Exemplo n.º 1
0
/** creates a relaxation handler */
SCIP_RETCODE SCIPrelaxCreate(
   SCIP_RELAX**          relax,              /**< pointer to relaxation handler data structure */
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_MESSAGEHDLR*     messagehdlr,        /**< message handler */
   BMS_BLKMEM*           blkmem,             /**< block memory for parameter settings */
   const char*           name,               /**< name of relaxation handler */
   const char*           desc,               /**< description of relaxation handler */
   int                   priority,           /**< priority of the relaxation handler (negative: after LP, non-negative: before LP) */
   int                   freq,               /**< frequency for calling relaxation handler */
   SCIP_DECL_RELAXCOPY   ((*relaxcopy)),     /**< copy method of relaxation handler or NULL if you don't want to copy your plugin into sub-SCIPs */
   SCIP_DECL_RELAXFREE   ((*relaxfree)),     /**< destructor of relaxation handler */
   SCIP_DECL_RELAXINIT   ((*relaxinit)),     /**< initialize relaxation handler */
   SCIP_DECL_RELAXEXIT   ((*relaxexit)),     /**< deinitialize relaxation handler */
   SCIP_DECL_RELAXINITSOL((*relaxinitsol)),  /**< solving process initialization method of relaxation handler */
   SCIP_DECL_RELAXEXITSOL((*relaxexitsol)),  /**< solving process deinitialization method of relaxation handler */
   SCIP_DECL_RELAXEXEC   ((*relaxexec)),     /**< execution method of relaxation handler */
   SCIP_RELAXDATA*       relaxdata           /**< relaxation handler data */
   )
{
   char paramname[SCIP_MAXSTRLEN];
   char paramdesc[SCIP_MAXSTRLEN];

   assert(relax != NULL);
   assert(name != NULL);
   assert(desc != NULL);
   assert(freq >= -1);
   assert(relaxexec != NULL);

   SCIP_ALLOC( BMSallocMemory(relax) );
   SCIP_ALLOC( BMSduplicateMemoryArray(&(*relax)->name, name, strlen(name)+1) );
   SCIP_ALLOC( BMSduplicateMemoryArray(&(*relax)->desc, desc, strlen(desc)+1) );
   (*relax)->priority = priority;
   (*relax)->freq = freq;
   (*relax)->relaxcopy = relaxcopy;
   (*relax)->relaxfree = relaxfree;
   (*relax)->relaxinit = relaxinit;
   (*relax)->relaxexit = relaxexit;
   (*relax)->relaxinitsol = relaxinitsol;
   (*relax)->relaxexitsol = relaxexitsol;
   (*relax)->relaxexec = relaxexec;
   (*relax)->relaxdata = relaxdata;
   SCIP_CALL( SCIPclockCreate(&(*relax)->setuptime, SCIP_CLOCKTYPE_DEFAULT) );
   SCIP_CALL( SCIPclockCreate(&(*relax)->relaxclock, SCIP_CLOCKTYPE_DEFAULT) );
   (*relax)->ncalls = 0;
   (*relax)->lastsolvednode = -1;
   (*relax)->initialized = FALSE;

   /* add parameters */
   (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "relaxing/%s/priority", name);
   (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "priority of relaxation handler <%s>", name);
   SCIP_CALL( SCIPsetAddIntParam(set, messagehdlr, blkmem, paramname, paramdesc,
         &(*relax)->priority, FALSE, priority, INT_MIN/4, INT_MAX/4,
         paramChgdRelaxPriority, (SCIP_PARAMDATA*)(*relax)) ); /*lint !e740*/
   (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "relaxing/%s/freq", name);
   (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "frequency for calling relaxation handler <%s> (-1: never, 0: only in root node)", name);
   SCIP_CALL( SCIPsetAddIntParam(set, messagehdlr, blkmem, paramname, paramdesc,
         &(*relax)->freq, FALSE, freq, -1, INT_MAX, NULL, NULL) );

   return SCIP_OKAY;
}
Exemplo n.º 2
0
/** creates a variable pricer
 *  To use the variable pricer for solving a problem, it first has to be activated with a call to SCIPactivatePricer().
 */
SCIP_RETCODE SCIPpricerCreate(
   SCIP_PRICER**         pricer,             /**< pointer to variable pricer data structure */
   SCIP_SET*             set,                /**< global SCIP settings */
   BMS_BLKMEM*           blkmem,             /**< block memory for parameter settings */
   const char*           name,               /**< name of variable pricer */
   const char*           desc,               /**< description of variable pricer */
   int                   priority,           /**< priority of the variable pricer */
   SCIP_Bool             delay,              /**< should the pricer be delayed until no other pricers or already existing
                                              *   problem variables with negative reduced costs are found */
   SCIP_DECL_PRICERCOPY  ((*pricercopy)),    /**< copy method of pricer or NULL if you don't want to copy your plugin into sub-SCIPs */
   SCIP_DECL_PRICERFREE  ((*pricerfree)),    /**< destructor of variable pricer */
   SCIP_DECL_PRICERINIT  ((*pricerinit)),    /**< initialize variable pricer */
   SCIP_DECL_PRICEREXIT  ((*pricerexit)),    /**< deinitialize variable pricer */
   SCIP_DECL_PRICERINITSOL((*pricerinitsol)),/**< solving process initialization method of variable pricer */
   SCIP_DECL_PRICEREXITSOL((*pricerexitsol)),/**< solving process deinitialization method of variable pricer */
   SCIP_DECL_PRICERREDCOST((*pricerredcost)),/**< reduced cost pricing method of variable pricer for feasible LPs */
   SCIP_DECL_PRICERFARKAS((*pricerfarkas)),  /**< Farkas pricing method of variable pricer for infeasible LPs */
   SCIP_PRICERDATA*      pricerdata          /**< variable pricer data */
   )
{
   char paramname[SCIP_MAXSTRLEN];
   char paramdesc[SCIP_MAXSTRLEN];

   assert(pricer != NULL);
   assert(name != NULL);
   assert(desc != NULL);
   assert(pricerredcost != NULL);

   SCIP_ALLOC( BMSallocMemory(pricer) );
   SCIP_ALLOC( BMSduplicateMemoryArray(&(*pricer)->name, name, strlen(name)+1) );
   SCIP_ALLOC( BMSduplicateMemoryArray(&(*pricer)->desc, desc, strlen(desc)+1) );
   (*pricer)->priority = priority;
   (*pricer)->pricercopy = pricercopy;
   (*pricer)->pricerfree = pricerfree;
   (*pricer)->pricerinit = pricerinit;
   (*pricer)->pricerexit = pricerexit;
   (*pricer)->pricerinitsol = pricerinitsol;
   (*pricer)->pricerexitsol = pricerexitsol;
   (*pricer)->pricerredcost = pricerredcost;
   (*pricer)->pricerfarkas = pricerfarkas;
   (*pricer)->pricerdata = pricerdata;
   SCIP_CALL( SCIPclockCreate(&(*pricer)->pricerclock, SCIP_CLOCKTYPE_DEFAULT) );
   (*pricer)->ncalls = 0;
   (*pricer)->nvarsfound = 0;
   (*pricer)->delay = delay;
   (*pricer)->active = FALSE;
   (*pricer)->initialized = FALSE;

   /* add parameters */
   (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "pricers/%s/priority", name);
   (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "priority of pricer <%s>", name);
   SCIP_CALL( SCIPsetAddIntParam(set, blkmem, paramname, paramdesc,
                  &(*pricer)->priority, FALSE, priority, INT_MIN/4, INT_MAX/4, 
                  paramChgdPricerPriority, (SCIP_PARAMDATA*)(*pricer)) ); /*lint !e740*/

   return SCIP_OKAY;
}
Exemplo n.º 3
0
/** issues an error message and marks the LP data to have errors */
static
void syntaxError(
   SCIP*                 scip,               /**< SCIP data structure */
   LPINPUT*              lpinput,            /**< LP reading data */
   const char*           msg                 /**< error message */
   )
{
   char formatstr[256];

   assert(lpinput != NULL);

   SCIPerrorMessage("Syntax error in line %d ('%s'): %s \n", lpinput->linenumber, lpinput->token, msg);
   if( lpinput->linebuf[strlen(lpinput->linebuf)-1] == '\n' )
   {
      SCIPverbMessage(scip, SCIP_VERBLEVEL_MINIMAL, NULL, "  input: %s", lpinput->linebuf);
   }
   else
   {
      SCIPverbMessage(scip, SCIP_VERBLEVEL_MINIMAL, NULL, "  input: %s\n", lpinput->linebuf);
   }
   (void) SCIPsnprintf(formatstr, 256, "         %%%ds\n", lpinput->linepos);
   SCIPverbMessage(scip, SCIP_VERBLEVEL_MINIMAL, NULL, (const char*)formatstr, "^");
   lpinput->section  = LP_END;
   lpinput->haserror = TRUE;
}
Exemplo n.º 4
0
/** issues an error message and marks the BLK data to have errors */
static
void syntaxError(
    SCIP*                 scip,               /**< SCIP data structure */
    BLKINPUT*             blkinput,           /**< BLK reading data */
    const char*           msg                 /**< error message */
)
{
    char formatstr[256];

    assert(blkinput != NULL);

    SCIPverbMessage(scip, SCIP_VERBLEVEL_MINIMAL, NULL, "Syntax error in line %d: %s ('%s')\n",
                    blkinput->linenumber, msg, blkinput->token);
    if( blkinput->linebuf[strlen(blkinput->linebuf)-1] == '\n' )
    {
        SCIPverbMessage(scip, SCIP_VERBLEVEL_MINIMAL, NULL, "  input: %s", blkinput->linebuf);
    }
    else
    {
        SCIPverbMessage(scip, SCIP_VERBLEVEL_MINIMAL, NULL, "  input: %s\n", blkinput->linebuf);
    }
    (void) SCIPsnprintf(formatstr, 256, "         %%%ds\n", blkinput->linepos);
    SCIPverbMessage(scip, SCIP_VERBLEVEL_MINIMAL, NULL, formatstr, "^");
    blkinput->section  = BLK_END;
    blkinput->haserror = TRUE;
}
Exemplo n.º 5
0
/** displays a time value fitting in a given width */
void SCIPdispTime(
   SCIP_MESSAGEHDLR*     messagehdlr,        /**< message handler */
   FILE*                 file,               /**< output stream */
   SCIP_Real             val,                /**< value in seconds to display */
   int                   width               /**< width to fit into */
   )
{
   assert(width >= 1);

   if( width == 1 )
   {
      if( val < 0.0 )
         SCIPmessageFPrintInfo(messagehdlr, file, "-");
      else if( val < 10.0 )
         SCIPmessageFPrintInfo(messagehdlr, file, "%.0f", val);
      else
         SCIPmessageFPrintInfo(messagehdlr, file, "+");
   }
   else
   {
      char format[SCIP_MAXSTRLEN];
      SCIP_Longint maxval;
      int timepower;
      int i;

      maxval = 1;
      for( i = 0; i < width-1; ++i )
         maxval *= 10;
      if( val < 0.0 )
         maxval /= 10;
      timepower = 0;
      while( REALABS(val) + 0.5 >= maxval && timepower < MAXTIMEPOWER )
      {
         timepower++;
         val /= timepowerval[timepower];
      }
      if( REALABS(val) + 0.05 < maxval/100 ) /*lint !e653*/
         (void) SCIPsnprintf(format, SCIP_MAXSTRLEN, "%%%d.1f%c", width-1, timepowerchar[timepower]);
      else
         (void) SCIPsnprintf(format, SCIP_MAXSTRLEN, "%%%d.0f%c", width-1, timepowerchar[timepower]);

      if( width == 2 && val < 0.0 )
         SCIPmessageFPrintInfo(messagehdlr, file, "-%c", timepowerchar[timepower]);
      else
         SCIPmessageFPrintInfo(messagehdlr, file, (const char*)format, val);
   }
}
Exemplo n.º 6
0
/** parese job informations */
static
SCIP_RETCODE getJobs(
   SCIP*                 scip,               /**< SCIP data structure */
   int                   lineno,             /**< current line number of input file */
   char*                 linestr,            /**< current line */
   STATE*                state,              /**< pointer to current reading state */
   SCIP_RCPSPDATA*       rcpspdata           /**< pointer to resources constrained project scheduling data */
   )
{
   char jobname[SCIP_MAXSTRLEN];
   int value;
   int jobid;
   int r;

   assert(linestr != NULL);
   assert(state != NULL);

   /* skip lines which are not of interest */
   if ( (!strncmp(linestr, "REQUESTS", 4) ) || ( !strncmp(linestr, "jobnr", 3) ) || ( !strncmp(linestr, "-", 1) )  )
   {
      *state = JOBS;
      return SCIP_OKAY;
   }

   /* parse job id */
   SCIPstrToIntValue(linestr, &value, &linestr);
   jobid = value - 1;

   /* construct job name */
   (void)SCIPsnprintf(jobname, SCIP_MAXSTRLEN, "%d" , jobid) ;

   /* copy job name */
   SCIP_CALL( SCIPduplicateBufferArray(scip, &rcpspdata->jobnames[jobid], jobname, strlen(jobname) + 1) );

   /* skip next value */
   SCIPstrToIntValue(linestr, &value, &linestr);

   /* parse duration */
   SCIPstrToIntValue(linestr, &value, &linestr);
   rcpspdata->durations[jobid] = value;

   SCIP_CALL( SCIPallocBufferArray(scip, &rcpspdata->demands[jobid], rcpspdata->nresources) );

   /* parse demands */
   for( r = 0; r < rcpspdata->nresources; ++r )
   {
      SCIPstrToIntValue(linestr, &value, &linestr);
      rcpspdata->demands[jobid][r] = value;
   }

   /* check if we paresed the last job */
   if(jobid == rcpspdata->njobs - 1)
      *state = NEXT;

   return SCIP_OKAY;
}
Exemplo n.º 7
0
/** write a DEC file for a given decomposition */
SCIP_RETCODE GCGwriteDecomp(
    SCIP*                 scip,               /**< SCIP data structure */
    FILE*                 file,               /**< File pointer to write to */
    DEC_DECOMP*           decdecomp           /**< Decomposition pointer */
)
{
    char outname[SCIP_MAXSTRLEN];
    assert(scip != NULL);

    if( decdecomp == NULL )
    {
        SCIPwarningMessage(scip, "Cannot write decomposed problem if decomposition structure is empty!\n");

        (void) SCIPsnprintf(outname, SCIP_MAXSTRLEN, "%s", SCIPgetProbName(scip));
    }
    else
    {
        (void) SCIPsnprintf(outname, SCIP_MAXSTRLEN, "%s_%d", SCIPgetProbName(scip), DECdecompGetNBlocks(decdecomp));

        SCIP_CALL( writeData(scip, file, decdecomp) );
    }

    return SCIP_OKAY;
}
Exemplo n.º 8
0
/** reads the next non-empty non-comment line of a cnf file */
static
SCIP_RETCODE readCnfLine(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_FILE*            file,               /**< input file */
   char*                 buffer,             /**< buffer for storing the input line */
   int                   size,               /**< size of the buffer */
   int*                  linecount           /**< pointer to the line number counter */
   )
{
   char* line;
   int linelen;

   assert(file != NULL);
   assert(buffer != NULL);
   assert(size >= 2);
   assert(linecount != NULL);

   do
   {
      (*linecount)++;
      line = SCIPfgets(buffer, size, file);
      if( line != NULL )
      {
         linelen = (int)strlen(line);
         if( linelen == size-1 )
         {
            char s[SCIP_MAXSTRLEN];
            (void) SCIPsnprintf(s, SCIP_MAXSTRLEN, "line too long (exceeds %d characters)", size-2);
            readError(scip, *linecount, s);
            return SCIP_READERROR;
         }
      }
      else
         linelen = 0;
   }
   while( line != NULL && (*line == 'c' || *line == '\n') );

   if( line != NULL && linelen >= 2 && line[linelen-2] == '\n' )
      line[linelen-2] = '\0';
   else if( linelen == 0 )
      *buffer = '\0';

   assert((line == NULL) == (*buffer == '\0'));
 
   return SCIP_OKAY;
}
Exemplo n.º 9
0
/** displays a long integer in decimal form fitting in a given width */
void SCIPdispLongint(
   SCIP_MESSAGEHDLR*     messagehdlr,        /**< message handler */
   FILE*                 file,               /**< output stream */
   SCIP_Longint          val,                /**< value to display */
   int                   width               /**< width to fit into */
   )
{
   assert(width >= 1);

   if( width == 1 )
   {
      if( val < 0 )
         SCIPmessageFPrintInfo(messagehdlr, file, "-");
      else if( val < 10 )
         SCIPmessageFPrintInfo(messagehdlr, file, "%"SCIP_LONGINT_FORMAT, val);
      else
         SCIPmessageFPrintInfo(messagehdlr, file, "+");
   }
   else
   {
      char format[SCIP_MAXSTRLEN];
      SCIP_Longint maxval;
      int decpower;
      int i;

      maxval = 1;
      for( i = 0; i < width-1; ++i )
         maxval *= 10;
      if( val < 0 )
         maxval /= 10;
      decpower = 0;
      while( ABS(val) >= maxval && decpower < MAXDECPOWER )
      {
         decpower++;
         val /= 1000;
      }
      (void) SCIPsnprintf(format, SCIP_MAXSTRLEN, "%%%d"SCIP_LONGINT_FORMAT"%c", width-1, decpowerchar[decpower]);

      if( width == 2 && val < 0 )
         SCIPmessageFPrintInfo(messagehdlr, file, "-%c", decpowerchar[decpower]);
      else
         SCIPmessageFPrintInfo(messagehdlr, file, (const char*)format, val);
   }
}
Exemplo n.º 10
0
/** create linear ordering problem model */
SCIP_RETCODE LOPgenerateModel(
   SCIP*                 scip                /**< SCIP data structure */
   )
{
   SCIP_PROBDATA* probdata;
   SCIP_CONS* cons;
   int i, j;

