Real          lhs;
      SCIP_Real          rhs;

      row = rows[i];

      assert(row != NULL);

      lhs = SCIProwGetLhs(row);
      rhs = SCIProwGetRhs(row);

      /* get row activity */
      activities[i] = SCIPgetRowActivity(scip, row);
      assert(SCIPisFeasLE(scip, lhs, activities[i]) && SCIPisFeasLE(scip, activities[i], rhs));

      /* in special case if LHS or RHS is (-)infinity slacks have to be initialized as infinity */
      if( SCIPisInfinity(scip, -lhs) )
         downslacks[i] = SCIPinfinity(scip);
      else
         downslacks[i] = activities[i] - lhs;

      if( SCIPisInfinity(scip, rhs) )
         upslacks[i] = SCIPinfinity(scip);
      else
         upslacks[i] = rhs - activities[i];

      SCIPdebugMessage("lhs:%5.2f <= act:%5.2g <= rhs:%5.2g --> down: %5.2g, up:%5.2g\n", lhs, activities[i], rhs, downslacks[i], upslacks[i]);

      /* row is an equation. Try to find a slack variable in the row, i.e.,
       * a continuous variable which occurs only in this row. If no such variable exists,
       * there is no hope for an IP-feasible solution in this round
       */
      if( SCIPisFeasEQ(scip, lhs, rhs) && rowneedsslackvar[i] )
      {
         /* @todo: This is only necessary for rows containing fractional variables. */
         rowFindSlackVar(scip, row, &(slackvars[i]), &(slackvarcoeffs[i]));

         if( slackvars[i] == NULL )
         {
            SCIPdebugMessage("No slack variable found for equation %s, terminating ZI Round heuristic\n", SCIProwGetName(row));
            goto TERMINATE;
         }
         else
         {
            SCIP_Real ubslackvar;
            SCIP_Real lbslackvar;
            SCIP_Real solvalslackvar;
            SCIP_Real coeffslackvar;
            SCIP_Real ubgap;
            SCIP_Real lbgap;

            assert(SCIPvarGetType(slackvars[i]) == SCIP_VARTYPE_CONTINUOUS);
            solvalslackvar = SCIPgetSolVal(scip, sol, slackvars[i]);
            ubslackvar = SCIPvarGetUbGlobal(slackvars[i]);
            lbslackvar = SCIPvarGetLbGlobal(slackvars[i]);

            coeffslackvar = slackvarcoeffs[i];
            assert(!SCIPisFeasZero(scip, coeffslackvar));

            ubgap = ubslackvar - solvalslackvar;
            lbgap = solvalslackvar - lbslackvar;

            if( SCIPisFeasZero(scip, ubgap) )
              ubgap = 0.0;
            if( SCIPisFeasZero(scip, lbgap) )
              lbgap = 0.0;

            if( SCIPisFeasPositive(scip, coeffslackvar) )
            {
              if( !SCIPisInfinity(scip, lbslackvar) )
                upslacks[i] += coeffslackvar * lbgap;
              else
                upslacks[i] = SCIPinfinity(scip);
              if( !SCIPisInfinity(scip, ubslackvar) )
                downslacks[i] += coeffslackvar * ubgap;
              else
                downslacks[i] = SCIPinfinity(scip);
            }
            else
            {
               if( !SCIPisInfinity(scip, ubslackvar) )
                  upslacks[i] -= coeffslackvar * ubgap;
               else
                  upslacks[i] = SCIPinfinity(scip);
               if( !SCIPisInfinity(scip, lbslackvar) )
                  downslacks[i] -= coeffslackvar * lbgap;
               else
                  downslacks[i] = SCIPinfinity(scip);
            }
            SCIPdebugMessage("  Slack variable for row %s at pos %d: %g <= %s = %g <= %g; Coeff %g, upslack = %g, downslack = %g  \n",
               SCIProwGetName(row), SCIProwGetLPPos(row), lbslackvar, SCIPvarGetName(slackvars[i]), solvalslackvar, ubslackvar, coeffslackvar,
               upslacks[i], downslacks[i]);
         }
      }
      /* due to numerical inaccuracies, the rows might be feasible, even if the slacks are
       * significantly smaller than zero -> terminate
       */
      if( SCIPisFeasLT(scip, upslacks[i], 0.0) || SCIPisFeasLT(scip, downslacks[i], 0.0) )
         goto TERMINATE;
   }

   assert(nslacks == 0 || (upslacks != NULL && downslacks != NULL && activities != NULL));

