Exemplo n.º 1
0
/** evaluate the given candidate with the given score against the currently best know candidate */
static
void evaluateValueCand(
   SCIP_VAR*             cand,               /**< candidate to be checked */
   SCIP_Real             score,              /**< score of the candidate */
   SCIP_Real             branchpoint,        /**< potential branching point */
   SCIP_BRANCHDIR        branchdir,          /**< potential branching direction */
   SCIP_VAR**            bestcand,           /**< pointer to the currently best candidate */
   SCIP_Real*            bestscore,          /**< pointer to the score of the currently best candidate */
   SCIP_Real*            bestbranchpoint,    /**< pointer to store the (best) branching point */
   SCIP_BRANCHDIR*       bestbranchdir       /**< pointer to store the branching direction relative to the branching point */
   )
{
   /* evaluate the candidate against the currently best candidate */
   if( (*bestscore) < score )
   {
      /* the score of the candidate is better than the currently best know candidate */
      (*bestscore) = score;
      (*bestcand) = cand;
      (*bestbranchpoint) = branchpoint;
      (*bestbranchdir) = branchdir;
   }
   else if( (*bestscore) == score ) /*lint !e777*/
   {
      SCIP_Real bestobj;
      SCIP_Real candobj;

      bestobj = REALABS(SCIPvarGetObj(*bestcand));
      candobj = REALABS(SCIPvarGetObj(cand));

      /* the candidate has the same score as the best known candidate; therefore we use a second and third
       * criteria to detect a unique best candidate;
       *
       * - the second criteria prefers the candidate with a larger absolute value of its objective coefficient
       *   since branching on that variable might trigger further propagation w.r.t. objective function
       * - if the absolute values of the objective coefficient are equal the variable index is used to define a
       *   unique best candidate
       *
       * @note It is very important to select a unique best candidate. Otherwise the solver might vary w.r.t. the
       *       performance to much since the candidate array which is used here (SCIPgetPseudoBranchCands() or
       *       SCIPgetLPBranchCands()) gets dynamically changed during the solution process. In particular,
       *       starting a probing mode might already change the order of these arrays. To be independent of that
       *       the selection should be unique. Otherwise, to selection process can get influenced by starting a
       *       probing or not.
       */
      if( bestobj < candobj || (bestobj == candobj && SCIPvarGetIndex(*bestcand) < SCIPvarGetIndex(cand)) ) /*lint !e777*/
      {
         (*bestcand) = cand;
         (*bestbranchpoint) = branchpoint;
         (*bestbranchdir) = branchdir;
      }
   }
}
Exemplo n.º 2
0
/** branching execution method for fractional LP solutions */
static
SCIP_DECL_BRANCHEXECLP(branchExeclpLeastinf)
{  /*lint --e{715}*/
   SCIP_VAR** lpcands;
   SCIP_Real* lpcandsfrac;
   int nlpcands;
   SCIP_Real infeasibility;
   SCIP_Real score;
   SCIP_Real obj;
   SCIP_Real bestscore;
   SCIP_Real bestobj;
   int bestcand;
   int i;

   assert(branchrule != NULL);
   assert(strcmp(SCIPbranchruleGetName(branchrule), BRANCHRULE_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);

   SCIPdebugMessage("Execlp method of leastinf branching\n");

   /* get branching candidates */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, NULL, &lpcandsfrac, NULL, &nlpcands, NULL) );
   assert(nlpcands > 0);

   /* search the least infeasible candidate */
   bestscore = SCIP_REAL_MIN;
   bestobj = 0.0;
   bestcand = -1;
   for( i = 0; i < nlpcands; ++i )
   {
      assert(lpcands[i] != NULL);

      infeasibility = lpcandsfrac[i];
      infeasibility = MIN(infeasibility, 1.0-infeasibility);
      score = 1.0 - infeasibility;
      score *= SCIPvarGetBranchFactor(lpcands[i]);
      obj = SCIPvarGetObj(lpcands[i]);
      obj = REALABS(obj);
      if( SCIPisGT(scip, score, bestscore)
         || (SCIPisGE(scip, score, bestscore) && obj > bestobj) )
      {
         bestscore = score;
         bestobj = obj;
         bestcand = i;
      }
   }
   assert(bestcand >= 0);

   SCIPdebugMessage(" -> %d candidates, selected candidate %d: variable <%s> (frac=%g, obj=%g, factor=%g, score=%g)\n",
      nlpcands, bestcand, SCIPvarGetName(lpcands[bestcand]), lpcandsfrac[bestcand], bestobj,
      SCIPvarGetBranchFactor(lpcands[bestcand]), bestscore);