   /* get problem data */
   probdata = SCIPgetProbData(scip);
   assert( probdata != NULL );

   /* generate variables */
   SCIP_CALL( SCIPallocMemoryArray(scip, &probdata->vars, probdata->n) );
   for (i = 0; i < probdata->n; ++i)
   {
      SCIP_CALL( SCIPallocMemoryArray(scip, &(probdata->vars[i]), probdata->n) ); /*lint !e866*/
      for (j = 0; j < probdata->n; ++j)
      {
	 if (j != i)
	 {
	    char s[SCIP_MAXSTRLEN];
	    (void) SCIPsnprintf(s, SCIP_MAXSTRLEN, "x#%d#%d", i, j);
	    SCIP_CALL( SCIPcreateVar(scip, &(probdata->vars[i][j]), s, 0.0, 1.0, probdata->W[i][j], SCIP_VARTYPE_BINARY,
		  TRUE, FALSE, NULL, NULL, NULL, NULL, NULL));
	    SCIP_CALL( SCIPaddVar(scip, probdata->vars[i][j]) );
	 }
	 else
	    probdata->vars[i][j] = NULL;
      }
   }

   /* generate linear ordering constraint */
   SCIP_CALL( SCIPcreateConsLinearOrdering(scip, &cons, "LOP", probdata->n, probdata->vars, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE,
	 FALSE, FALSE, FALSE, FALSE));
   SCIP_CALL( SCIPaddCons(scip, cons) );
   SCIP_CALL( SCIPreleaseCons(scip, &cons) );

   /* set maximization */
   SCIP_CALL( SCIPsetObjsense(scip, SCIP_OBJSENSE_MAXIMIZE) );

   return SCIP_OKAY;
}
Exemplo n.º 11
0
Arquivo: compr.c Projeto: gorhan/LFOS
/** creates a tree compression */
SCIP_RETCODE SCIPcomprCreate(
   SCIP_COMPR**          compr,              /**< pointer to tree compression data structure */
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_MESSAGEHDLR*     messagehdlr,        /**< message handler */
   BMS_BLKMEM*           blkmem,             /**< block memory for parameter settings */
   const char*           name,               /**< name of tree compression */
   const char*           desc,               /**< description of tree compression */
   int                   priority,           /**< priority of the tree compression */
   int                   minnnodes,          /**< minimal number of nodes for calling compression */
   SCIP_DECL_COMPRCOPY   ((*comprcopy)),     /**< copy method of tree compression or NULL if you don't want to copy your plugin into sub-SCIPs */
   SCIP_DECL_COMPRFREE   ((*comprfree)),     /**< destructor of tree compression */
   SCIP_DECL_COMPRINIT   ((*comprinit)),     /**< initialize tree compression */
   SCIP_DECL_COMPREXIT   ((*comprexit)),     /**< deinitialize tree compression */
   SCIP_DECL_COMPRINITSOL ((*comprinitsol)), /**< solving process initialization method of tree compression */
   SCIP_DECL_COMPREXITSOL ((*comprexitsol)), /**< solving process deinitialization method of tree compression */
   SCIP_DECL_COMPREXEC   ((*comprexec)),     /**< execution method of tree compression */
   SCIP_COMPRDATA*       comprdata           /**< tree compression data */
   )
{
   char paramname[SCIP_MAXSTRLEN];
   char paramdesc[SCIP_MAXSTRLEN];

   assert(compr != NULL);
   assert(name != NULL);
   assert(desc != NULL);
   assert(comprexec != NULL);

   SCIP_ALLOC( BMSallocMemory(compr) );
   SCIP_ALLOC( BMSduplicateMemoryArray(&(*compr)->name, name, strlen(name)+1) );
   SCIP_ALLOC( BMSduplicateMemoryArray(&(*compr)->desc, desc, strlen(desc)+1) );
   (*compr)->priority = priority;
   (*compr)->minnnodes = minnnodes;
   (*compr)->comprcopy = comprcopy;
   (*compr)->comprfree = comprfree;
   (*compr)->comprinit = comprinit;
   (*compr)->comprexit = comprexit;
   (*compr)->comprinitsol = comprinitsol;
   (*compr)->comprexitsol = comprexitsol;
   (*compr)->comprexec = comprexec;
   (*compr)->comprdata = comprdata;
   SCIP_CALL( SCIPclockCreate(&(*compr)->setuptime, SCIP_CLOCKTYPE_DEFAULT) );
   SCIP_CALL( SCIPclockCreate(&(*compr)->comprclock, SCIP_CLOCKTYPE_DEFAULT) );
   (*compr)->ncalls = 0;
   (*compr)->nfound = 0;
   (*compr)->rate = 0.0;
   (*compr)->initialized = FALSE;
   (*compr)->nnodes = 0;
   (*compr)->loi = 0.0;

   /* add parameters */
   (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "compression/%s/priority", name);
   (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "priority of compression <%s>", name);
   SCIP_CALL( SCIPsetAddIntParam(set, messagehdlr, blkmem, paramname, paramdesc,
                  &(*compr)->priority, TRUE, priority, INT_MIN/4, INT_MAX/4,
                  paramChgdComprPriority, (SCIP_PARAMDATA*)(*compr)) ); /*lint !e740*/
   (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "compression/%s/minnleaves", name);
   (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "minimal number of leave nodes for calling tree compression <%s>", name);
   SCIP_CALL( SCIPsetAddIntParam(set, messagehdlr, blkmem, paramname, paramdesc,
                  &(*compr)->minnnodes, FALSE, minnnodes, 1, INT_MAX, NULL, NULL) );

   return SCIP_OKAY;
}
Exemplo n.º 12
0
/** sets up the problem data */
SCIP_RETCODE SCIPprobdataCreate(
   SCIP*                 scip,               /**< SCIP data structure */
   const char*           probname,           /**< problem name */
   int*                  ids,                /**< array of item ids */
   SCIP_Longint*         weights,            /**< array containing the item weights */
   int                   nitems,             /**< number of items */
   SCIP_Longint          capacity            /**< bin capacity */
   )
{
   SCIP_PROBDATA* probdata;
   SCIP_CONS** conss;
   char name[SCIP_MAXSTRLEN];
   int i;

   assert(scip != NULL);

   /* create event handler if it does not exist yet */
   if( SCIPfindEventhdlr(scip, EVENTHDLR_NAME) == NULL )
   {
      SCIP_CALL( SCIPincludeEventhdlrBasic(scip, NULL, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecAddedVar, NULL) );
   }

   /* create problem in SCIP and add non-NULL callbacks via setter functions */
   SCIP_CALL( SCIPcreateProbBasic(scip, probname) );

   SCIP_CALL( SCIPsetProbDelorig(scip, probdelorigBinpacking) );
   SCIP_CALL( SCIPsetProbTrans(scip, probtransBinpacking) );
   SCIP_CALL( SCIPsetProbDeltrans(scip, probdeltransBinpacking) );
   SCIP_CALL( SCIPsetProbInitsol(scip, probinitsolBinpacking) );
   SCIP_CALL( SCIPsetProbExitsol(scip, probexitsolBinpacking) );

   /* set objective sense */
   SCIP_CALL( SCIPsetObjsense(scip, SCIP_OBJSENSE_MINIMIZE) );

   /* tell SCIP that the objective will be always integral */
   SCIP_CALL( SCIPsetObjIntegral(scip) );

   SCIP_CALL( SCIPallocBufferArray(scip, &conss, nitems) );

   /* create set covering constraints for each item */
   for( i = 0; i < nitems; ++i )
   {
      (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "item_%d", ids[i]);

      SCIP_CALL( SCIPcreateConsBasicSetcover(scip, &conss[i], name, 0, NULL) );

      /* declare constraint modifiable for adding variables during pricing */
      SCIP_CALL( SCIPsetConsModifiable(scip, conss[i], TRUE) );
      SCIP_CALL( SCIPaddCons(scip, conss[i]) );   
   }   
   
   /* create problem data */
   SCIP_CALL( probdataCreate(scip, &probdata, NULL, conss, weights, ids, 0, nitems, capacity) );

   SCIP_CALL( createInitialColumns(scip, probdata) );

   /* set user problem data */
   SCIP_CALL( SCIPsetProbData(scip, probdata) );

   SCIP_CALL( SCIPpricerBinpackingActivate(scip, conss, weights, ids, nitems, capacity) );

   /* free local buffer arrays */
   SCIPfreeBufferArray(scip, &conss);

   return SCIP_OKAY;
}
Exemplo n.º 13
0
/** create initial columns */
static
SCIP_RETCODE createInitialColumns(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_PROBDATA*        probdata            /**< problem data */
   )
{
   SCIP_CONS** conss;
   SCIP_VARDATA* vardata;
   SCIP_VAR* var;
   char name[SCIP_MAXSTRLEN];

   int* ids;
   SCIP_Longint* weights;
   int nitems;

   int i;

   conss = probdata->conss;
   ids = probdata->ids;
   weights = probdata->weights;
   nitems = probdata->nitems;

   /* create start solution each item in exactly one bin */
   for( i = 0; i < nitems; ++i )
   {
      (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "item_%d", ids[i]);

      SCIPdebugMessage("create variable for item %d with weight = %"SCIP_LONGINT_FORMAT"\n", ids[i], weights[i]);

      /* create variable for the packing pattern which contains only this item */
      SCIP_CALL( SCIPcreateVarBinpacking(scip, &var, name, 1.0, TRUE, TRUE, NULL) );

      /* add variable to the problem */
      SCIP_CALL( SCIPaddVar(scip, var) );

      /* store variable in the problme data */
      SCIP_CALL( SCIPprobdataAddVar(scip, probdata, var) );

      /* add variable to corresponding set covering constraint */
      SCIP_CALL( SCIPaddCoefSetppc(scip, conss[i], var) );

      /* create the variable data for the variable; the variable data contains the information in which constraints the
       * variable appears */
      SCIP_CALL( SCIPvardataCreateBinpacking(scip, &vardata, &i, 1) );

      /* add the variable data to the variable */
      SCIPvarSetData(var, vardata);

      /* change the upper bound of the binary variable to lazy since the upper bound is already enforced
       * due to the objective function the set covering constraint;
       * The reason for doing is that, is to avoid the bound of x <= 1 in the LP relaxation since this bound
       * constraint would produce a dual variable which might have a positive reduced cost
       */
      SCIP_CALL( SCIPchgVarUbLazy(scip, var, 1.0) );

      /* release variable */
      SCIP_CALL( SCIPreleaseVar(scip, &var) );
   }

   return SCIP_OKAY;
}
Exemplo n.º 14
0
/** method for either Farkas or Redcost pricing */
static
SCIP_RETCODE pricing(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_PRICER*          pricer,             /**< pricer */
   SCIP_Real*            lowerbound,         /**< lowerbound pointer */
   SCIP_Bool             farkas              /**< TRUE: Farkas pricing; FALSE: Redcost pricing */
   )
{
   SCIP_PRICERDATA* pricerdata; /* the data of the pricer */
   SCIP_PROBDATA* probdata;
   GRAPH* graph;
   SCIP_VAR* var;
   PATH* path;
   SCIP_Real* edgecosts;  /* edgecosts of the current subproblem */
   char varname[SCIP_MAXSTRLEN];
   SCIP_Real newlowerbound = -SCIPinfinity(scip);
   SCIP_Real redcost;   /* reduced cost */
   int tail;
   int e;
   int t;
   int i;

   assert(scip != NULL);
   assert(pricer != NULL);

   /* get pricer data */
   pricerdata = SCIPpricerGetData(pricer);
   assert(pricerdata != NULL);

   /* get problem data */
   probdata = SCIPgetProbData(scip);
   assert(probdata != NULL);

   SCIPdebugMessage("solstat=%d\n", SCIPgetLPSolstat(scip));

   if( !farkas && SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_OPTIMAL )
      newlowerbound = SCIPgetSolTransObj(scip, NULL);

   SCIPdebug( SCIP_CALL( SCIPprintSol(scip, NULL, NULL, FALSE) ) );

# if 0
   if ( pricerdata->lowerbound <= 4 )
   {
      char label[SCIP_MAXSTRLEN];
      (void)SCIPsnprintf(label, SCIP_MAXSTRLEN, "X%g.gml", pricerdata->lowerbound);
      SCIP_CALL( SCIPprobdataPrintGraph(scip, label , NULL, TRUE) );
      pricerdata->lowerbound++;
   }
#endif
   /* get the graph*/
   graph = SCIPprobdataGetGraph(probdata);

   /* get dual solutions and save them in mi and pi */
   for( t = 0; t < pricerdata->realnterms; ++t )
   {
      if( farkas )
      {
	 pricerdata->mi[t] = SCIPgetDualfarkasLinear(scip, pricerdata->pathcons[t]);
      }
      else
      {
         pricerdata->mi[t] = SCIPgetDualsolLinear(scip, pricerdata->pathcons[t]);
         assert(!SCIPisNegative(scip, pricerdata->mi[t]));
      }
   }

   for( e = 0; e < pricerdata->nedges; ++e )
   {
      if( !pricerdata->bigt )
      {
         for( t = 0; t < pricerdata->realnterms; ++t )
         {
            if( farkas )
	    {
               pricerdata->pi[t * pricerdata->nedges + e] = SCIPgetDualfarkasLinear(
                  scip, pricerdata->edgecons[t * pricerdata->nedges + e]);
	    }
            else
	    {
               pricerdata->pi[t * pricerdata->nedges + e] = SCIPgetDualsolLinear(
                  scip, pricerdata->edgecons[t * pricerdata->nedges + e]);
	    }
         }
      }
      else
      {
         if( farkas )
	 {
	    pricerdata->pi[e] = SCIPgetDualfarkasLinear(
               scip, pricerdata->edgecons[e]);
	 }
	 else
	 {
	    pricerdata->pi[e] = SCIPgetDualsolLinear(
               scip, pricerdata->edgecons[e]);
	 }
      }
   }

   SCIP_CALL( SCIPallocMemoryArray(scip, &path, graph->knots) );
   SCIP_CALL( SCIPallocMemoryArray(scip, &edgecosts, pricerdata->nedges) );

   if( pricerdata->bigt )
   {
      for( e = 0; e < pricerdata->nedges; ++e )
      {
         edgecosts[e] = (-pricerdata->pi[e]);
      }
   }
   /* find shortest r-t (r root, t terminal) paths and create corresponding variables iff reduced cost < 0 */
   for( t = 0; t < pricerdata->realnterms; ++t )
   {
      for( e = 0; e < pricerdata->nedges; ++e )
      {
	 if( !pricerdata->bigt )
	 {
            edgecosts[e] = (-pricerdata->pi[t * pricerdata->nedges + e]);
	 }

         assert(!SCIPisNegative(scip, edgecosts[e]));
      }

      for( i = 0; i < graph->knots; i++ )
         graph->mark[i] = 1;

      graph_path_exec(scip, graph, FSP_MODE, pricerdata->root, edgecosts, path);