   /* initialize number of remaining variables and flag to enter the main loop */
   currentlpcands = nlpcands;
   improvementfound = TRUE;

   /* iterate over variables as long as there are fractional variables left */
   while( currentlpcands > 0 && improvementfound && (heurdata->maxroundingloops == -1 || nroundings < heurdata->maxroundingloops) )
   {  /*lint --e{850}*/
      improvementfound = FALSE;
      nroundings++;
      SCIPdebugMessage("zirounding enters while loop for %d time with %d candidates left. \n", nroundings, currentlpcands);

      /* check for every remaining fractional variable if a shifting decreases ZI-value of the variable */
      for( c = 0; c < currentlpcands; ++c )
      {
         SCIP_VAR* var;
         SCIP_Real oldsolval;
         SCIP_Real upperbound;
         SCIP_Real lowerbound;
         SCIP_Real up;
         SCIP_Real down;
         SCIP_Real ziup;
         SCIP_Real zidown;
         SCIP_Real zicurrent;
         SCIP_Real shiftval;

         DIRECTION direction;

         /* get values from local data */
         oldsolval = solarray[c];
         var = zilpcands[c];

         assert(!SCIPisFeasIntegral(scip, oldsolval));
         assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);

         /* calculate bounds for variable and make sure that there are no numerical inconsistencies */
         upperbound = SCIPinfinity(scip);
         lowerbound = SCIPinfinity(scip);
         calculateBounds(scip, var, oldsolval, &upperbound, &lowerbound, upslacks, downslacks, nslacks, &numericalerror);

         if( numericalerror )
            goto TERMINATE;

         /* calculate the possible values after shifting */
         up   = oldsolval + upperbound;
         down = oldsolval - lowerbound;

         /* if the variable is integer or implicit binary, do not shift further than the nearest integer */
         if( SCIPvarGetType(var) != SCIP_VARTYPE_BINARY)
         {
            SCIP_Real ceilx;
            SCIP_Real floorx;

            ceilx = SCIPfeasCeil(scip, oldsolval);
            floorx = SCIPfeasFloor(scip, oldsolval);
            up   = MIN(up, ceilx);
            down = MAX(down, floorx);
         }

         /* calculate necessary values */
         ziup      = getZiValue(scip, up);
         zidown    = getZiValue(scip, down);
         zicurrent = getZiValue(scip, oldsolval);

         /* calculate the shifting direction that reduces ZI-value the most,
          * if both directions improve ZI-value equally, take the direction which improves the objective
          */
         if( SCIPisFeasLT(scip, zidown, zicurrent) || SCIPisFeasLT(scip, ziup, zicurrent) )
         {
            if( SCIPisFeasEQ(scip,ziup, zidown) )
               direction  = SCIPisFeasGE(scip, SCIPvarGetObj(var), 0.0) ? DIRECTION_DOWN : DIRECTION_UP;
            else if( SCIPisFeasLT(scip, zidown, ziup) )
               direction = DIRECTION_DOWN;
            else
               direction = DIRECTION_UP;

            /* once a possible shifting direction and value have been found, variable value is updated */
            shiftval = (direction == DIRECTION_UP ? up - oldsolval : down - oldsolval);

            /* this improves numerical stability in some cases */
            if( direction == DIRECTION_UP )
               shiftval = MIN(shiftval, upperbound);
            else
               shiftval = MIN(shiftval, lowerbound);
            /* update the solution */
            solarray[c] = direction == DIRECTION_UP ? up : down;
            SCIP_CALL( SCIPsetSolVal(scip, sol, var, solarray[c]) );

            /* update the rows activities and slacks */
            SCIP_CALL( updateSlacks(scip, sol, var, shiftval, upslacks,
                  downslacks, activities, slackvars, slackvarcoeffs, nslacks) );

            SCIPdebugMessage("zirounding update step : %d var index, oldsolval=%g, shiftval=%g\n",
               SCIPvarGetIndex(var), oldsolval, shiftval);
            /* since at least one improvement has been found, heuristic will enter main loop for another time because the improvement
             * might affect many LP rows and their current slacks and thus make further rounding steps possible */
            improvementfound = TRUE;
         }