      /* compute reduced cost of shortest path to terminal t */
      redcost = 0.0;
      tail = pricerdata->realterms[t];
      while( tail != pricerdata->root )
      {
         redcost += edgecosts[path[tail].edge];
	 tail = graph->tail[path[tail].edge];
      }
      redcost -= pricerdata->mi[t];

      if( !farkas && SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_OPTIMAL )
      {
         newlowerbound += redcost;
      }
      /* check if reduced cost < 0 */
      if( SCIPisNegative(scip, redcost) )
      {
	 /* create variable to the shortest path (having reduced cost < 0) */
         var = NULL;
	 sprintf(varname, "PathVar%d_%d", t, pricerdata->ncreatedvars[t]);
         ++(pricerdata->ncreatedvars[t]);

         SCIP_CALL( SCIPcreateVarBasic(scip, &var, varname, 0.0, SCIPinfinity(scip), 0.0, SCIP_VARTYPE_CONTINUOUS) );
         SCIP_CALL( SCIPaddPricedVar(scip, var, -redcost) );
         tail = pricerdata->realterms[t];
         while( tail != pricerdata->root )
         {
            /* add variable to constraints */
	    if( !pricerdata->bigt )
	    {
	       SCIP_CALL( SCIPaddCoefLinear(scip, pricerdata->edgecons[t * pricerdata->nedges + path[tail].edge], var, 1.0) );
	    }
	    else
	    {
	       SCIP_CALL( SCIPaddCoefLinear(scip, pricerdata->edgecons[path[tail].edge], var, 1.0) );
	    }

	    tail = graph->tail[path[tail].edge];
         }
         SCIP_CALL( SCIPaddCoefLinear(scip, pricerdata->pathcons[t], var, 1.0) );
      }
   }

   if( !farkas && SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_OPTIMAL )
      *lowerbound = newlowerbound;

   SCIPfreeMemoryArray(scip, &edgecosts);
   SCIPfreeMemoryArray(scip, &path);

   return SCIP_OKAY;
}
Exemplo n.º 15
0
/** presolving execution method */
static
SCIP_DECL_PRESOLEXEC(presolExecBoundshift)
{  /*lint --e{715}*/
   SCIP_PRESOLDATA* presoldata;
   SCIP_VAR** scipvars;
   SCIP_VAR** vars;
   int nbinvars;
   int nvars;
   int v;

   assert(scip != NULL);
   assert(presol != NULL);
   assert(strcmp(SCIPpresolGetName(presol), PRESOL_NAME) == 0);
   assert(result != NULL);

   *result = SCIP_DIDNOTRUN;

   /* get presolver data */
   presoldata = SCIPpresolGetData(presol);
   assert(presoldata != NULL);
   
   /* get the problem variables */
   scipvars = SCIPgetVars(scip);
   nbinvars = SCIPgetNBinVars(scip);
   nvars = SCIPgetNVars(scip) - nbinvars;

   if( nvars == 0 )
      return SCIP_OKAY;
   
   if( SCIPdoNotAggr(scip) )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   /* copy the integer variables into an own array, since adding new integer variables affects the left-most slots in
    * the array and thereby interferes with our search loop
    */
   SCIP_CALL( SCIPduplicateBufferArray(scip, &vars, &scipvars[nbinvars], nvars) );
   
   /* scan the integer, implicit, and continuous variables for possible conversion */
   for( v = nvars - 1; v >= 0; --v )
   {
      SCIP_VAR* var = vars[v];
      SCIP_Real lb;
      SCIP_Real ub;

      assert(SCIPvarGetType(var) != SCIP_VARTYPE_BINARY);

      /* get current variable's bounds */
      lb = SCIPvarGetLbGlobal(var);
      ub = SCIPvarGetUbGlobal(var);

      assert( SCIPisLE(scip, lb, ub) );
      if( SCIPisEQ(scip, lb, ub) )
         continue;
      if( presoldata->integer && !SCIPisIntegral(scip, ub - lb) ) 
         continue;

      /* check if bounds are shiftable */
      if( !SCIPisEQ(scip, lb, 0.0) &&                           /* lower bound != 0.0 */
         SCIPisLT(scip, ub, SCIPinfinity(scip)) &&              /* upper bound != infinity */
         SCIPisGT(scip, lb, -SCIPinfinity(scip)) &&             /* lower bound != -infinity */
#if 0
         SCIPisLT(scip, ub - lb, SCIPinfinity(scip)) &&         /* interval length less than SCIPinfinity(scip) */
#endif
         SCIPisLT(scip, ub - lb, (SCIP_Real) presoldata->maxshift) )        /* less than max shifting */
      {
         SCIP_VAR* newvar;
         char newvarname[SCIP_MAXSTRLEN];
         SCIP_Bool infeasible;
         SCIP_Bool redundant;
         SCIP_Bool aggregated;

         SCIPdebugMessage("convert range <%s>[%g,%g] to [%g,%g]\n", SCIPvarGetName(var), lb, ub, 0.0, (ub - lb) );

         /* create new variable */
         (void) SCIPsnprintf(newvarname, SCIP_MAXSTRLEN, "%s_shift", SCIPvarGetName(var));
         SCIP_CALL( SCIPcreateVar(scip, &newvar, newvarname, 0.0, (ub - lb), 0.0, SCIPvarGetType(var),
               SCIPvarIsInitial(var), SCIPvarIsRemovable(var), NULL, NULL, NULL, NULL, NULL) );
         SCIP_CALL( SCIPaddVar(scip, newvar) );

         /* aggregate old variable with new variable */
         if( presoldata->flipping )
         {
            if( REALABS(ub) < REALABS(lb) )
            {
               SCIP_CALL( SCIPaggregateVars(scip, var, newvar, 1.0, 1.0, ub, &infeasible, &redundant, &aggregated) );
            }
            else
            {
               SCIP_CALL( SCIPaggregateVars(scip, var, newvar, 1.0, -1.0, lb, &infeasible, &redundant, &aggregated) );
            }
         }
         else
         {
            SCIP_CALL( SCIPaggregateVars(scip, var, newvar, 1.0, -1.0, lb, &infeasible, &redundant, &aggregated) );
         }

         assert(!infeasible);
         assert(redundant);
         assert(aggregated);
         SCIPdebugMessage("var <%s> with bounds [%f,%f] has obj %f\n",
            SCIPvarGetName(newvar),SCIPvarGetLbGlobal(newvar),SCIPvarGetUbGlobal(newvar),SCIPvarGetObj(newvar));

         /* release variable */
         SCIP_CALL( SCIPreleaseVar(scip, &newvar) );
         
         /* take care of statistic */
         (*naggrvars)++;
         *result = SCIP_SUCCESS;
      }
   }

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &vars);
   
   return SCIP_OKAY;
}
Exemplo n.º 16
0
/** creates a separator */
SCIP_RETCODE SCIPsepaCreate(
   SCIP_SEPA**           sepa,               /**< pointer to separator data structure */
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_MESSAGEHDLR*     messagehdlr,        /**< message handler */
   BMS_BLKMEM*           blkmem,             /**< block memory for parameter settings */
   const char*           name,               /**< name of separator */
   const char*           desc,               /**< description of separator */
   int                   priority,           /**< priority of separator (>= 0: before, < 0: after constraint handlers) */
   int                   freq,               /**< frequency for calling separator */
   SCIP_Real             maxbounddist,       /**< maximal relative distance from current node's dual bound to primal bound compared
                                              *   to best node's dual bound for applying separation */
   SCIP_Bool             usessubscip,        /**< does the separator use a secondary SCIP instance? */
   SCIP_Bool             delay,              /**< should separator be delayed, if other separators found cuts? */
   SCIP_DECL_SEPACOPY    ((*sepacopy)),      /**< copy method of separator or NULL if you don't want to copy your plugin into sub-SCIPs */
   SCIP_DECL_SEPAFREE    ((*sepafree)),      /**< destructor of separator */
   SCIP_DECL_SEPAINIT    ((*sepainit)),      /**< initialize separator */
   SCIP_DECL_SEPAEXIT    ((*sepaexit)),      /**< deinitialize separator */
   SCIP_DECL_SEPAINITSOL ((*sepainitsol)),   /**< solving process initialization method of separator */
   SCIP_DECL_SEPAEXITSOL ((*sepaexitsol)),   /**< solving process deinitialization method of separator */
   SCIP_DECL_SEPAEXECLP  ((*sepaexeclp)),    /**< LP solution separation method of separator */
   SCIP_DECL_SEPAEXECSOL ((*sepaexecsol)),   /**< arbitrary primal solution separation method of separator */
   SCIP_SEPADATA*        sepadata            /**< separator data */
   )
{
   char paramname[SCIP_MAXSTRLEN];
   char paramdesc[SCIP_MAXSTRLEN];

   assert(sepa != NULL);
   assert(name != NULL);
   assert(desc != NULL);
   assert(freq >= -1);
   assert(0.0 <= maxbounddist && maxbounddist <= 1.0);
   assert(sepaexeclp != NULL || sepaexecsol != NULL);

   SCIP_ALLOC( BMSallocMemory(sepa) );
   SCIP_ALLOC( BMSduplicateMemoryArray(&(*sepa)->name, name, strlen(name)+1) );
   SCIP_ALLOC( BMSduplicateMemoryArray(&(*sepa)->desc, desc, strlen(desc)+1) );
   (*sepa)->priority = priority;
   (*sepa)->freq = freq;
   (*sepa)->maxbounddist = maxbounddist;
   (*sepa)->usessubscip = usessubscip;
   (*sepa)->sepacopy = sepacopy;
   (*sepa)->sepafree = sepafree;
   (*sepa)->sepainit = sepainit;
   (*sepa)->sepaexit = sepaexit;
   (*sepa)->sepainitsol = sepainitsol;
   (*sepa)->sepaexitsol = sepaexitsol;
   (*sepa)->sepaexeclp = sepaexeclp;
   (*sepa)->sepaexecsol = sepaexecsol;
   (*sepa)->sepadata = sepadata;
   SCIP_CALL( SCIPclockCreate(&(*sepa)->setuptime, SCIP_CLOCKTYPE_DEFAULT) );
   SCIP_CALL( SCIPclockCreate(&(*sepa)->sepaclock, SCIP_CLOCKTYPE_DEFAULT) );
   (*sepa)->lastsepanode = -1;
   (*sepa)->ncalls = 0;
   (*sepa)->ncutoffs = 0;
   (*sepa)->ncutsfound = 0;
   (*sepa)->ncutsapplied = 0;
   (*sepa)->nconssfound = 0;
   (*sepa)->ndomredsfound = 0;
   (*sepa)->ncallsatnode = 0;
   (*sepa)->ncutsfoundatnode = 0;
   (*sepa)->lpwasdelayed = FALSE;
   (*sepa)->solwasdelayed = FALSE;
   (*sepa)->initialized = FALSE;

   /* add parameters */
   (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "separating/%s/priority", name);
   (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "priority of separator <%s>", name);
   SCIP_CALL( SCIPsetAddIntParam(set, messagehdlr, blkmem, paramname, paramdesc,
         &(*sepa)->priority, TRUE, priority, INT_MIN/4, INT_MAX/4,
         paramChgdSepaPriority, (SCIP_PARAMDATA*)(*sepa)) ); /*lint !e740*/

   (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "separating/%s/freq", name);
   (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "frequency for calling separator <%s> (-1: never, 0: only in root node)", name);
   SCIP_CALL( SCIPsetAddIntParam(set, messagehdlr, blkmem, paramname, paramdesc,
         &(*sepa)->freq, FALSE, freq, -1, INT_MAX, NULL, NULL) );

   (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "separating/%s/maxbounddist", name);
   (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "maximal relative distance from current node's dual bound to primal bound compared to best node's dual bound for applying separator <%s> (0.0: only on current best node, 1.0: on all nodes)",
      name);
   SCIP_CALL( SCIPsetAddRealParam(set, messagehdlr, blkmem, paramname, paramdesc,
         &(*sepa)->maxbounddist, TRUE, maxbounddist, 0.0, 1.0, NULL, NULL) );

   (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "separating/%s/delay", name);
   SCIP_CALL( SCIPsetAddBoolParam(set, messagehdlr, blkmem, paramname,
         "should separator be delayed, if other separators found cuts?",
         &(*sepa)->delay, TRUE, delay, NULL, NULL) ); /*lint !e740*/

   return SCIP_OKAY;
}
Exemplo n.º 17
0
/* Read SAT formula in "CNF File Format".
 * 
 *  The specification is taken from the
 *
 *  Satisfiability Suggested Format
 *
 *  Online available at http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/Benchmarks/SAT/satformat.ps
 *
 *  The method reads all files of CNF format. Other formats (SAT, SATX, SATE) are not supported.
 */  
static
SCIP_RETCODE readCnf(
   SCIP*                 scip,               /**< SCIP data structure */   
   SCIP_FILE*            file                /**< input file */
   )
{
   SCIP_RETCODE retcode;
   SCIP_VAR** vars;
   SCIP_VAR** clausevars;
   SCIP_CONS* cons;
   int* varsign;
   char* tok;
   char* nexttok;
   char line[MAXLINELEN];
   char format[SCIP_MAXSTRLEN];
   char varname[SCIP_MAXSTRLEN];
   char s[SCIP_MAXSTRLEN];
   SCIP_Bool dynamicconss;
   SCIP_Bool dynamiccols;
   SCIP_Bool dynamicrows;
   SCIP_Bool useobj;
   int linecount;
   int clauselen;
   int clausenum;
   int nvars;
   int nclauses;
   int varnum;
   int v;

   assert(scip != NULL);
   assert(file != NULL);

   retcode = SCIP_OKAY;

   linecount = 0;

   /* read header */
   SCIP_CALL( readCnfLine(scip, file, line, (int) sizeof(line), &linecount) );
   if( *line != 'p' )
   {
      readError(scip, linecount, "problem declaration line expected");
      return SCIP_READERROR;
   }
   if( sscanf(line, "p %8s %d %d", format, &nvars, &nclauses) != 3 )
   {
      readError(scip, linecount, "invalid problem declaration (must be 'p cnf <nvars> <nclauses>')");
      return SCIP_READERROR;
   }
   if( strcmp(format, "cnf") != 0 )
   {
      (void) SCIPsnprintf(s, SCIP_MAXSTRLEN, "invalid format tag <%s> (must be 'cnf')", format);
      readError(scip, linecount, s);
      return SCIP_READERROR;
   }
   if( nvars <= 0 )
   {
      (void) SCIPsnprintf(s, SCIP_MAXSTRLEN, "invalid number of variables <%d> (must be positive)", nvars);
      readError(scip, linecount, s);
      return SCIP_READERROR;
   }
   if( nclauses <= 0 )
   {
      (void) SCIPsnprintf(s, SCIP_MAXSTRLEN, "invalid number of clauses <%d> (must be positive)", nclauses);
      readError(scip, linecount, s);
      return SCIP_READERROR;
   }

   /* get parameter values */
   SCIP_CALL( SCIPgetBoolParam(scip, "reading/cnfreader/dynamicconss", &dynamicconss) );
   SCIP_CALL( SCIPgetBoolParam(scip, "reading/cnfreader/dynamiccols", &dynamiccols) );
   SCIP_CALL( SCIPgetBoolParam(scip, "reading/cnfreader/dynamicrows", &dynamicrows) );
   SCIP_CALL( SCIPgetBoolParam(scip, "reading/cnfreader/useobj", &useobj) );

   /* get temporary memory */
   SCIP_CALL( SCIPallocBufferArray(scip, &vars, nvars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &clausevars, nvars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &varsign, nvars) );

   /* create the variables */
   for( v = 0; v < nvars; ++v )
   {
      (void) SCIPsnprintf(varname, SCIP_MAXSTRLEN, "x%d", v+1);
      SCIP_CALL( SCIPcreateVar(scip, &vars[v], varname, 0.0, 1.0, 0.0, SCIP_VARTYPE_BINARY, !dynamiccols, dynamiccols,
            NULL, NULL, NULL, NULL, NULL) );
      SCIP_CALL( SCIPaddVar(scip, vars[v]) );
      varsign[v] = 0;
   }

   /* read clauses */
   clausenum = 0;
   clauselen = 0;
   do
   {
      retcode = readCnfLine(scip, file, line, (int) sizeof(line), &linecount);
      if( retcode != SCIP_OKAY )
         goto TERMINATE;

      if( *line != '\0' && *line != '%' )
      {
         tok = SCIPstrtok(line, " \f\n\r\t", &nexttok);
         while( tok != NULL )
         {
            /* parse literal and check for errors */
            if( sscanf(tok, "%d", &v) != 1 )
            {
               (void) SCIPsnprintf(s, SCIP_MAXSTRLEN, "invalid literal <%s>", tok);
               readError(scip, linecount, s);
               retcode = SCIP_READERROR;
               goto TERMINATE;
            }

            /* interpret literal number: v == 0: end of clause, v < 0: negated literal, v > 0: positive literal */
            if( v == 0 )
            {
               /* end of clause: construct clause and add it to SCIP */
               if( clauselen == 0 )
                  readWarning(scip, linecount, "empty clause detected in line -- problem infeasible");

               clausenum++;
               (void) SCIPsnprintf(s, SCIP_MAXSTRLEN, "c%d", clausenum);
               
               if( SCIPfindConshdlr(scip, "logicor") != NULL )
               {   
                  /* if the constraint handler logicor exit create a logicor constraint */
                  SCIP_CALL( SCIPcreateConsLogicor(scip, &cons, s, clauselen, clausevars, 
                        !dynamicrows, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, dynamicconss, dynamicrows, FALSE) );
               }
               else if( SCIPfindConshdlr(scip, "setppc") != NULL )
               {
                  /* if the constraint handler logicor does not exit but constraint
                   *  handler setppc create a setppc constraint */
                  SCIP_CALL( SCIPcreateConsSetcover(scip, &cons, s, clauselen, clausevars, 
                        !dynamicrows, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, dynamicconss, dynamicrows, FALSE) );
               }
               else
               {
                  /* if none of the previous constraint handler exits create a linear
                   * constraint */
                  SCIP_Real* vals;
                  int i;
                  
                  SCIP_CALL( SCIPallocBufferArray(scip, &vals, clauselen) );
                  
                  for( i = 0; i < clauselen; ++i )
                     vals[i] = 1.0;
                  
                  SCIP_CALL( SCIPcreateConsLinear(scip, &cons, s, clauselen, clausevars, vals, 1.0, SCIPinfinity(scip),
                        !dynamicrows, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, dynamicconss, dynamicrows, FALSE) );
                  
                  SCIPfreeBufferArray(scip, &vals);
               }

               SCIP_CALL( SCIPaddCons(scip, cons) );
               SCIP_CALL( SCIPreleaseCons(scip, &cons) );
               clauselen = 0;
            }
            else if( v >= -nvars && v <= nvars )
            {
               if( clauselen >= nvars )
               {
                  readError(scip, linecount, "too many literals in clause");
                  retcode = SCIP_READERROR;
                  goto TERMINATE;
               }
         
               /* add literal to clause */
               varnum = ABS(v)-1;
               if( v < 0 )
               {
                  SCIP_CALL( SCIPgetNegatedVar(scip, vars[varnum], &clausevars[clauselen]) );
                  varsign[varnum]--;
               }
               else
               {
                  clausevars[clauselen] = vars[varnum];
                  varsign[varnum]++;
               }
               clauselen++;
            }
            else
            {
               (void) SCIPsnprintf(s, SCIP_MAXSTRLEN, "invalid variable number <%d>", ABS(v));
               readError(scip, linecount, s);
               retcode = SCIP_READERROR;
               goto TERMINATE;
            }

            /* get next token */
            tok = SCIPstrtok(NULL, " \f\n\r\t", &nexttok);
         }
      }
   }
   while( *line != '\0' && *line != '%' );

   /* check for additional literals */
   if( clauselen > 0 )
   {
      SCIPwarningMessage(scip, "found %d additional literals after last clause\n", clauselen);
   }

   /* check number of clauses */
   if( clausenum != nclauses )
   {
      SCIPwarningMessage(scip, "expected %d clauses, but found %d\n", nclauses, clausenum);
   }

 TERMINATE:
   /* change objective values and release variables */
   SCIP_CALL( SCIPsetObjsense(scip, SCIP_OBJSENSE_MAXIMIZE) );
   if( useobj )
   {
      for( v = 0; v < nvars; ++v )
      {
         SCIP_CALL( SCIPchgVarObj(scip, vars[v], (SCIP_Real)varsign[v]) );
         SCIP_CALL( SCIPreleaseVar(scip, &vars[v]) );
      }
   }

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &varsign);
   SCIPfreeBufferArray(scip, &clausevars);
   SCIPfreeBufferArray(scip, &vars);

   return retcode;
}
Exemplo n.º 18
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecMutation)
{  /*lint --e{715}*/
   SCIP_Longint maxnnodes;
   SCIP_Longint nsubnodes;                   /* node limit for the subproblem                       */

   SCIP_HEURDATA* heurdata;                  /* heuristic's data                                    */
   SCIP* subscip;                            /* the subproblem created by mutation                  */
   SCIP_VAR** vars;                          /* original problem's variables                        */
   SCIP_VAR** subvars;                       /* subproblem's variables                              */
   SCIP_HASHMAP* varmapfw;                   /* mapping of SCIP variables to sub-SCIP variables */

   SCIP_Real cutoff;                         /* objective cutoff for the subproblem                 */
   SCIP_Real maxnnodesr;
   SCIP_Real memorylimit;
   SCIP_Real timelimit;                      /* timelimit for the subproblem                        */
   SCIP_Real upperbound;

   int nvars;                                /* number of original problem's variables              */
   int i;

   SCIP_Bool success;

   SCIP_RETCODE retcode;

   assert( heur != NULL );
   assert( scip != NULL );
   assert( result != NULL );

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert( heurdata != NULL );

   *result = SCIP_DELAYED;

   /* only call heuristic, if feasible solution is available */
   if( SCIPgetNSols(scip) <= 0 )
      return SCIP_OKAY;

   /* only call heuristic, if the best solution comes from transformed problem */
   assert( SCIPgetBestSol(scip) != NULL );
   if( SCIPsolIsOriginal(SCIPgetBestSol(scip)) )
      return SCIP_OKAY;

   /* only call heuristic, if enough nodes were processed since last incumbent */
   if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip,SCIPgetBestSol(scip))  < heurdata->nwaitingnodes)
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   /* only call heuristic, if discrete variables are present */
   if( SCIPgetNBinVars(scip) == 0 && SCIPgetNIntVars(scip) == 0 )
      return SCIP_OKAY;

   /* calculate the maximal number of branching nodes until heuristic is aborted */
   maxnnodesr = heurdata->nodesquot * SCIPgetNNodes(scip);

   /* reward mutation if it succeeded often, count the setup costs for the sub-MIP as 100 nodes */
   maxnnodesr *= 1.0 + 2.0 * (SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur) + 1.0);
   maxnnodes = (SCIP_Longint) maxnnodesr - 100 * SCIPheurGetNCalls(heur);
   maxnnodes += heurdata->nodesofs;

   /* determine the node limit for the current process */
   nsubnodes = maxnnodes - heurdata->usednodes;
   nsubnodes = MIN(nsubnodes, heurdata->maxnodes);

   /* check whether we have enough nodes left to call subproblem solving */
   if( nsubnodes < heurdata->minnodes )
       return SCIP_OKAY;

   if( SCIPisStopped(scip) )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );

   /* initializing the subproblem */
   SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) );
   SCIP_CALL( SCIPcreate(&subscip) );

   /* create the variable mapping hash map */
   SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) );

   if( heurdata->uselprows )
   {
      char probname[SCIP_MAXSTRLEN];

      /* copy all plugins */
      SCIP_CALL( SCIPincludeDefaultPlugins(subscip) );

      /* get name of the original problem and add the string "_mutationsub" */
      (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_mutationsub", SCIPgetProbName(scip));

      /* create the subproblem */
      SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) );

      /* copy all variables */
      SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) );
   }
   else
   {
      SCIP_Bool valid;
      valid = FALSE;

      SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "rens", TRUE, FALSE, TRUE, &valid) );

      if( heurdata->copycuts )
      {
         /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */
         SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) );
      }

      SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not ");
   }

   for( i = 0; i < nvars; i++ )
     subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]);

   /* free hash map */
   SCIPhashmapFree(&varmapfw);

   /* create a new problem, which fixes variables with same value in bestsol and LP relaxation */
   SCIP_CALL( createSubproblem(scip, subscip, subvars, heurdata->minfixingrate, &heurdata->randseed, heurdata->uselprows) );

   /* do not abort subproblem on CTRL-C */
   SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );

   /* disable output to console */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );

  /* check whether there is enough time and memory left */
   SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
   if( !SCIPisInfinity(scip, timelimit) )
      timelimit -= SCIPgetSolvingTime(scip);
   SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );

   /* substract the memory already used by the main SCIP and the estimated memory usage of external software */
   if( !SCIPisInfinity(scip, memorylimit) )
   {
      memorylimit -= SCIPgetMemUsed(scip)/1048576.0;
      memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0;
   }

   /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */
   if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 )
      goto TERMINATE;

   /* set limits for the subproblem */
   SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );

   /* forbid recursive call of heuristics and separators solving subMIPs */
   SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) );

   /* disable cutting plane separation */
   SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) );

   /* disable expensive presolving */
   SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) );

   /* use best estimate node selection */
   if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) );
   }

   /* use inference branching */
   if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) );
   }

   /* disable conflict analysis */
   if( !SCIPisParamFixed(subscip, "conflict/useprop") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/useinflp") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/useboundlp") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/usesb") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/usepseudo") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) );
   }

   /* employ a limit on the number of enforcement rounds in the quadratic constraint handlers; this fixes the issue that
    * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the
    * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad
    * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no decutions shall be
    * made for the original SCIP
    */
   if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) );
   }

   /* add an objective cutoff */
   cutoff = SCIPinfinity(scip);
   assert( !SCIPisInfinity(scip, SCIPgetUpperbound(scip)) );

   upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip);
   if( !SCIPisInfinity(scip, -1.0 * SCIPgetLowerbound(scip)) )
   {
      cutoff = (1-heurdata->minimprove) * SCIPgetUpperbound(scip) + heurdata->minimprove * SCIPgetLowerbound(scip);
   }
   else
   {
      if( SCIPgetUpperbound ( scip ) >= 0 )
         cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip );
      else
         cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip );
   }
   cutoff = MIN(upperbound, cutoff );
   SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) );

   /* solve the subproblem */
   SCIPdebugMessage("Solve Mutation subMIP\n");
   retcode = SCIPsolve(subscip);

   /* Errors in solving the subproblem should not kill the overall solving process
    * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
    */
   if( retcode != SCIP_OKAY )
   {
#ifndef NDEBUG
      SCIP_CALL( retcode );
#endif
      SCIPwarningMessage(scip, "Error while solving subproblem in Mutation heuristic; sub-SCIP terminated with code <%d>\n",retcode);
   }

   heurdata->usednodes += SCIPgetNNodes(subscip);

   /* check, whether a solution was found */
   if( SCIPgetNSols(subscip) > 0 )
   {
      SCIP_SOL** subsols;
      int nsubsols;

      /* check, whether a solution was found;
       * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted
       */
      nsubsols = SCIPgetNSols(subscip);
      subsols = SCIPgetSols(subscip);
      success = FALSE;
      for( i = 0; i < nsubsols && !success; ++i )
      {
         SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) );
      }
      if( success )
         *result = SCIP_FOUNDSOL;
   }

 TERMINATE:
   /* free subproblem */
   SCIPfreeBufferArray(scip, &subvars);
   SCIP_CALL( SCIPfree(&subscip) );

   return SCIP_OKAY;
}
Exemplo n.º 19
0
/** LP solution separation method of separator */
static
SCIP_DECL_SEPAEXECLP(sepaExeclpGomory)
{  /*lint --e{715}*/
   SCIP_SEPADATA* sepadata;
   SCIP_VAR** vars;
   SCIP_COL** cols;
   SCIP_ROW** rows;
   SCIP_Real* binvrow;
   SCIP_Real* cutcoefs;
   SCIP_Real maxscale;
   SCIP_Real minfrac;
   SCIP_Real maxfrac;
   SCIP_Longint maxdnom;
   SCIP_Bool cutoff;
   int* basisind;
   int naddedcuts;
   int nvars;
   int ncols;
   int nrows;
   int ncalls;
   int depth;
   int maxdepth;
   int maxsepacuts;
   int c;
   int i;

   assert(sepa != NULL);
   assert(strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);

   *result = SCIP_DIDNOTRUN;

   sepadata = SCIPsepaGetData(sepa);
   assert(sepadata != NULL);

   depth = SCIPgetDepth(scip);
   ncalls = SCIPsepaGetNCallsAtNode(sepa);

   minfrac = sepadata->away;
   maxfrac = 1.0 - sepadata->away;

   /* only call separator, if we are not close to terminating */
   if( SCIPisStopped(scip) )
      return SCIP_OKAY;

   /* only call the gomory cut separator a given number of times at each node */
   if( (depth == 0 && sepadata->maxroundsroot >= 0 && ncalls >= sepadata->maxroundsroot)
      || (depth > 0 && sepadata->maxrounds >= 0 && ncalls >= sepadata->maxrounds) )
      return SCIP_OKAY;

   /* only call separator, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call separator, if the LP solution is basic */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* only call separator, if there are fractional variables */
   if( SCIPgetNLPBranchCands(scip) == 0 )
      return SCIP_OKAY;

   /* get variables data */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );

   /* get LP data */
   SCIP_CALL( SCIPgetLPColsData(scip, &cols, &ncols) );
   SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );
   if( ncols == 0 || nrows == 0 )
      return SCIP_OKAY;

#if 0 /* if too many columns, separator is usually very slow: delay it until no other cuts have been found */
   if( ncols >= 50*nrows )
      return SCIP_OKAY;

   if( ncols >= 5*nrows )
   {
      int ncutsfound;

      ncutsfound = SCIPgetNCutsFound(scip);
      if( ncutsfound > sepadata->lastncutsfound || !SCIPsepaWasLPDelayed(sepa) )
      {
         sepadata->lastncutsfound = ncutsfound;
         *result = SCIP_DELAYED;
         return SCIP_OKAY;
      }
   }
#endif

   /* set the maximal denominator in rational representation of gomory cut and the maximal scale factor to
    * scale resulting cut to integral values to avoid numerical instabilities
    */
   /**@todo find better but still stable gomory cut settings: look at dcmulti, gesa3, khb0525, misc06, p2756 */
   maxdepth = SCIPgetMaxDepth(scip);
   if( depth == 0 )
   {
      maxdnom = 1000;
      maxscale = 1000.0;
   }
   else if( depth <= maxdepth/4 )
   {
      maxdnom = 1000;
      maxscale = 1000.0;
   }
   else if( depth <= maxdepth/2 )
   {
      maxdnom = 100;
      maxscale = 100.0;
   }
   else
   {
      maxdnom = 10;
      maxscale = 10.0;
   }

   /* allocate temporary memory */
   SCIP_CALL( SCIPallocBufferArray(scip, &cutcoefs, nvars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &basisind, nrows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &binvrow, nrows) );

   /* get basis indices */
   SCIP_CALL( SCIPgetLPBasisInd(scip, basisind) );

   /* get the maximal number of cuts allowed in a separation round */
   if( depth == 0 )
      maxsepacuts = sepadata->maxsepacutsroot;
   else
      maxsepacuts = sepadata->maxsepacuts;

   SCIPdebugMessage("searching gomory cuts: %d cols, %d rows, maxdnom=%"SCIP_LONGINT_FORMAT", maxscale=%g, maxcuts=%d\n",
      ncols, nrows, maxdnom, maxscale, maxsepacuts);

   cutoff = FALSE;
   naddedcuts = 0;