         /* if solution value of variable has become feasibly integral due to rounding step,
          * variable is put at the end of remaining candidates array so as not to be considered in future loops
          */
         if( SCIPisFeasIntegral(scip, solarray[c]) )
         {
            zilpcands[c] = zilpcands[currentlpcands - 1];
            solarray[c] = solarray[currentlpcands - 1];
            currentlpcands--;

            /* counter is decreased if end of candidates array has not been reached yet */
            if( c < currentlpcands )
               c--;
         }
         else if( nroundings == heurdata->maxroundingloops - 1 )
            goto TERMINATE;
      }
   }

   /* in case that no candidate is left for rounding after the final main loop
    * the found solution has to be checked for feasibility in the original problem
    */
   if( currentlpcands == 0 )
   {
      SCIP_Bool stored;
      SCIP_CALL(SCIPtrySol(scip, sol, FALSE, FALSE, TRUE, FALSE, &stored));
      if( stored )
      {
#ifdef SCIP_DEBUG
         SCIPdebugMessage("found feasible rounded solution:\n");
         SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) );
#endif
         SCIPstatisticMessage("  ZI Round solution value: %g \n", SCIPgetSolOrigObj(scip, sol));

         *result = SCIP_FOUNDSOL;
      }
   }

   /* free memory for all locally allocated data */
 TERMINATE:
   SCIPfreeBufferArrayNull(scip, &activities);
   SCIPfreeBufferArrayNull(scip, &rowneedsslackvar);
   SCIPfreeBufferArrayNull(scip, &slackvarcoeffs);
   SCIPfreeBufferArrayNull(scip, &downslacks);
   SCIPfreeBufferArrayNull(scip, &upslacks);
   SCIPfreeBufferArrayNull(scip, &slackvars);
   SCIPfreeBufferArrayNull(scip, &zilpcands);
   SCIPfreeBufferArrayNull(scip, &solarray);

   return retcode;
}
Exemplo n.º 22
0
/** creates a subproblem for subscip by fixing a number of variables */
static
SCIP_RETCODE createSubproblem(
   SCIP*                 scip,               /**< original SCIP data structure                                   */
   SCIP*                 subscip,            /**< SCIP data structure for the subproblem                         */
   SCIP_VAR**            subvars,            /**< the variables of the subproblem                                */
   SCIP_Real             minfixingrate,      /**< percentage of integer variables that have to be fixed          */
   SCIP_Bool             binarybounds,       /**< should general integers get binary bounds [floor(.),ceil(.)] ? */
   SCIP_Bool             uselprows,          /**< should subproblem be created out of the rows in the LP rows?   */
   SCIP_Bool*            success             /**< pointer to store whether the problem was created successfully  */
   )
{
   SCIP_VAR** vars;                          /* original SCIP variables */

   SCIP_Real fixingrate;

   int nvars;
   int nbinvars;
   int nintvars;
   int i;
   int fixingcounter;

   assert(scip != NULL);
   assert(subscip != NULL);
   assert(subvars != NULL);

   assert(0.0 <= minfixingrate && minfixingrate <= 1.0);

   /* get required variable data */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );

   fixingcounter = 0;

   /* change bounds of variables of the subproblem */
   for( i = 0; i < nbinvars + nintvars; i++ )
   {
      SCIP_Real lpsolval;
      SCIP_Real lb;
      SCIP_Real ub;

      /* get the current LP solution for each variable */
      lpsolval = SCIPgetRelaxSolVal(scip, vars[i]);

      if( SCIPisFeasIntegral(scip, lpsolval) )
      {
         /* fix variables to current LP solution if it is integral,
          * use exact integral value, if the variable is only integral within numerical tolerances
          */
         lb = SCIPfloor(scip, lpsolval+0.5);
         ub = lb;
         fixingcounter++;
      }
      else if( binarybounds )
      {
         /* if the sub problem should be a binary problem, change the bounds to nearest integers */
         lb = SCIPfeasFloor(scip,lpsolval);
         ub = SCIPfeasCeil(scip,lpsolval);
      }
      else
      {
         /* otherwise just copy bounds */
         lb =  SCIPvarGetLbGlobal(vars[i]);
         ub =  SCIPvarGetUbGlobal(vars[i]);
      }

      /* perform the bound change */
      SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], lb) );
      SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], ub) );
   }

   /* abort, if all integer variables were fixed (which should not happen for MIP) */
   if( fixingcounter == nbinvars + nintvars )
   {
      *success = FALSE;
      return SCIP_OKAY;
   }
   else
      fixingrate = fixingcounter / (SCIP_Real)(MAX(nbinvars + nintvars, 1));
   SCIPdebugMessage("fixing rate: %g = %d of %d\n", fixingrate, fixingcounter, nbinvars + nintvars);

   /* abort, if the amount of fixed variables is insufficient */
   if( fixingrate < minfixingrate )
   {
      *success = FALSE;
      return SCIP_OKAY;
   }

   if( uselprows )
   {
      SCIP_ROW** rows;                          /* original scip rows                         */
      int nrows;

      /* get the rows and their number */
      SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );

      /* copy all rows to linear constraints */
      for( i = 0; i < nrows; i++ )
      {
         SCIP_CONS* cons;
         SCIP_VAR** consvars;
         SCIP_COL** cols;
         SCIP_Real constant;
         SCIP_Real lhs;
         SCIP_Real rhs;
         SCIP_Real* vals;
         int nnonz;
         int j;

         /* ignore rows that are only locally valid */
         if( SCIProwIsLocal(rows[i]) )
            continue;

         /* get the row's data */
         constant = SCIProwGetConstant(rows[i]);
         lhs = SCIProwGetLhs(rows[i]) - constant;
         rhs = SCIProwGetRhs(rows[i]) - constant;
         vals = SCIProwGetVals(rows[i]);
         nnonz = SCIProwGetNNonz(rows[i]);
         cols = SCIProwGetCols(rows[i]);

         assert( lhs <= rhs );

         /* allocate memory array to be filled with the corresponding subproblem variables */
         SCIP_CALL( SCIPallocBufferArray(subscip, &consvars, nnonz) );
         for( j = 0; j < nnonz; j++ )
            consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))];

         /* create a new linear constraint and add it to the subproblem */
         SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs,
               TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) );
         SCIP_CALL( SCIPaddCons(subscip, cons) );
         SCIP_CALL( SCIPreleaseCons(subscip, &cons) );

         /* free temporary memory */
         SCIPfreeBufferArray(subscip, &consvars);
      }
   }

   *success = TRUE;
   return SCIP_OKAY;
}
Exemplo n.º 23
0
/** creates a subproblem for subscip by fixing a number of variables */
static
SCIP_RETCODE createSubproblem(
   SCIP*                 scip,               /**< original SCIP data structure                                  */
   SCIP*                 subscip,            /**< SCIP data structure for the subproblem                        */
   SCIP_VAR**            subvars,            /**< the variables of the subproblem                               */
   SCIP_Real             minfixingrate,      /**< percentage of integer variables that have to be fixed         */
   unsigned int*         randseed,           /**< a seed value for the random number generator                  */
   SCIP_Bool             uselprows           /**< should subproblem be created out of the rows in the LP rows?   */
   )
{
   SCIP_VAR** vars;                          /* original scip variables                    */
   SCIP_SOL* sol;                            /* pool of solutions                          */
   SCIP_Bool* marked;                        /* array of markers, which variables to fixed */
   SCIP_Bool fixingmarker;                   /* which flag should label a fixed variable?  */

   int nvars;
   int nbinvars;
   int nintvars;
   int i;
   int j;
   int nmarkers;

   /* get required data of the original problem */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );
   sol = SCIPgetBestSol(scip);
   assert(sol != NULL);


   SCIP_CALL( SCIPallocBufferArray(scip, &marked, nbinvars+nintvars) );

   if( minfixingrate > 0.5 )
   {
      nmarkers = nbinvars + nintvars - (int) SCIPfloor(scip, minfixingrate*(nbinvars+nintvars));
      fixingmarker = FALSE;
   }
   else
   {
      nmarkers = (int) SCIPceil(scip, minfixingrate*(nbinvars+nintvars));
      fixingmarker = TRUE;
   }
   assert( 0 <= nmarkers && nmarkers <=  SCIPceil(scip,(nbinvars+nintvars)/2.0 ) );

   j = 0;
   BMSclearMemoryArray(marked, nbinvars+nintvars);
   while( j < nmarkers )
   {
      do
      {
         i = SCIPgetRandomInt(0, nbinvars+nintvars-1, randseed);
      }
      while( marked[i] );
      marked[i] = TRUE;
      j++;
   }
   assert( j == nmarkers );