   /* for all basic columns belonging to integer variables, try to generate a gomory cut */
   for( i = 0; i < nrows && naddedcuts < maxsepacuts && !SCIPisStopped(scip) && !cutoff; ++i )
   {
      SCIP_Bool tryrow;

      tryrow = FALSE;
      c = basisind[i];
      if( c >= 0 )
      {
         SCIP_VAR* var;

         assert(c < ncols);
         var = SCIPcolGetVar(cols[c]);
         if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS )
         {
            SCIP_Real primsol;

            primsol = SCIPcolGetPrimsol(cols[c]);
            assert(SCIPgetVarSol(scip, var) == primsol); /*lint !e777*/

            if( SCIPfeasFrac(scip, primsol) >= minfrac )
            {
               SCIPdebugMessage("trying gomory cut for col <%s> [%g]\n", SCIPvarGetName(var), primsol);
               tryrow = TRUE;
            }
         }
      }
      else if( sepadata->separaterows )
      {
         SCIP_ROW* row;

         assert(0 <= -c-1 && -c-1 < nrows);
         row = rows[-c-1];
         if( SCIProwIsIntegral(row) && !SCIProwIsModifiable(row) )
         {
            SCIP_Real primsol;

            primsol = SCIPgetRowActivity(scip, row);
            if( SCIPfeasFrac(scip, primsol) >= minfrac )
            {
               SCIPdebugMessage("trying gomory cut for row <%s> [%g]\n", SCIProwGetName(row), primsol);
               tryrow = TRUE;
            }
         }
      }

      if( tryrow )
      {
         SCIP_Real cutrhs;
         SCIP_Real cutact;
         SCIP_Bool success;
         SCIP_Bool cutislocal;

         /* get the row of B^-1 for this basic integer variable with fractional solution value */
         SCIP_CALL( SCIPgetLPBInvRow(scip, i, binvrow) );

         cutact = 0.0;
         cutrhs = SCIPinfinity(scip);

         /* create a MIR cut out of the weighted LP rows using the B^-1 row as weights */
         SCIP_CALL( SCIPcalcMIR(scip, NULL, BOUNDSWITCH, USEVBDS, ALLOWLOCAL, FIXINTEGRALRHS, NULL, NULL,
               (int) MAXAGGRLEN(nvars), sepadata->maxweightrange, minfrac, maxfrac,
               binvrow, 1.0, NULL, NULL, cutcoefs, &cutrhs, &cutact, &success, &cutislocal) );
         assert(ALLOWLOCAL || !cutislocal);

         /* @todo Currently we are using the SCIPcalcMIR() function to compute the coefficients of the Gomory
          *       cut. Alternatively, we could use the direct version (see thesis of Achterberg formula (8.4)) which
          *       leads to cut a of the form \sum a_i x_i \geq 1. Rumor has it that these cuts are better.
          */

         SCIPdebugMessage(" -> success=%u: %g <= %g\n", success, cutact, cutrhs);

         /* if successful, convert dense cut into sparse row, and add the row as a cut */
         if( success && SCIPisFeasGT(scip, cutact, cutrhs) )
         {
            SCIP_ROW* cut;
            char cutname[SCIP_MAXSTRLEN];
            int v;

            /* construct cut name */
            if( c >= 0 )
               (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "gom%d_x%d", SCIPgetNLPs(scip), c);
            else
               (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "gom%d_s%d", SCIPgetNLPs(scip), -c-1);

            /* create empty cut */
            SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &cut, sepa, cutname, -SCIPinfinity(scip), cutrhs,
                  cutislocal, FALSE, sepadata->dynamiccuts) );

            /* cache the row extension and only flush them if the cut gets added */
            SCIP_CALL( SCIPcacheRowExtensions(scip, cut) );

            /* collect all non-zero coefficients */
            for( v = 0; v < nvars; ++v )
            {
               if( !SCIPisZero(scip, cutcoefs[v]) )
               {
                  SCIP_CALL( SCIPaddVarToRow(scip, cut, vars[v], cutcoefs[v]) );
               }
            }

            if( SCIProwGetNNonz(cut) == 0 )
            {
               assert(SCIPisFeasNegative(scip, cutrhs));
               SCIPdebugMessage(" -> gomory cut detected infeasibility with cut 0 <= %f\n", cutrhs);
               cutoff = TRUE;
            }
            else if( SCIProwGetNNonz(cut) == 1 )
            {
               /* add the bound change as cut to avoid that the LP gets modified. that would mean the LP is not flushed
                * and the method SCIPgetLPBInvRow() fails; SCIP internally will apply that bound change automatically
                */
               SCIP_CALL( SCIPaddCut(scip, NULL, cut, TRUE) );
               naddedcuts++;
            }
            else
            {
               /* Only take efficacious cuts, except for cuts with one non-zero coefficients (= bound
                * changes); the latter cuts will be handeled internally in sepastore.
                */
               if( SCIPisCutEfficacious(scip, NULL, cut) )
               {
                  assert(success == TRUE);

                  SCIPdebugMessage(" -> gomory cut for <%s>: act=%f, rhs=%f, eff=%f\n",
                     c >= 0 ? SCIPvarGetName(SCIPcolGetVar(cols[c])) : SCIProwGetName(rows[-c-1]),
                     cutact, cutrhs, SCIPgetCutEfficacy(scip, NULL, cut));

                  if( sepadata->makeintegral )
                  {
                     /* try to scale the cut to integral values */
                     SCIP_CALL( SCIPmakeRowIntegral(scip, cut, -SCIPepsilon(scip), SCIPsumepsilon(scip),
                           maxdnom, maxscale, MAKECONTINTEGRAL, &success) );

                     if( sepadata->forcecuts )
                        success = TRUE;

                     /* in case the left hand side in minus infinity and the right hand side is plus infinity the cut is
                      * useless so we are not taking it at all
                      */
                     if( (SCIPisInfinity(scip, -SCIProwGetLhs(cut)) && SCIPisInfinity(scip, SCIProwGetRhs(cut))) )
                        success = FALSE;

                     /* @todo Trying to make the Gomory cut integral might fail. Due to numerical reasons/arguments we
                      *       currently ignore such cuts. If the cut, however, has small support (let's say smaller or equal to
                      *       5), we might want to add that cut (even it does not have integral coefficients). To be able to
                      *       do that we need to add a rank to the data structure of a row. The rank of original rows are
                      *       zero and for aggregated rows it is the maximum over all used rows plus one.
                      */
                  }

                  if( success )
                  {
                     SCIPdebugMessage(" -> found gomory cut <%s>: act=%f, rhs=%f, norm=%f, eff=%f, min=%f, max=%f (range=%f)\n",
                        cutname, SCIPgetRowLPActivity(scip, cut), SCIProwGetRhs(cut), SCIProwGetNorm(cut),
                        SCIPgetCutEfficacy(scip, NULL, cut),
                        SCIPgetRowMinCoef(scip, cut), SCIPgetRowMaxCoef(scip, cut),
                        SCIPgetRowMaxCoef(scip, cut)/SCIPgetRowMinCoef(scip, cut));

                     /* flush all changes before adding the cut */
                     SCIP_CALL( SCIPflushRowExtensions(scip, cut) );

                     /* add global cuts which are not implicit bound changes to the cut pool */
                     if( !cutislocal )
                     {
                        if( sepadata->delayedcuts )
                        {
                           SCIP_CALL( SCIPaddDelayedPoolCut(scip, cut) );
                        }
                        else
                        {
                           SCIP_CALL( SCIPaddPoolCut(scip, cut) );
                        }
                     }
                     else
                     {
                        /* local cuts we add to the sepastore */
                        SCIP_CALL( SCIPaddCut(scip, NULL, cut, FALSE) );
                     }

                     naddedcuts++;
                  }
               }
            }

            /* release the row */
            SCIP_CALL( SCIPreleaseRow(scip, &cut) );
         }
      }
   }

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &binvrow);
   SCIPfreeBufferArray(scip, &basisind);
   SCIPfreeBufferArray(scip, &cutcoefs);

   SCIPdebugMessage("end searching gomory cuts: found %d cuts\n", naddedcuts);

   sepadata->lastncutsfound = SCIPgetNCutsFound(scip);

   /* evalute the result of the separation */
   if( cutoff )
      *result = SCIP_CUTOFF;
   else if ( naddedcuts > 0 )
      *result = SCIP_SEPARATED;
   else
      *result = SCIP_DIDNOTFIND;

   return SCIP_OKAY;
}
Exemplo n.º 20
0
/** main procedure of the RENS heuristic, creates and solves a subMIP */
SCIP_RETCODE SCIPapplyGcgrens(
   SCIP*                 scip,               /**< original SCIP data structure                                   */
   SCIP_HEUR*            heur,               /**< heuristic data structure                                       */
   SCIP_RESULT*          result,             /**< result data structure                                          */
   SCIP_Real             minfixingrate,      /**< minimum percentage of integer variables that have to be fixed  */
   SCIP_Real             minimprove,         /**< factor by which RENS should at least improve the incumbent     */
   SCIP_Longint          maxnodes,           /**< maximum number of  nodes for the subproblem                    */
   SCIP_Longint          nstallnodes,        /**< number of stalling nodes for the subproblem                    */
   SCIP_Bool             binarybounds,       /**< should general integers get binary bounds [floor(.),ceil(.)]?  */
   SCIP_Bool             uselprows           /**< should subproblem be created out of the rows in the LP rows?   */
   )
{
   SCIP* subscip;                            /* the subproblem created by RENS                  */
   SCIP_HASHMAP* varmapfw;                   /* mapping of SCIP variables to sub-SCIP variables */
   SCIP_VAR** vars;                          /* original problem's variables                    */
   SCIP_VAR** subvars;                       /* subproblem's variables                          */

   SCIP_Real cutoff;                         /* objective cutoff for the subproblem             */
   SCIP_Real timelimit;
   SCIP_Real memorylimit;

   int nvars;
   int i;

   SCIP_Bool success;
   SCIP_RETCODE retcode;

   assert(scip != NULL);
   assert(heur != NULL);
   assert(result != NULL);

   assert(maxnodes >= 0);
   assert(nstallnodes >= 0);

   assert(0.0 <= minfixingrate && minfixingrate <= 1.0);
   assert(0.0 <= minimprove && minimprove <= 1.0);

   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );

   /* initialize the subproblem */
   SCIP_CALL( SCIPcreate(&subscip) );

   /* create the variable mapping hash map */
   SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) );
   SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) );

   if( uselprows )
   {
      char probname[SCIP_MAXSTRLEN];

      /* copy all plugins */
      SCIP_CALL( SCIPincludeDefaultPlugins(subscip) );

      /* get name of the original problem and add the string "_gcgrenssub" */
      (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_gcgrenssub", SCIPgetProbName(scip));

      /* create the subproblem */
      SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) );

      /* copy all variables */
      SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) );
   }
   else
   {
      SCIP_Bool valid;
      SCIP_HEURDATA* heurdata;

      valid = FALSE;

      SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "gcgrens", TRUE, FALSE, TRUE, &valid) ); /** @todo check for thread safeness */

      /* get heuristic's data */
      heurdata = SCIPheurGetData(heur);
      assert( heurdata != NULL );

      if( heurdata->copycuts )
      {
         /** copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */
         SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) );
      }

      SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not ");
   }

   for( i = 0; i < nvars; i++ )
     subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]);

   /* free hash map */
   SCIPhashmapFree(&varmapfw);

   /* create a new problem, which fixes variables with same value in bestsol and LP relaxation */
   SCIP_CALL( createSubproblem(scip, subscip, subvars, minfixingrate, binarybounds, uselprows, &success) );
   SCIPdebugMessage("RENS subproblem: %d vars, %d cons, success=%u\n", SCIPgetNVars(subscip), SCIPgetNConss(subscip), success);

   /* do not abort subproblem on CTRL-C */
   SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );

   /* disable output to console */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );

   /* check whether there is enough time and memory left */
   timelimit = 0.0;
   memorylimit = 0.0;
   SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
   if( !SCIPisInfinity(scip, timelimit) )
      timelimit -= SCIPgetSolvingTime(scip);
   SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );
   if( !SCIPisInfinity(scip, memorylimit) )
      memorylimit -= SCIPgetMemUsed(scip)/1048576.0;
   if( timelimit <= 0.0 || memorylimit <= 0.0 )
      goto TERMINATE;

   /* set limits for the subproblem */
   SCIP_CALL( SCIPsetLongintParam(subscip, "limits/stallnodes", nstallnodes) );
   SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", maxnodes) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );

   /* forbid recursive call of heuristics and separators solving sub-SCIPs */
   SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) );

   /* disable cutting plane separation */
   SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) );

   /* disable expensive presolving */
   SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) );

   /* use best estimate node selection */
   if( SCIPfindNodesel(scip, "estimate") != NULL )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) );
   }

   /* use inference branching */
   if( SCIPfindBranchrule(scip, "inference") != NULL )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) );
   }

   /* disable conflict analysis */
   SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) );
   SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) );
   SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) );
   SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) );
   SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) );


#ifdef SCIP_DEBUG
   /* for debugging RENS, enable MIP output */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 5) );
   SCIP_CALL( SCIPsetIntParam(subscip, "display/freq", 100000000) );
#endif


   /* if the subproblem could not be created, free memory and return */
   if( !success )
   {
      *result = SCIP_DIDNOTRUN;
      SCIPfreeBufferArray(scip, &subvars);
      SCIP_CALL( SCIPfree(&subscip) );
      return SCIP_OKAY;
   }

   /* if there is already a solution, add an objective cutoff */
   if( SCIPgetNSols(scip) > 0 )
   {
      SCIP_Real upperbound;
      assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) );

      upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip);

      if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) )
      {
         cutoff = (1-minimprove)*SCIPgetUpperbound(scip) + minimprove*SCIPgetLowerbound(scip);
      }
      else
      {
         if( SCIPgetUpperbound ( scip ) >= 0 )
            cutoff = ( 1 - minimprove ) * SCIPgetUpperbound ( scip );
         else
            cutoff = ( 1 + minimprove ) * SCIPgetUpperbound ( scip );
      }
      cutoff = MIN(upperbound, cutoff);
      SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) );
   }

   /* presolve the subproblem */
   retcode = SCIPpresolve(subscip);

   /* Errors in solving the subproblem should not kill the overall solving process
    * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
    */
   if( retcode != SCIP_OKAY )
   {
#ifndef NDEBUG
      SCIP_CALL( retcode );
#endif
      SCIPwarningMessage(scip, "Error while presolving subproblem in GCG RENS heuristic; sub-SCIP terminated with code <%d>\n",retcode);
   }

   SCIPdebugMessage("GCG RENS presolved subproblem: %d vars, %d cons, success=%u\n", SCIPgetNVars(subscip), SCIPgetNConss(subscip), success);

   /* after presolving, we should have at least reached a certain fixing rate over ALL variables (including continuous)
    * to ensure that not only the MIP but also the LP relaxation is easy enough
    */
   if( ( nvars - SCIPgetNVars(subscip) ) / (SCIP_Real)nvars >= minfixingrate / 2.0 )
   {
      SCIP_SOL** subsols;
      int nsubsols;

      /* solve the subproblem */
      SCIPdebugMessage("solving subproblem: nstallnodes=%"SCIP_LONGINT_FORMAT", maxnodes=%"SCIP_LONGINT_FORMAT"\n", nstallnodes, maxnodes);
      retcode = SCIPsolve(subscip);

      /* Errors in solving the subproblem should not kill the overall solving process
       * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
       */
      if( retcode != SCIP_OKAY )
      {
#ifndef NDEBUG
         SCIP_CALL( retcode );
#endif
         SCIPwarningMessage(scip, "Error while solving subproblem in GCG RENS heuristic; sub-SCIP terminated with code <%d>\n",retcode);
      }

      /* check, whether a solution was found;
       * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted
       */
      nsubsols = SCIPgetNSols(subscip);
      subsols = SCIPgetSols(subscip);
      success = FALSE;
      for( i = 0; i < nsubsols && !success; ++i )
      {
         SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) );
      }
      if( success )
         *result = SCIP_FOUNDSOL;
   }

 TERMINATE:
   /* free subproblem */
   SCIPfreeBufferArray(scip, &subvars);
   SCIP_CALL( SCIPfree(&subscip) );

   return SCIP_OKAY;
}
Exemplo n.º 21
0
int GamsScip::callSolver()
{
   assert(gmo  != NULL);
   assert(gev  != NULL);
   assert(scip != NULL);

   /* set interface type so we see =B= and =X= equations */
   gmoInterfaceSet(gmo, gmoIFace_Raw);

   if( gmoGetEquTypeCnt(gmo, gmoequ_C) || gmoGetEquTypeCnt(gmo, gmoequ_B) || gmoGetEquTypeCnt(gmo, gmoequ_X) )
   {
      gevLogStat(gev, "ERROR: Conic and logic constraints and external functions not supported by SCIP interface.\n");
      gmoSolveStatSet(gmo, gmoSolveStat_Capability);
      gmoModelStatSet(gmo, gmoModelStat_NoSolutionReturned);
      return 1;
   }