   /* change bounds of variables of the subproblem */
   for( i = 0; i < nbinvars + nintvars; i++ )
   {
      /* fix all randomly marked variables */
      if( marked[i] == fixingmarker )
      {
         SCIP_Real solval;
         SCIP_Real lb;
         SCIP_Real ub;

         solval = SCIPgetSolVal(scip, sol, vars[i]);
         lb = SCIPvarGetLbGlobal(subvars[i]);
         ub = SCIPvarGetUbGlobal(subvars[i]);
         assert(SCIPisLE(scip, lb, ub));
         
         /* due to dual reductions, it may happen that the solution value is not in
            the variable's domain anymore */
         if( SCIPisLT(scip, solval, lb) )
            solval = lb;
         else if( SCIPisGT(scip, solval, ub) )
            solval = ub;
         
         /* perform the bound change */
         if( !SCIPisInfinity(scip, solval) && !SCIPisInfinity(scip, -solval) )
         {
            SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], solval) );
            SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], solval) );
         }
      }
   }

   if( uselprows )
   {
      SCIP_ROW** rows;   /* original scip rows */
      int nrows;

      /* get the rows and their number */
      SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );

      /* copy all rows to linear constraints */
      for( i = 0; i < nrows; i++ )
      {
         SCIP_CONS* cons;
         SCIP_VAR** consvars;
         SCIP_COL** cols;
         SCIP_Real constant;
         SCIP_Real lhs;
         SCIP_Real rhs;
         SCIP_Real* vals;
         int nnonz;

         /* ignore rows that are only locally valid */
         if( SCIProwIsLocal(rows[i]) )
            continue;

         /* get the row's data */
         constant = SCIProwGetConstant(rows[i]);
         lhs = SCIProwGetLhs(rows[i]) - constant;
         rhs = SCIProwGetRhs(rows[i]) - constant;
         vals = SCIProwGetVals(rows[i]);
         nnonz = SCIProwGetNNonz(rows[i]);
         cols = SCIProwGetCols(rows[i]);

         assert( lhs <= rhs );

         /* allocate memory array to be filled with the corresponding subproblem variables */
         SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nnonz) );
         for( j = 0; j < nnonz; j++ )
            consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))];

         /* create a new linear constraint and add it to the subproblem */
         SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs,
               TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) );
         SCIP_CALL( SCIPaddCons(subscip, cons) );
         SCIP_CALL( SCIPreleaseCons(subscip, &cons) );

         /* free temporary memory */
         SCIPfreeBufferArray(scip, &consvars);
      }
   }

   SCIPfreeBufferArray(scip, &marked);
   return SCIP_OKAY;
}
Exemplo n.º 24
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecOctane)
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_SOL* sol;
   SCIP_SOL** first_sols;     /* stores the first ffirst sols in order to check for common violation of a row */

   SCIP_VAR** vars;           /* the variables of the problem */
   SCIP_VAR** fracvars;       /* variables, that are fractional in current LP solution */
   SCIP_VAR** subspacevars;   /* the variables on which the search is performed. Either coinciding with vars or with the
                               * space of all fractional variables of the current LP solution */

   SCIP_Real p;               /* n/2 - <delta,x> ( for some facet delta ) */
   SCIP_Real q;               /* <delta,a> */

   SCIP_Real* rayorigin;      /* origin of the ray, vector x in paper */
   SCIP_Real* raydirection;   /* direction of the ray, vector a in paper */
   SCIP_Real* negquotient;    /* negated quotient of rayorigin and raydirection, vector v in paper */
   SCIP_Real* lambda;         /* stores the distance of the facets (s.b.) to the origin of the ray */

   SCIP_Bool usefracspace;    /* determines whether the search concentrates on fractional variables and fixes integer ones */
   SCIP_Bool cons_viol;       /* used for checking whether a linear constraint is violated by one of the possible solutions */
   SCIP_Bool success;
   SCIP_Bool* sign;           /* signature of the direction of the ray */
   SCIP_Bool** facets;        /* list of extended facets */

   int nvars;            /* number of variables  */
   int nbinvars;         /* number of 0-1-variables */
   int nfracvars;        /* number of fractional variables in current LP solution */
   int nsubspacevars;    /* dimension of the subspace on which the search is performed */
   int nfacets;          /* number of facets hidden by the ray that where already found */
   int i;                /* counter */
   int j;                /* counter */
   int f_max;            /* {0,1}-points to be checked */
   int f_first;          /* {0,1}-points to be generated at first in order to check whether a restart is necessary */
   int r;                /* counter */
   int firstrule;

   int* perm;            /* stores the way in which the coordinates were permuted */
   int* fracspace;       /* maps the variables of the subspace to the original variables */

   assert(heur != NULL);
   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DELAYED;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, NULL, NULL, NULL) );

   /* OCTANE is for use in 0-1 programs only */
   if( nvars != nbinvars )
      return SCIP_OKAY;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert( heurdata != NULL );

   /* don't call heuristic, if it was not successful enough in the past */
   /*lint --e{647}*/
   if( SCIPgetNNodes(scip) % (SCIPheurGetNCalls(heur) / (100 * SCIPheurGetNBestSolsFound(heur) + 10*heurdata->nsuccess + 1) + 1) != 0 )
      return SCIP_OKAY;

   SCIP_CALL( SCIPgetLPBranchCands(scip, &fracvars, NULL, NULL, &nfracvars, NULL) );

   /* don't use integral starting points */
   if( nfracvars == 0 )
      return SCIP_OKAY;

   /* get working pointers from heurdata */
   sol = heurdata->sol;
   assert( sol != NULL );
   f_max = heurdata->f_max;
   f_first = heurdata->f_first;
   usefracspace = heurdata->usefracspace;

   SCIP_CALL( SCIPallocBufferArray(scip, &fracspace, nvars) );

   /* determine the space one which OCTANE should work either as the whole space or as the space of fractional variables */
   if( usefracspace )
   {
      nsubspacevars = nfracvars;
      SCIP_CALL( SCIPallocBufferArray(scip, &subspacevars, nsubspacevars) );
      BMScopyMemoryArray(subspacevars, fracvars, nsubspacevars);
      for( i = nvars - 1; i >= 0; --i )
         fracspace[i] = -1;
      for( i = nsubspacevars - 1; i >= 0; --i )
         fracspace[SCIPvarGetProbindex(subspacevars[i])] = i;
   }
   else
   {
      int currentindex;

      nsubspacevars = nvars;
      SCIP_CALL( SCIPallocBufferArray(scip, &subspacevars, nsubspacevars) );

      /* only copy the variables which are in the current LP */
      currentindex = 0;
      for( i = 0; i < nvars; ++i )
      {
         if( SCIPcolGetLPPos(SCIPvarGetCol(vars[i])) >= 0 )
         {
            subspacevars[currentindex] = vars[i];
            fracspace[i] = currentindex;
            ++currentindex;

         }
         else
         {
            fracspace[i] = -1;
            --nsubspacevars;
         }
      }
   }

   /* nothing to do for empty search space */
   if( nsubspacevars == 0 )
      return SCIP_OKAY;

   assert(0 < nsubspacevars && nsubspacevars <= nvars);

   for( i = 0; i < nsubspacevars; i++)
      assert(fracspace[SCIPvarGetProbindex(subspacevars[i])] == i);

   /* at most 2^(n-1) facets can be hit */
   if( nsubspacevars < 30 )
   {
      /*lint --e{701}*/
      assert(f_max > 0);
      f_max = MIN(f_max, 1 << (nsubspacevars - 1) );
   }

   f_first = MIN(f_first, f_max);

   /* memory allocation */
   SCIP_CALL( SCIPallocBufferArray(scip, &rayorigin, nsubspacevars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &raydirection, nsubspacevars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &negquotient, nsubspacevars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &sign, nsubspacevars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &perm, nsubspacevars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &lambda, f_max + 1) );
   SCIP_CALL( SCIPallocBufferArray(scip, &facets, f_max + 1) );
   for( i = f_max; i >= 0; --i )
   {
      /*lint --e{866}*/
      SCIP_CALL( SCIPallocBufferArray(scip, &facets[i], nsubspacevars) );
   }
   SCIP_CALL( SCIPallocBufferArray(scip, &first_sols, f_first) );

   *result = SCIP_DIDNOTFIND;

   /* starting OCTANE */
   SCIPdebugMessage("run Octane heuristic on %s variables, which are %d vars, generate at most %d facets, using rule number %d\n",
      usefracspace ? "fractional" : "all", nsubspacevars, f_max, (heurdata->lastrule+1)%5);

   /* generate starting point in original coordinates */
   SCIP_CALL( generateStartingPoint(scip, rayorigin, subspacevars, nsubspacevars) );
   for( i = nsubspacevars - 1; i >= 0; --i )
      rayorigin[i] -= 0.5;

   firstrule = heurdata->lastrule;
   ++firstrule;
   for( r = firstrule; r <= firstrule + 10 && !SCIPisStopped(scip); r++ )
   {
      SCIP_ROW** rows;
      int nrows;