   // set number of threads for linear algebra routines used in Ipopt
   setNumThreads(gev, gevThreads(gev));

   // update error printing callback in SCIP to use current gev
   SCIPmessageSetErrorPrinting(printErrorGev, (void*)gev);

   SCIP_RETCODE scipret;

   // let GMO reader setup SCIP parameters and read options file
   // do this here already so we know how to assemble dialog
   scipret = SCIPreadParamsReaderGmo(scip);
   if( scipret != SCIP_OKAY )
   {
      char buffer[256];
      sprintf(buffer, "Error %d in call of SCIP function\n", scipret);
      gevLogStatPChar(gev, buffer);
      gmoSolveStatSet(gmo, gmoSolveStat_SystemErr);
      gmoModelStatSet(gmo, gmoModelStat_ErrorNoSolution);
      return 1;
   }
   SCIPinfoMessage(scip, NULL, "non-default parameter settings:\n");
   SCIPwriteParams(scip, NULL, FALSE, TRUE);

   char* interactive = NULL;
   SCIP_CALL_ABORT( SCIPgetStringParam(scip, "gams/interactive", &interactive) );
   assert(interactive != NULL);
#ifdef GAMS_BUILD
   if( interactive[0] != '\0' && !palLicenseIsAcademic(pal) )
   {
      gevLogStat(gev, "SCIP interactive shell not available in demo mode.\n");
      interactive[0] = '\0';
   }
#endif

   SCIP_Bool printstat;
   SCIP_CALL_ABORT( SCIPgetBoolParam(scip, "display/statistics", &printstat) );

   char* attrfile = NULL;
#if 0
   SCIP_CALL( SCIPgetStringParam(scip, "constraints/attrfile", &attrfile) );
#endif

   // setup commands to be executed by SCIP
   SCIP_CALL_ABORT( SCIPaddDialogInputLine(scip, "readgams") );              // setup model

   if( attrfile != NULL && *attrfile != '\0' )
   {
      char buffer[SCIP_MAXSTRLEN + 10];
      size_t len;

      len = strlen(attrfile);
      if( len >= 3 && strcmp(&attrfile[len-3], ".ca") == 0 )
         (void) SCIPsnprintf(buffer, sizeof(buffer), "read %g", attrfile);
      else
         (void) SCIPsnprintf(buffer, sizeof(buffer), "read %g ca", attrfile);
      SCIP_CALL_ABORT( SCIPaddDialogInputLine(scip, buffer) );               // process constraints attribute file
   }

   if( interactive[0] == '\0' )
   {
      SCIP_CALL_ABORT( SCIPaddDialogInputLine(scip, "optimize") );           // solve model

      if( printstat )
      {
         SCIP_CALL_ABORT( SCIPaddDialogInputLine(scip, "disp statistics") ); // display solution statistics
      }
      SCIP_CALL_ABORT( SCIPaddDialogInputLine(scip, "write gamssol") );      // pass solution to GMO

      SCIP_CALL_ABORT( SCIPaddDialogInputLine(scip, "quit") );               // quit shell
   }
   else
   {
      // pass user commands to shell
      SCIP_CALL_ABORT( SCIPaddDialogInputLine(scip, interactive) );
   }


   // run SCIP
   scipret = SCIPstartInteraction(scip);

   // evaluate SCIP return code
   switch( scipret )
   {
      case SCIP_OKAY:
         break;

      case SCIP_READERROR:
         /* if it's readerror, then we guess that it comes from encountering an unsupported gams instruction in the gmo readers makeExprtree method
          * we still return with zero then
          */
         gmoModelStatSet(gmo, gmoModelStat_NoSolutionReturned);
         gmoSolveStatSet(gmo, gmoSolveStat_Capability);
         break;

      case SCIP_LPERROR:
      case SCIP_MAXDEPTHLEVEL:
         /* if SCIP failed due to internal error (forced LP solve failed, max depth level reached), also return zero */
         gmoModelStatSet(gmo, gmoModelStat_ErrorNoSolution);
         gmoSolveStatSet(gmo, gmoSolveStat_SolverErr);
         break;

      case SCIP_NOMEMORY:
         /* there is no extra solver status for running out of memory, but memory is a resource, so return this */
         gmoModelStatSet(gmo, gmoModelStat_ErrorNoSolution);
         gmoSolveStatSet(gmo, gmoSolveStat_Resource);
         break;

      default:
      {
         char buffer[256];
         sprintf(buffer, "Error %d in call of SCIP function\n", scipret);
         gevLogStatPChar(gev, buffer);

         gmoModelStatSet(gmo, gmoModelStat_ErrorNoSolution);
         gmoSolveStatSet(gmo, gmoSolveStat_SystemErr);
         return 1;
      }
   }

   return 0;
}
Exemplo n.º 22
0
/**
 * @brief translates a SCIP_RETCODE into an error string
 *
 * @param[in] retcode SCIP_RETCODE you want to translate
 * @param[out] buffer_str buffer to character array to store translated message, this must be at least of size \ref SCIP_MSG_MAX
 * @return buffer_str or NULL, if retcode could not be translated
 */
inline char* SCIPgetErrorString(SCIP_RETCODE retcode, char* buffer_str, int buffersize)
{
   // the following was copied from SCIPprintError
   switch(retcode)
   {
   case SCIP_OKAY:
      SCIPsnprintf(buffer_str, buffersize, "normal termination");
      return buffer_str;
   case SCIP_ERROR:
      SCIPsnprintf(buffer_str, buffersize, "unspecified error");
      return buffer_str;
   case SCIP_NOMEMORY:
      SCIPsnprintf(buffer_str, buffersize, "insufficient memory error");
      return buffer_str;
   case SCIP_READERROR:
      SCIPsnprintf(buffer_str, buffersize, "file read error");
      return buffer_str;
   case SCIP_WRITEERROR:
      SCIPsnprintf(buffer_str, buffersize, "file write error");
      return buffer_str;
   case SCIP_NOFILE:
      SCIPsnprintf(buffer_str, buffersize, "file not found error");
      return buffer_str;
   case SCIP_FILECREATEERROR:
      SCIPsnprintf(buffer_str, buffersize, "cannot create file");
      return buffer_str;
   case SCIP_LPERROR:
      SCIPsnprintf(buffer_str, buffersize, "error in LP solver");
      return buffer_str;
   case SCIP_NOPROBLEM:
      SCIPsnprintf(buffer_str, buffersize, "no problem exists");
      return buffer_str;
   case SCIP_INVALIDCALL:
      SCIPsnprintf(buffer_str, buffersize, "method cannot be called at this time in solution process");
      return buffer_str;
   case SCIP_INVALIDDATA:
      SCIPsnprintf(buffer_str, buffersize, "method cannot be called with this type of data");
      return buffer_str;
   case SCIP_INVALIDRESULT:
      SCIPsnprintf(buffer_str, buffersize, "method returned an invalid result code");
      return buffer_str;
   case SCIP_PLUGINNOTFOUND:
      SCIPsnprintf(buffer_str, buffersize, "a required plugin was not found");
      return buffer_str;
   case SCIP_PARAMETERUNKNOWN:
      SCIPsnprintf(buffer_str, buffersize, "the parameter with the given name was not found");
      return buffer_str;
   case SCIP_PARAMETERWRONGTYPE:
      SCIPsnprintf(buffer_str, buffersize, "the parameter is not of the expected type");
      return buffer_str;
   case SCIP_PARAMETERWRONGVAL:
      SCIPsnprintf(buffer_str, buffersize, "the value is invalid for the given parameter");
      return buffer_str;
   case SCIP_KEYALREADYEXISTING:
      SCIPsnprintf(buffer_str, buffersize, "the given key is already existing in table");
      return buffer_str;
   case SCIP_MAXDEPTHLEVEL:
      SCIPsnprintf(buffer_str, buffersize, "maximal branching depth level exceeded");
      return buffer_str;
   default:
      return NULL;
   }
}
Exemplo n.º 23
0
   /** @brief constructs a SCIPEexception from an error code
    *
    * this constructs a new SCIPException from given error code
    * @param[in] retcode SCIP error code
    */
   SCIPException(SCIP_RETCODE retcode)
   {
      if(SCIPgetErrorString(retcode, _msg, SCIP_MSG_MAX)==NULL)
	 SCIPsnprintf(_msg, SCIP_MSG_MAX, "unknown SCIP retcode %d",retcode);
   }
Exemplo n.º 24
0
/** read fixed variable */
static
SCIP_RETCODE getFixedVariable(
   SCIP*                 scip,               /**< SCIP data structure */
   CIPINPUT*             cipinput            /**< CIP parsing data */
   )
{
   SCIP_Bool success;
   SCIP_VAR* var;
   char* buf;
   char* endptr;
   char name[SCIP_MAXSTRLEN];

   buf = cipinput->strbuf;

   if( strncmp(buf, "CONSTRAINTS", 11) == 0 )
      cipinput->section = CIP_CONSTRAINTS;
   else if( strncmp(buf, "END", 3) == 0 )
      cipinput->section = CIP_END;

   if( cipinput->section != CIP_FIXEDVARS )
      return SCIP_OKAY;

   SCIPdebugMessage("parse fixed variable\n");

   /* parse the variable */
   SCIP_CALL( SCIPparseVar(scip, &var, buf, TRUE, FALSE, NULL, NULL, NULL, NULL, NULL, &endptr, &success) );

   if( !success )
   {
      SCIPerrorMessage("syntax error in variable information (line: %d):\n%s\n", cipinput->linenumber, cipinput->strbuf);
      cipinput->haserror = TRUE;
      return SCIP_OKAY;
   }

   /* skip intermediate stuff */
   buf = endptr;

   while ( *buf != '\0' && (*buf == ' ' || *buf == ',') )
      ++buf;

   /* check whether variable is fixed */
   if ( strncmp(buf, "fixed:", 6) == 0 )
   {
      SCIP_CALL( SCIPaddVar(scip, var) );
      SCIPdebug( SCIP_CALL( SCIPprintVar(scip, var, NULL) ) );
   }
   else if ( strncmp(buf, "negated:", 8) == 0 )
   {
      SCIP_CONS* lincons;
      SCIP_VAR* negvar;
      SCIP_Real vals[2];
      SCIP_VAR* vars[2];

      buf += 8;

      /* we can just parse the next variable (ignoring all other information in between) */
      SCIP_CALL( SCIPparseVarName(scip, buf, &negvar, &endptr) );

      if ( negvar == NULL )
      {
         SCIPerrorMessage("could not parse negated variable (line: %d):\n%s\n", cipinput->linenumber, cipinput->strbuf);
         cipinput->haserror = TRUE;
         return SCIP_OKAY;
      }
      assert(SCIPvarIsBinary(var));
      assert(SCIPvarIsBinary(negvar));

      SCIP_CALL( SCIPaddVar(scip, var) );

      SCIPdebugMessage("creating negated variable <%s> (of <%s>) ...\n", SCIPvarGetName(var), SCIPvarGetName(negvar) );
      SCIPdebug( SCIP_CALL( SCIPprintVar(scip, var, NULL) ) );

      /* add linear constraint for negation */
      (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "neg_%s", SCIPvarGetName(var) );
      vars[0] = var;
      vars[1] = negvar;
      vals[0] = 1.0;
      vals[1] = 1.0;
      SCIPdebugMessage("coupling constraint:\n");
      SCIP_CALL( SCIPcreateConsLinear(scip, &lincons, name, 2, vars, vals, 1.0, 1.0, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE) );
      SCIPdebugPrintCons(scip, lincons, NULL);
      SCIP_CALL( SCIPaddCons(scip, lincons) );
      SCIP_CALL( SCIPreleaseCons(scip, &lincons) );
   }
   else if ( strncmp(buf, "aggregated:", 11) == 0 )
   {
      /* handle (multi-)aggregated variables */
      SCIP_CONS* lincons;
      SCIP_Real* vals;
      SCIP_VAR** vars;
      SCIP_Real rhs = 0.0;
      const char* str;
      int nvarssize = 20;
      int requsize;
      int nvars;

      buf += 11;

      SCIPdebugMessage("parsing aggregated variable <%s> ...\n", SCIPvarGetName(var));

      /* first parse constant */
      if ( ! SCIPstrToRealValue(buf, &rhs, &endptr) )
      {
         SCIPerrorMessage("expected constant when aggregated variable information (line: %d):\n%s\n", cipinput->linenumber, buf);
         cipinput->haserror = TRUE;
         return SCIP_OKAY;
      }

      /* check whether constant is 0.0 */
      str = endptr;
      while ( *str != '\0' && isspace(*str) )
         ++str;
      /* if next char is '<' we found a variable -> constant is 0 */
      if ( *str != '<' )
      {
         SCIPdebugMessage("constant: %f\n", rhs);
         buf = endptr;
      }
      else
      {
         /* otherwise keep buf */
         rhs = 0.0;
      }

      /* initialize buffers for storing the variables and values */
      SCIP_CALL( SCIPallocBufferArray(scip, &vars, nvarssize) );
      SCIP_CALL( SCIPallocBufferArray(scip, &vals, nvarssize) );

      vars[0] = var;
      vals[0] = -1.0;
      --nvarssize;

      /* parse linear sum to get variables and coefficients */
      SCIP_CALL( SCIPparseVarsLinearsum(scip, buf, &(vars[1]), &(vals[1]), &nvars, nvarssize, &requsize, &endptr, &success) );
      if ( success && requsize > nvarssize )
      {
         /* realloc buffers and try again */
         nvarssize = requsize;
         SCIP_CALL( SCIPreallocBufferArray(scip, &vars, nvarssize + 1) );
         SCIP_CALL( SCIPreallocBufferArray(scip, &vals, nvarssize + 1) );

         SCIP_CALL( SCIPparseVarsLinearsum(scip, buf, &(vars[1]), &(vals[1]), &nvars, nvarssize, &requsize, &endptr, &success) );
         assert( ! success || requsize <= nvarssize); /* if successful, then should have had enough space now */
      }

      if( success )
      {
         /* add aggregated variable */
         SCIP_CALL( SCIPaddVar(scip, var) );

         /* special handling of variables that seem to be slack variables of indicator constraints */
         str = SCIPvarGetName(var);
         if ( strncmp(str, "indslack", 8) == 0 )
         {
            (void) strcpy(name, "indlin");
            (void) strncat(name, str+8, SCIP_MAXSTRLEN-7);
         }
         else if ( strncmp(str, "t_indslack", 10) == 0 )
         {
            (void) strcpy(name, "indlin");
            (void) strncat(name, str+10, SCIP_MAXSTRLEN-7);
         }
         else
            (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s", SCIPvarGetName(var) );

         /* add linear constraint for (multi-)aggregation */
         SCIPdebugMessage("coupling constraint:\n");
         SCIP_CALL( SCIPcreateConsLinear(scip, &lincons, name, nvars + 1, vars, vals, -rhs, -rhs, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE) );
         SCIPdebugPrintCons(scip, lincons, NULL);
         SCIP_CALL( SCIPaddCons(scip, lincons) );
         SCIP_CALL( SCIPreleaseCons(scip, &lincons) );
      }
      else
      {
         SCIPwarningMessage(scip, "Could not read (multi-)aggregated variable <%s>: dependent variables unkown - consider changing the order (line: %d):\n%s\n",
            SCIPvarGetName(var), cipinput->linenumber, buf);
      }