      /* generate shooting ray in original coordinates by certain rules */
      switch(r % 5)
      {
      case 1:
         if( heurdata->useavgnbray )
         {
            SCIP_CALL( generateAverageNBRay(scip, raydirection, fracspace, subspacevars, nsubspacevars) );
         }
         break;
      case 2:
         if( heurdata->useobjray )
         {
            SCIP_CALL( generateObjectiveRay(scip, raydirection, subspacevars, nsubspacevars) );
         }
         break;
      case 3:
         if( heurdata->usediffray )
         {
            SCIP_CALL( generateDifferenceRay(scip, raydirection, subspacevars, nsubspacevars) );
         }
         break;
      case 4:
         if( heurdata->useavgwgtray && SCIPisLPSolBasic(scip) )
         {
            SCIP_CALL( generateAverageRay(scip, raydirection, subspacevars, nsubspacevars, TRUE) );
         }
         break;
      case 0:
         if( heurdata->useavgray && SCIPisLPSolBasic(scip) )
         {
            SCIP_CALL( generateAverageRay(scip, raydirection, subspacevars, nsubspacevars, FALSE) );
         }
         break;
      default:
         SCIPerrorMessage("invalid ray rule identifier\n");
         SCIPABORT();
      }

      /* there must be a feasible direction for the shooting ray */
      if( isZero(scip, raydirection, nsubspacevars) )
         continue;

      /* transform coordinates such that raydirection >= 0 */
      flipCoords(rayorigin, raydirection, sign, nsubspacevars);

      for( i = f_max - 1; i >= 0; --i)
         lambda[i] = SCIPinfinity(scip);

      /* calculate negquotient, initialize perm, facets[0], p, and q */
      p = 0.5 * nsubspacevars;
      q = 0.0;
      for( i = nsubspacevars - 1; i >= 0; --i )
      {
         /* calculate negquotient, the ratio of rayorigin and raydirection, paying special attention to the case raydirection[i] == 0 */
         if( SCIPisFeasZero(scip, raydirection[i]) )
         {
            if( rayorigin[i] < 0 )
               negquotient[i] = SCIPinfinity(scip);
            else
               negquotient[i] = -SCIPinfinity(scip);
         }
         else
            negquotient[i] = - (rayorigin[i] / raydirection[i]);

         perm[i] = i;

         /* initialization of facets[0] to the all-one facet with p and q its characteristic values */
         facets[0][i] = TRUE;
         p -= rayorigin[i];
         q += raydirection[i];
      }

      assert(SCIPisPositive(scip, q));

      /* resort the coordinates in nonincreasing order of negquotient */
      SCIPsortDownRealRealRealBoolPtr( negquotient, raydirection, rayorigin, sign, (void**) subspacevars, nsubspacevars);

#ifndef NDEBUG
      for( i = 0; i < nsubspacevars; i++ )
         assert( raydirection[i] >= 0 );
      for( i = 1; i < nsubspacevars; i++ )
         assert( negquotient[i - 1] >= negquotient[i] );
#endif
      /* finished initialization */

      /* find the first facet of the octahedron hit by a ray shot from rayorigin into direction raydirection */
      for( i = 0; i < nsubspacevars && negquotient[i] * q > p; ++i )
      {
         facets[0][i] = FALSE;
         p += 2 * rayorigin[i];
         q -= 2 * raydirection[i];
         assert(SCIPisPositive(scip, p));
         assert(SCIPisPositive(scip, q));
      }

      /* avoid dividing by values close to 0.0 */
      if( !SCIPisFeasPositive(scip, q) )
         continue;

      /* assert necessary for flexelint */
      assert(q > 0);
      lambda[0] = p / q;

      nfacets = 1;

      /* find the first facets hit by the ray */
      for( i = 0; i < nfacets && i < f_first; ++i)
         generateNeighborFacets(scip, facets, lambda, rayorigin, raydirection, negquotient, nsubspacevars, f_max, i, &nfacets);

      /* construct the first ffirst possible solutions */
      for( i = 0; i < nfacets && i < f_first; ++i )
      {
         SCIP_CALL( SCIPcreateSol(scip, &first_sols[i], heur) );
         SCIP_CALL( getSolFromFacet(scip, facets[i], first_sols[i], sign, subspacevars, nsubspacevars) );
         assert( first_sols[i] != NULL );
      }