      SCIPfreeBufferArray(scip, &vals);
      SCIPfreeBufferArray(scip, &vars);
   }
   else
   {
      SCIPerrorMessage("unknown section when parsing variables (line: %d):\n%s\n", cipinput->linenumber, buf);
      cipinput->haserror = TRUE;
      return SCIP_OKAY;
   }
   SCIP_CALL( SCIPreleaseVar(scip, &var) );

   return SCIP_OKAY;
}
Exemplo n.º 25
0
/** creates a display column */
SCIP_RETCODE SCIPdispCreate(
   SCIP_DISP**           disp,               /**< pointer to store display column */
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_MESSAGEHDLR*     messagehdlr,        /**< message handler */
   BMS_BLKMEM*           blkmem,             /**< block memory for parameter settings */
   const char*           name,               /**< name of display column */
   const char*           desc,               /**< description of display column */
   const char*           header,             /**< head line of display column */
   SCIP_DISPSTATUS       dispstatus,         /**< display activation status of display column */
   SCIP_DECL_DISPCOPY    ((*dispcopy)),      /**< copy method of display column or NULL if you don't want to copy your plugin into sub-SCIPs */
   SCIP_DECL_DISPFREE    ((*dispfree)),      /**< destructor of display column */
   SCIP_DECL_DISPINIT    ((*dispinit)),      /**< initialize display column */
   SCIP_DECL_DISPEXIT    ((*dispexit)),      /**< deinitialize display column */
   SCIP_DECL_DISPINITSOL ((*dispinitsol)),   /**< solving process initialization method of display column */
   SCIP_DECL_DISPEXITSOL ((*dispexitsol)),   /**< solving process deinitialization method of display column */
   SCIP_DECL_DISPOUTPUT  ((*dispoutput)),    /**< output method */
   SCIP_DISPDATA*        dispdata,           /**< display column data */
   int                   width,              /**< width of display column (no. of chars used) */
   int                   priority,           /**< priority of display column */
   int                   position,           /**< relative position of display column */
   SCIP_Bool             stripline           /**< should the column be separated with a line from its right neighbor? */
   )
{
   char paramname[SCIP_MAXSTRLEN];
   char paramdesc[SCIP_MAXSTRLEN];

   assert(disp != NULL);
   assert(name != NULL);
   assert(desc != NULL);
   assert(header != NULL);
   assert(dispoutput != NULL);
   assert(width >= 0);

   SCIP_ALLOC( BMSallocMemory(disp) );
   SCIP_ALLOC( BMSduplicateMemoryArray(&(*disp)->name, name, strlen(name)+1) );
   SCIP_ALLOC( BMSduplicateMemoryArray(&(*disp)->desc, desc, strlen(desc)+1) );
   SCIP_ALLOC( BMSduplicateMemoryArray(&(*disp)->header, header, strlen(header)+1) );
   (*disp)->dispstatus = dispstatus;
   (*disp)->dispcopy = dispcopy;
   (*disp)->dispfree = dispfree;
   (*disp)->dispinit = dispinit;
   (*disp)->dispexit = dispexit;
   (*disp)->dispinitsol = dispinitsol;
   (*disp)->dispexitsol = dispexitsol;
   (*disp)->dispoutput = dispoutput;
   (*disp)->dispdata = dispdata;
   (*disp)->width = width;
   (*disp)->priority = priority;
   (*disp)->position = position;
   (*disp)->stripline = stripline;
   (*disp)->initialized = FALSE;
   (*disp)->active = (dispstatus == SCIP_DISPSTATUS_ON);

   /* add parameters */
   (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "display/%s/active", name);
   (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "display activation status of display column <%s> (0: off, 1: auto, 2:on)", name);
   SCIP_CALL( SCIPsetAddIntParam(set, messagehdlr, blkmem, paramname, paramdesc,
         (int*)(&(*disp)->dispstatus), FALSE, (int)dispstatus, 0, 2, SCIPparamChgdDispActive, NULL) );

   return SCIP_OKAY;
}
Exemplo n.º 26
0
/** creates a presolver */
SCIP_RETCODE SCIPpresolCreate(
   SCIP_PRESOL**         presol,             /**< pointer to store presolver */
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_MESSAGEHDLR*     messagehdlr,        /**< message handler */
   BMS_BLKMEM*           blkmem,             /**< block memory for parameter settings */
   const char*           name,               /**< name of presolver */
   const char*           desc,               /**< description of presolver */
   int                   priority,           /**< priority of the presolver (>= 0: before, < 0: after constraint handlers) */
   int                   maxrounds,          /**< maximal number of presolving rounds the presolver participates in (-1: no limit) */
   SCIP_Bool             delay,              /**< should presolver be delayed, if other presolvers found reductions? */
   SCIP_DECL_PRESOLCOPY  ((*presolcopy)),    /**< copy method of presolver or NULL if you don't want to copy your plugin into sub-SCIPs */
   SCIP_DECL_PRESOLFREE  ((*presolfree)),    /**< destructor of presolver to free user data (called when SCIP is exiting) */
   SCIP_DECL_PRESOLINIT  ((*presolinit)),    /**< initialization method of presolver (called after problem was transformed) */
   SCIP_DECL_PRESOLEXIT  ((*presolexit)),    /**< deinitialization method of presolver (called before transformed problem is freed) */
   SCIP_DECL_PRESOLINITPRE((*presolinitpre)),/**< presolving initialization method of presolver (called when presolving is about to begin) */
   SCIP_DECL_PRESOLEXITPRE((*presolexitpre)),/**< presolving deinitialization method of presolver (called after presolving has been finished) */
   SCIP_DECL_PRESOLEXEC  ((*presolexec)),    /**< execution method of presolver */
   SCIP_PRESOLDATA*      presoldata          /**< presolver data */
   )
{
   char paramname[SCIP_MAXSTRLEN];
   char paramdesc[SCIP_MAXSTRLEN];

   assert(presol != NULL);
   assert(name != NULL);
   assert(desc != NULL);

   SCIP_ALLOC( BMSallocMemory(presol) );
   SCIP_ALLOC( BMSduplicateMemoryArray(&(*presol)->name, name, strlen(name)+1) );
   SCIP_ALLOC( BMSduplicateMemoryArray(&(*presol)->desc, desc, strlen(desc)+1) );
   (*presol)->presolcopy = presolcopy;
   (*presol)->presolfree = presolfree;
   (*presol)->presolinit = presolinit;
   (*presol)->presolexit = presolexit;
   (*presol)->presolinitpre = presolinitpre;
   (*presol)->presolexitpre = presolexitpre;
   (*presol)->presolexec = presolexec;
   (*presol)->presoldata = presoldata;
   SCIP_CALL( SCIPclockCreate(&(*presol)->setuptime, SCIP_CLOCKTYPE_DEFAULT) );
   SCIP_CALL( SCIPclockCreate(&(*presol)->presolclock, SCIP_CLOCKTYPE_DEFAULT) );
   (*presol)->wasdelayed = FALSE;
   (*presol)->initialized = FALSE;

   /* add parameters */
   (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "presolving/%s/priority", name);
   (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "priority of presolver <%s>", name);
   SCIP_CALL( SCIPsetAddIntParam(set, messagehdlr, blkmem, paramname, paramdesc,
         &(*presol)->priority, TRUE, priority, INT_MIN/4, INT_MAX/4,
         paramChgdPresolPriority, (SCIP_PARAMDATA*)(*presol)) ); /*lint !e740*/

   (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "presolving/%s/maxrounds", name);
   SCIP_CALL( SCIPsetAddIntParam(set, messagehdlr, blkmem, paramname,
         "maximal number of presolving rounds the presolver participates in (-1: no limit)",
         &(*presol)->maxrounds, FALSE, maxrounds, -1, INT_MAX, NULL, NULL) ); /*lint !e740*/

   (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "presolving/%s/delay", name);
   SCIP_CALL( SCIPsetAddBoolParam(set, messagehdlr, blkmem, paramname,
         "should presolver be delayed, if other presolvers found reductions?",
         &(*presol)->delay, TRUE, delay, NULL, NULL) ); /*lint !e740*/

   return SCIP_OKAY;
}
/** presolving execution method */
static
SCIP_DECL_PRESOLEXEC(presolExecInttobinary)
{  /*lint --e{715}*/
   SCIP_VAR** scipvars;
   SCIP_VAR** vars;
   int nbinvars;
   int nintvars;
   int v;

   assert(result != NULL);

   *result = SCIP_DIDNOTRUN;

   if( SCIPdoNotAggr(scip) )
      return SCIP_OKAY;

   /* get the problem variables */
   scipvars = SCIPgetVars(scip);
   nbinvars = SCIPgetNBinVars(scip);
   nintvars = SCIPgetNIntVars(scip);
   if( nintvars == 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   /* copy the integer variables into an own array, since adding binary variables affects the left-most slots in the
    * array and thereby interferes with our search loop
    */
   SCIP_CALL( SCIPduplicateBufferArray(scip, &vars, &scipvars[nbinvars], nintvars) );

   /* scan the integer variables for possible conversion into binaries;
    * we have to collect the variables first in an own 
    */
   for( v = 0; v < nintvars; ++v )
   {
      SCIP_Real lb;
      SCIP_Real ub;

      assert(SCIPvarGetType(vars[v]) == SCIP_VARTYPE_INTEGER);

      /* get variable's bounds */
      lb = SCIPvarGetLbGlobal(vars[v]);
      ub = SCIPvarGetUbGlobal(vars[v]);

      /* check if bounds are exactly one apart */
      if( SCIPisEQ(scip, lb, ub - 1.0) )
      {
         SCIP_VAR* binvar;
         char binvarname[SCIP_MAXSTRLEN];
         SCIP_Bool infeasible;
         SCIP_Bool redundant;
         SCIP_Bool aggregated;

         SCIPdebugMessage("converting <%s>[%g,%g] into binary variable\n", SCIPvarGetName(vars[v]), lb, ub);

         /* create binary variable */
         (void) SCIPsnprintf(binvarname, SCIP_MAXSTRLEN, "%s_bin", SCIPvarGetName(vars[v]));
         SCIP_CALL( SCIPcreateVar(scip, &binvar, binvarname, 0.0, 1.0, 0.0, SCIP_VARTYPE_BINARY,
               SCIPvarIsInitial(vars[v]), SCIPvarIsRemovable(vars[v]), NULL, NULL, NULL, NULL, NULL) );
         SCIP_CALL( SCIPaddVar(scip, binvar) );

         /* aggregate integer and binary variable */
         SCIP_CALL( SCIPaggregateVars(scip, vars[v], binvar, 1.0, -1.0, lb, &infeasible, &redundant, &aggregated) );

         /* release binary variable */
         SCIP_CALL( SCIPreleaseVar(scip, &binvar) );

         /* it can be the case that this aggregation detects an infeasibility; for example, during the copy of the
          * variable bounds from the integer variable to the binary variable, infeasibility can be detected; this can
          * happen because an upper bound or a lower bound of such a variable bound variable was "just" changed and the
          * varbound constraint handler, who would detect that infeasibility (since it was creating it from a varbound
          * constraint), was called before that bound change was detected due to the presolving priorities;
          */
         if( infeasible )
         {
            *result = SCIP_CUTOFF;
            break;
         }
            
         assert(redundant);
         assert(aggregated);
         (*nchgvartypes)++;
         *result = SCIP_SUCCESS;
      }
   }

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &vars);

   return SCIP_OKAY;
}
Exemplo n.º 28
0
/* standard "main" method for mex interface */
void mexFunction(
   int                   nlhs,               /* number of expected outputs */
   mxArray*              plhs[],             /* array of pointers to output arguments */
   int                   nrhs,               /* number of inputs */
   const mxArray*        prhs[]              /* array of pointers to input arguments */
   )
{
   SCIP* scip;
   SCIP_VAR** vars;
   SCIP_Real* objs;
   SCIP_Real* lhss;
   SCIP_Real* rhss;
   SCIP_Real* lbs;
   SCIP_Real* ubs;
   SCIP_Real* matrix;
   SCIP_Real* bestsol;
   SCIP_Real* objval;
   char* vartypes;
   char objsense[SCIP_MAXSTRLEN];

   int nvars;
   int nconss;
   int stringsize;
   int i;

   if( SCIPmajorVersion() < 2 )
   {
      mexErrMsgTxt("SCIP versions less than 2.0 are not supported\n");
      return;
   }

   /* initialize SCIP */
   SCIP_CALL_ABORT( SCIPcreate(&scip) );

   /* output SCIP information */
   SCIPprintVersion(scip, NULL);

   /* include default SCIP plugins */
   SCIP_CALL_ABORT( SCIPincludeDefaultPlugins(scip) );

   if( nlhs != 2 || nrhs != 8 )
      mexErrMsgTxt("invalid number of parameters. Call as [bestsol, objval] = matscip(matrix, lhs, rhs, obj, lb, ub, vartype, objsense)\n");

   if( mxIsSparse(prhs[0]) )
      mexErrMsgTxt("sparse matrices are not supported yet"); /* ???????? of course this has to change */

   /* get linear constraint coefficient matrix */
   matrix = mxGetPr(prhs[0]);
   if( matrix == NULL )
      mexErrMsgTxt("matrix must not be NULL");
   if( mxGetNumberOfDimensions(prhs[0]) != 2 )
      mexErrMsgTxt("matrix must have exactly two dimensions");

   /* get dimensions of matrix */
   nconss = mxGetM(prhs[0]);
   nvars = mxGetN(prhs[0]);
   assert(nconss > 0);
   assert(nvars > 0);

   /* get left hand sides of linear constraints */
   lhss = mxGetPr(prhs[1]);
   if( mxGetM(prhs[1]) != nconss )
      mexErrMsgTxt("dimension of left hand side vector does not match matrix dimension");
   assert(lhss != NULL);

   /* get right hand sides of linear constraints */
   rhss = mxGetPr(prhs[2]);
   if( mxGetM(prhs[2]) != nconss )
      mexErrMsgTxt("dimension of right hand side vector does not match matrix dimension");
   assert(rhss != NULL);

   /* get objective coefficients */
   objs = mxGetPr(prhs[3]);
   if( mxGetM(prhs[3]) != nvars )
      mexErrMsgTxt("dimension of objective coefficient vector does not match matrix dimension");

   /* get lower bounds of variables */
   lbs = mxGetPr(prhs[4]);
   if( mxGetM(prhs[4]) != nvars )
      mexErrMsgTxt("dimension of lower bound vector does not match matrix dimension");

   /* get upper bounds of variables */
   ubs = mxGetPr(prhs[5]);
   if( mxGetM(prhs[5]) != nvars )
      mexErrMsgTxt("dimension of upper bound vector does not match matrix dimension");

   /* allocate memory for variable type characters */
   SCIP_CALL_ABORT( SCIPallocMemoryArray(scip, &vartypes, nvars+1) );

   /* get variable types */
   if( mxGetString(prhs[6], vartypes, nvars+1)  != 0 )
      mexErrMsgTxt("Error when parsing variable types, maybe a wrong vector dimension?");

   /* get objective sense */
   stringsize = mxGetNumberOfElements(prhs[7]);
   if( stringsize != 3 )
      mexErrMsgTxt("objective sense must be a three character word: \"max\" or \"min\"");
   if( mxGetString(prhs[7], objsense, stringsize+1) != 0)
      mexErrMsgTxt("Error when parsing objective sense string");
   if( strcmp(objsense,"max") != 0 && strcmp(objsense,"min") != 0 )
      mexErrMsgTxt("objective sense must be either \"max\" or \"min\"");

   /* get output parameters */
   plhs[0] = mxCreateDoubleMatrix(nvars, 1, mxREAL);
   bestsol = mxGetPr(plhs[0]);
   plhs[1] = mxCreateDoubleScalar(mxREAL);
   objval  = mxGetPr(plhs[1]);

   /* create SCIP problem */
   SCIP_CALL_ABORT( SCIPcreateProb(scip, "mex_prob", NULL, NULL, NULL, NULL, NULL, NULL, NULL) );

   /* allocate memory for variable array */
   SCIP_CALL_ABORT( SCIPallocMemoryArray(scip, &vars, nvars) );

   /* create variables */
   for( i = 0; i < nvars; ++i)
   {
      SCIP_VARTYPE vartype;
      char varname[SCIP_MAXSTRLEN];

      /* convert vartype character to SCIP vartype */
      if( vartypes[i] == 'i' )
         vartype = SCIP_VARTYPE_INTEGER;
      else if( vartypes[i] == 'b' )
         vartype = SCIP_VARTYPE_BINARY;
      else if( vartypes[i] == 'c' )
         vartype = SCIP_VARTYPE_CONTINUOUS;
      else
         mexErrMsgTxt("unkown variable type");

      /* variables get canonic names x_i */
      (void) SCIPsnprintf(varname, SCIP_MAXSTRLEN, "x_%d", i);

      /* create variable object and add it to SCIP */
      SCIP_CALL_ABORT( SCIPcreateVar(scip, &vars[i], varname, lbs[i], ubs[i], objs[i],
            vartype, TRUE, FALSE, NULL, NULL, NULL, NULL, NULL) );
      assert(vars[i] != NULL);
      SCIP_CALL_ABORT( SCIPaddVar(scip, vars[i]) );
   }

   /* create linear constraints */
   for( i = 0; i < nconss; ++i )
   {
      SCIP_CONS* cons;
      char consname[SCIP_MAXSTRLEN];
      int j;

      /* constraints get canonic names cons_i */
      (void) SCIPsnprintf(consname, SCIP_MAXSTRLEN, "cons_%d", i);

      /* create empty linear constraint */
      SCIP_CALL_ABORT( SCIPcreateConsLinear(scip, &cons, consname, 0, NULL, NULL, lhss[i], rhss[i],
            TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE) );

      /* add non-zero coefficients to linear constraint */
      for( j = 0; j < nvars; ++j )
      {
         if( !SCIPisFeasZero(scip, matrix[i+j*nconss]) )
         {
            SCIP_CALL_ABORT( SCIPaddCoefLinear(scip, cons, vars[j], matrix[i+j*nconss]) );
         }
      }

      /* add constraint to SCIP and release it */
      SCIP_CALL_ABORT( SCIPaddCons(scip, cons) );
      SCIP_CALL_ABORT( SCIPreleaseCons(scip, &cons) );
   }

   /* set objective sense in SCIP */
   if( strcmp(objsense,"max") == 0)
   {
      SCIP_CALL_ABORT( SCIPsetObjsense(scip, SCIP_OBJSENSE_MAXIMIZE) );
   }
   else if( strcmp(objsense,"min") == 0)
   {
      SCIP_CALL_ABORT( SCIPsetObjsense(scip, SCIP_OBJSENSE_MINIMIZE) );
   }
   else
      /* this should have been caught earlier when parsing objsense */
      mexErrMsgTxt("unkown objective sense");

   /* solve SCIP problem */
   SCIP_CALL_ABORT( SCIPsolve(scip) );

   /* if SCIP found a solution, pass it back into MATLAB output parameters */
   if( SCIPgetNSols > 0 )
   {
      SCIP_SOL* scipbestsol;

      /* get incumbent solution vector */
      scipbestsol = SCIPgetBestSol(scip);
      assert(scipbestsol != NULL);

      /* get objective value of incumbent solution */
      *objval = SCIPgetSolOrigObj(scip, scipbestsol);
      assert(!SCIPisInfinity(scip, REALABS(*objval)));

      /* copy solution values into output vector */
      for( i = 0; i < nvars; ++i )
         bestsol[i] = SCIPgetSolVal(scip,scipbestsol,vars[i]);
   }

   /* release variables */
   for( i = 0; i < nvars; ++i )
   {
      SCIP_CALL_ABORT( SCIPreleaseVar(scip, &vars[i]) );
   }

   /* free memory for variable arrays */
   SCIPfreeMemoryArray(scip, &vartypes);
   SCIPfreeMemoryArray(scip, &vars);

   /* deinitialize SCIP */
   SCIP_CALL_ABORT( SCIPfree(&scip) );

   /* check for memory leaks */
   BMScheckEmptyMemory();

   return;
}
Exemplo n.º 29
0
/** writes problem data to file with given reader or returns SCIP_DIDNOTRUN */
SCIP_RETCODE SCIPreaderWrite(
   SCIP_READER*          reader,             /**< reader */
   SCIP_PROB*            prob,               /**< problem data */
   SCIP_SET*             set,                /**< global SCIP settings */
   FILE*                 file,               /**< output file (or NULL for standard output) */
   const char*           extension,          /**< file format */
   SCIP_Bool             genericnames,       /**< using generic variable and constraint names? */
   SCIP_RESULT*          result              /**< pointer to store the result of the callback method */
   )
{
   SCIP_RETCODE retcode;

   assert(reader != NULL);
   assert(set != NULL);
   assert(extension != NULL);
   assert(result != NULL);

   /* check, if reader is applicable on the given file */
   if( readerIsApplicable(reader, extension) && reader->readerwrite != NULL )
   {
      SCIP_VAR** vars;
      int nvars;
      SCIP_VAR** fixedvars;
      int nfixedvars;
      SCIP_CONS** conss;
      int nconss;
      int i;

      SCIP_CONS* cons;

      char* name;
      const char* consname;
      const char** varnames;
      const char** fixedvarnames;
      const char** consnames;

      varnames = NULL;
      fixedvarnames = NULL; 
      consnames = NULL;

      vars = prob->vars;
      nvars = prob->nvars;
      fixedvars = prob->fixedvars;
      nfixedvars = prob->nfixedvars;

      /* case of the transformed problem, we want to write currently valid problem */
      if( prob->transformed )
      {
         SCIP_CONSHDLR** conshdlrs;
         int nconshdlrs;

         conshdlrs = set->conshdlrs;
         nconshdlrs = set->nconshdlrs;

         /* collect number of constraints which have to be enforced; these are the constraints which currency (locally)
          * enabled; these also includes the local constraints
          */
         nconss = 0;
         for( i = 0; i < nconshdlrs; ++i )
         {
            /* check if all constraints of the constraint handler should be written */
            if( set->write_allconss )
               nconss += SCIPconshdlrGetNConss(conshdlrs[i]);
            else
               nconss += SCIPconshdlrGetNEnfoConss(conshdlrs[i]);
         }

         SCIPdebugMessage("Writing %d constraints.\n", nconss);


         SCIP_ALLOC( BMSallocMemoryArray(&conss, nconss) );

         /* copy the constraints */
         nconss = 0;
         for( i = 0; i < nconshdlrs; ++i )
         {
            SCIP_CONS** conshdlrconss;
            int nconshdlrconss;
            int c;

            /* check if all constraints of the constraint handler should be written */
            if( set->write_allconss )
            {
               conshdlrconss = SCIPconshdlrGetConss(conshdlrs[i]);
               nconshdlrconss = SCIPconshdlrGetNConss(conshdlrs[i]);
            }
            else
            {
               conshdlrconss = SCIPconshdlrGetEnfoConss(conshdlrs[i]);
               nconshdlrconss = SCIPconshdlrGetNEnfoConss(conshdlrs[i]);
            }

            SCIPdebugMessage("Conshdlr <%s> has %d constraints to write from all in all %d constraints.\n", SCIPconshdlrGetName(conshdlrs[i]), nconshdlrconss, SCIPconshdlrGetNConss(conshdlrs[i]));

            for( c = 0; c < nconshdlrconss; ++c )
            {
               conss[nconss] = conshdlrconss[c];
               nconss++;
            }
         }
      }
      else
      {
         conss = prob->conss;
         nconss = prob->nconss;
      }

      if( genericnames )
      {
         SCIP_VAR* var;
         int size;

         /* save variable and constraint names and replace these names by generic names */

         /* allocate memory for saving the original variable and constraint names */
         SCIP_ALLOC( BMSallocMemoryArray(&varnames, nvars) );
         SCIP_ALLOC( BMSallocMemoryArray(&fixedvarnames, nfixedvars) );
         SCIP_ALLOC( BMSallocMemoryArray(&consnames, nconss) );

         /* compute length of the generic variable names:
          * - nvars + 1 to avoid log of zero
          * - +3 (zero at end + 'x' + 1 because we round down)
          * Example: 10 -> need 4 chars ("x10\0") 
          */
         size = (int) log10(nvars+1.0) + 3;

         for( i = 0; i < nvars; ++i )
         {
            var = vars[i];
            varnames[i] = SCIPvarGetName(var);

            SCIP_ALLOC( BMSallocMemoryArray(&name, size) );
            (void) SCIPsnprintf(name, size, "x%d", i + set->write_genoffset);
            SCIPvarSetNamePointer(var, name);
         }  

         /* compute length of the generic variable names */
         size = (int) log10(nfixedvars+1.0) + 3;

         for( i = 0; i < nfixedvars; ++i )
         {
            var = fixedvars[i];
            fixedvarnames[i] = SCIPvarGetName(var);

            SCIP_ALLOC( BMSallocMemoryArray(&name, size) );
            (void) SCIPsnprintf(name, size, "y%d", i);
            SCIPvarSetNamePointer(var, name);
         }

         /* compute length of the generic constraint names */
         size = (int) log10(nconss+1.0) + 3;

         for( i = 0; i < nconss; ++i )
         {
            cons = conss[i];
            consnames[i] = SCIPconsGetName(cons);

            SCIP_ALLOC( BMSallocMemoryArray(&name, size) );
            (void) SCIPsnprintf(name, size, "c%d", i);
            SCIPconsSetNamePointer(cons, name);
         }
      }

      /* call reader to write problem */
      retcode = reader->readerwrite(set->scip, reader, file, prob->name, prob->probdata, prob->transformed,
         prob->transformed ? SCIP_OBJSENSE_MINIMIZE : prob->objsense, prob->objscale, prob->objoffset,
         vars, nvars, prob->nbinvars, prob->nintvars, prob->nimplvars, prob->ncontvars, 
         fixedvars, nfixedvars, prob->startnvars, 
         conss, nconss, prob->maxnconss, prob->startnconss, genericnames, result);

      /* reset variable and constraint names to original names */
      if( genericnames )
      {  
         assert(varnames != NULL);
         assert(fixedvarnames != NULL);
         assert(consnames != NULL);

         for( i = 0; i < nvars; ++i )
            resetVarname(vars[i], varnames[i]);

         for( i = 0; i < nfixedvars; ++i )
            resetVarname(fixedvars[i], fixedvarnames[i]);

         for( i = 0; i < nconss; ++i )
         {
            cons = conss[i];

            /* get pointer to temporary generic name and free the memory */
            consname = SCIPconsGetName(cons);
            BMSfreeMemory(&consname);

            /* reset name */
            SCIPconsSetNamePointer(cons, consnames[i]);
         }

         /* free memory */
         BMSfreeMemoryArray(&varnames);
         BMSfreeMemoryArray(&fixedvarnames);
         BMSfreeMemoryArray(&consnames);
      }

      if( prob->transformed )
      {
         /* free memory */
         BMSfreeMemoryArray(&conss);
      }
   }
   else
   {
      *result = SCIP_DIDNOTRUN;
      retcode = SCIP_OKAY;
   }

   /* check for reader errors */
   if( retcode == SCIP_WRITEERROR )
      return retcode;

   SCIP_CALL( retcode );

   return SCIP_OKAY;
}
Exemplo n.º 30
0
/** reduced cost pricing method of variable pricer for feasible LPs */
static
SCIP_DECL_PRICERREDCOST(pricerRedcostBinpacking)
{  /*lint --e{715}*/
   SCIP* subscip;
   SCIP_PRICERDATA* pricerdata;
   SCIP_CONS** conss;
   SCIP_VAR** vars;
   int* ids;
   SCIP_Bool addvar;

   SCIP_SOL** sols;
   int nsols;
   int s;

   int nitems;
   SCIP_Longint capacity;

   SCIP_Real timelimit;
   SCIP_Real memorylimit;

   assert(scip != NULL);
   assert(pricer != NULL);

   (*result) = SCIP_DIDNOTRUN;

   /* get the pricer data */
   pricerdata = SCIPpricerGetData(pricer);
   assert(pricerdata != NULL);

   capacity = pricerdata->capacity;
   conss = pricerdata->conss;
   ids = pricerdata->ids;
   nitems = pricerdata->nitems;

   /* get the remaining time and memory limit */
   SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
   if( !SCIPisInfinity(scip, timelimit) )
      timelimit -= SCIPgetSolvingTime(scip);
   SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );
   if( !SCIPisInfinity(scip, memorylimit) )
      memorylimit -= SCIPgetMemUsed(scip)/1048576.0;

   /* initialize SCIP */
   SCIP_CALL( SCIPcreate(&subscip) );
   SCIP_CALL( SCIPincludeDefaultPlugins(subscip) );

   /* create problem in sub SCIP */
   SCIP_CALL( SCIPcreateProbBasic(subscip, "pricing") );
   SCIP_CALL( SCIPsetObjsense(subscip, SCIP_OBJSENSE_MAXIMIZE) );

   /* do not abort subproblem on CTRL-C */
   SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );

   /* disable output to console */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );

   /* set time and memory limit */
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );

   SCIP_CALL( SCIPallocMemoryArray(subscip, &vars, nitems) );

   /* initialization local pricing problem */
   SCIP_CALL( initPricing(scip, pricerdata, subscip, vars) );

   SCIPdebugMessage("solve pricer problem\n");

   /* solve sub SCIP */
   SCIP_CALL( SCIPsolve(subscip) );

   sols = SCIPgetSols(subscip);
   nsols = SCIPgetNSols(subscip);
   addvar = FALSE;

   /* loop over all solutions and create the corresponding column to master if the reduced cost are negative for master,
    * that is the objective value i greater than 1.0
    */
   for( s = 0; s < nsols; ++s )
   {
      SCIP_Bool feasible;
      SCIP_SOL* sol;

      /* the soultion should be sorted w.r.t. the objective function value */
      assert(s == 0 || SCIPisFeasGE(subscip, SCIPgetSolOrigObj(subscip, sols[s-1]), SCIPgetSolOrigObj(subscip, sols[s])));

      sol = sols[s];
      assert(sol != NULL);

      /* check if solution is feasible in original sub SCIP */
      SCIP_CALL( SCIPcheckSolOrig(subscip, sol, &feasible, FALSE, FALSE ) );

      if( !feasible )
      {
         SCIPwarningMessage(scip, "solution in pricing problem (capacity <%d>) is infeasible\n", capacity);
         continue;
      }

      /* check if the solution has a value greater than 1.0 */
      if( SCIPisFeasGT(subscip, SCIPgetSolOrigObj(subscip, sol), 1.0) )
      {
         SCIP_VAR* var;
         SCIP_VARDATA* vardata;
         int* consids;
         char strtmp[SCIP_MAXSTRLEN];
         char name[SCIP_MAXSTRLEN];
         int nconss;
         int o;
         int v;

         SCIPdebug( SCIP_CALL( SCIPprintSol(subscip, sol, NULL, FALSE) ) );

         nconss = 0;
         (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "items");

         SCIP_CALL( SCIPallocBufferArray(scip, &consids, nitems) );

         /* check which variables are fixed -> which item belongs to this packing */
         for( o = 0, v = 0; o < nitems; ++o )
         {
            if( !SCIPconsIsEnabled(conss[o]) )
               continue;

            assert(SCIPgetNFixedonesSetppc(scip, conss[o]) == 0);

            if( SCIPgetSolVal(subscip, sol, vars[v]) > 0.5 )
            {
               (void) SCIPsnprintf(strtmp, SCIP_MAXSTRLEN, "_%d", ids[o]);
               strcat(name, strtmp);

               consids[nconss] = o;
               nconss++;
            }
            else
               assert( SCIPisFeasEQ(subscip, SCIPgetSolVal(subscip, sol, vars[v]), 0.0) );

            v++;
         }

         SCIP_CALL( SCIPvardataCreateBinpacking(scip, &vardata, consids, nconss) );

         /* create variable for a new column with objective function coefficient 0.0 */
         SCIP_CALL( SCIPcreateVarBinpacking(scip, &var, name, 1.0, FALSE, TRUE, vardata) );

         /* add the new variable to the pricer store */
         SCIP_CALL( SCIPaddPricedVar(scip, var, 1.0) );
         addvar = TRUE;

         /* change the upper bound of the binary variable to lazy since the upper bound is already enforced due to
          * the objective function the set covering constraint; The reason for doing is that, is to avoid the bound
          * of x <= 1 in the LP relaxation since this bound constraint would produce a dual variable which might have
          * a positive reduced cost
          */
         SCIP_CALL( SCIPchgVarUbLazy(scip, var, 1.0) );

         /* check which variable are fixed -> which orders belong to this packing */
         for( v = 0; v < nconss; ++v )
         {
            assert(SCIPconsIsEnabled(conss[consids[v]]));
            SCIP_CALL( SCIPaddCoefSetppc(scip, conss[consids[v]], var) );
         }

         SCIPdebug(SCIPprintVar(scip, var, NULL) );
         SCIP_CALL( SCIPreleaseVar(scip, &var) );

         SCIPfreeBufferArray(scip, &consids);
      }
      else
         break;
   }

   /* free pricer MIP */
   SCIPfreeMemoryArray(subscip, &vars);

   if( addvar || SCIPgetStatus(subscip) == SCIP_STATUS_OPTIMAL )
      (*result) = SCIP_SUCCESS;

   /* free sub SCIP */
   SCIP_CALL( SCIPfree(&subscip) );

   return SCIP_OKAY;
}