      /* try, whether there is a row violated by all of the first ffirst solutions */
      cons_viol = FALSE;
      SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );
      for( i = nrows - 1; i >= 0; --i )
      {
         if( !SCIProwIsLocal(rows[i]) )
         {
            SCIP_COL** cols;
            SCIP_Real constant;
            SCIP_Real lhs;
            SCIP_Real rhs;
            SCIP_Real rowval;
            SCIP_Real* coeffs;
            int nnonzerovars;
            int k;

            /* get the row's data */
            constant = SCIProwGetConstant(rows[i]);
            lhs = SCIProwGetLhs(rows[i]);
            rhs = SCIProwGetRhs(rows[i]);
            coeffs = SCIProwGetVals(rows[i]);
            nnonzerovars = SCIProwGetNNonz(rows[i]);
            cols = SCIProwGetCols(rows[i]);
            rowval = constant;

            for( j = nnonzerovars - 1; j >= 0; --j )
               rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[0], SCIPcolGetVar(cols[j]));

            /* if the row's lhs is violated by the first sol, test, whether it is violated by the next ones, too */
            if( lhs > rowval )
            {
               cons_viol = TRUE;
               for( k = MIN(f_first, nfacets) - 1; k > 0; --k )
               {
                  rowval = constant;
                  for( j = nnonzerovars - 1; j >= 0; --j )
                     rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[k], SCIPcolGetVar(cols[j]));
                  if( lhs <= rowval )
                  {
                     cons_viol = FALSE;
                     break;
                  }
               }
            }
            /* dito for the right hand side */
            else if( rhs < rowval )
            {
               cons_viol = TRUE;
               for( k = MIN(f_first, nfacets) - 1; k > 0; --k )
               {
                  rowval = constant;
                  for( j = nnonzerovars - 1; j >= 0; --j )
                     rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[k], SCIPcolGetVar(cols[j]));
                  if( rhs >= rowval )
                  {
                     cons_viol = FALSE;
                     break;
                  }
               }
            }
            /* break as soon as one row is violated by all of the ffirst solutions */
            if( cons_viol )
               break;
         }
      }


      if( !cons_viol )
      {
         /* if there was no row violated by all solutions, try whether one or more of them are feasible */
         for( i = MIN(f_first, nfacets) - 1; i >= 0; --i )
         {
            assert(first_sols[i] != NULL);
            SCIP_CALL( SCIPtrySol(scip, first_sols[i], FALSE, TRUE, FALSE, TRUE, &success) );
            if( success )
               *result = SCIP_FOUNDSOL;
         }
         /* search for further facets and construct and try solutions out of facets fixed as closest ones */
         for( i = f_first; i < f_max; ++i)
         {
            if( i >= nfacets )
               break;
            generateNeighborFacets(scip, facets, lambda, rayorigin, raydirection, negquotient, nsubspacevars, f_max, i, &nfacets);
            SCIP_CALL( getSolFromFacet(scip, facets[i], sol, sign, subspacevars, nsubspacevars) );
            SCIP_CALL( SCIPtrySol(scip, sol, FALSE, TRUE, FALSE, TRUE, &success) );
            if( success )
               *result = SCIP_FOUNDSOL;
         }
      }

      /* finished OCTANE */
      for( i = MIN(f_first, nfacets) - 1; i >= 0; --i )
      {
         SCIP_CALL( SCIPfreeSol(scip, &first_sols[i]) );
      }
   }
   heurdata->lastrule = r;

   if( *result == SCIP_FOUNDSOL )
      ++(heurdata->nsuccess);

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &first_sols);
   for( i = f_max; i >= 0; --i )
      SCIPfreeBufferArray(scip, &facets[i]);
   SCIPfreeBufferArray(scip, &facets);
   SCIPfreeBufferArray(scip, &lambda);
   SCIPfreeBufferArray(scip, &perm);
   SCIPfreeBufferArray(scip, &sign);
   SCIPfreeBufferArray(scip, &negquotient);
   SCIPfreeBufferArray(scip, &raydirection);
   SCIPfreeBufferArray(scip, &rayorigin);
   SCIPfreeBufferArray(scip, &subspacevars);
   SCIPfreeBufferArray(scip, &fracspace);

   return SCIP_OKAY;
}