   /* perform the branching */
   SCIP_CALL( SCIPbranchVar(scip, lpcands[bestcand], NULL, NULL, NULL) );
   *result = SCIP_BRANCHED;

   return SCIP_OKAY;
}
Exemplo n.º 3
0
/** find variable aggregations for downlock case */
static
SCIP_RETCODE findDownlockAggregations(
   SCIP*                 scip,               /**< SCIP main data structure */
   SCIPMILPMATRIX*       matrix,             /**< constraint matrix */
   int*                  nvaragg,            /**< number of redundant variables */
   AGGRTYPE*             aggtypes,           /**< type of aggregations (in same order as variables in matrix) */
   SCIP_VAR**            binvars             /**< pointers to the binary variables (in same order as variables in matrix) */
   )
{
   int nvars;
   int i;

   assert(scip != NULL);
   assert(matrix != NULL);
   assert(nvaragg != NULL);
   assert(aggtypes != NULL);
   assert(binvars != NULL);

   nvars = SCIPmatrixGetNColumns(matrix);

   for( i = 0; i < nvars; i++ )
   {
      /* column has only one downlock which keeps it from being fixed by duality fixing;
       * only handle variable if it was not yet aggregated due to a single uplock
       */
      if( SCIPmatrixGetColNDownlocks(matrix, i) == 1 &&
         SCIPisGE(scip, SCIPvarGetObj(SCIPmatrixGetVar(matrix, i)), 0.0) &&
         aggtypes[i] == NOAGG )
      {
         SCIP_Real lb;
         SCIP_Real ub;

         lb = SCIPmatrixGetColLb(matrix, i);
         ub = SCIPmatrixGetColUb(matrix, i);
         assert(lb == SCIPvarGetLbGlobal(SCIPmatrixGetVar(matrix, i))); /*lint !e777*/
         assert(ub == SCIPvarGetUbGlobal(SCIPmatrixGetVar(matrix, i))); /*lint !e777*/

         /* the variable needs to have finite bounds to allow an agregation */
         if( !SCIPisInfinity(scip, -lb) && !SCIPisInfinity(scip, ub) )
         {
            int binvaridx;
            AGGRTYPE aggtype;
            getBinVarIdxInDownlockRow(scip, matrix, i, &binvaridx, &aggtype);

            if( binvaridx >= 0 )
            {
               aggtypes[i] = aggtype;
               binvars[i] = SCIPmatrixGetVar(matrix, binvaridx);
               (*nvaragg)++;
            }
         }
      }
   }

   return SCIP_OKAY;
}
Exemplo n.º 4
0
/** execution method of objective change event handler */
static
SCIP_DECL_EVENTEXEC(eventExecIntobj)
{  /*lint --e{715}*/
   SCIP_EVENTHDLRDATA* eventhdlrdata;
   SCIP_SEPADATA* sepadata;
   SCIP_VAR* var;
   SCIP_Real objdelta;

   eventhdlrdata = SCIPeventhdlrGetData(eventhdlr);
   sepadata = (SCIP_SEPADATA*)eventhdlrdata;
   assert(sepadata != NULL);

   /* we don't have anything to do, if the objective value inequality doesn't yet exist */
   if( sepadata->objrow == NULL )
      return SCIP_OKAY;

   var = SCIPeventGetVar(event);

   switch( SCIPeventGetType(event) )
   {
   case SCIP_EVENTTYPE_VARADDED:
      SCIPdebugMessage("variable <%s> with obj=%g was added to the problem\n", SCIPvarGetName(var), SCIPvarGetObj(var));
      objdelta = SCIPvarGetObj(var);
      if( !SCIPisZero(scip, objdelta) )
      {
         SCIP_CALL( SCIPaddVarToRow(scip, sepadata->objrow, var, SCIPvarGetObj(var)) );
      }
      break;

   case SCIP_EVENTTYPE_OBJCHANGED:
      SCIPdebugMessage("variable <%s> changed objective value from %g to %g\n", 
         SCIPvarGetName(var), SCIPeventGetOldobj(event), SCIPeventGetNewobj(event));
      objdelta = SCIPeventGetNewobj(event) - SCIPeventGetOldobj(event);
      SCIP_CALL( SCIPaddVarToRow(scip, sepadata->objrow, var, objdelta) );
      break;

   default:
      SCIPerrorMessage("invalid event type %x\n", SCIPeventGetType(event));
      return SCIP_INVALIDDATA;
   }

   return SCIP_OKAY;
}
Exemplo n.º 5
0
/** calculate score and preferred rounding direction for the candidate variable; the best candidate maximizes the
 *  score
 */
static
SCIP_DECL_DIVESETGETSCORE(divesetGetScoreGuideddiving)
{
   SCIP_SOL* bestsol;
   SCIP_Real bestsolval;
   SCIP_Real obj;
   SCIP_Real objnorm;
   SCIP_Real objgain;

   bestsol = SCIPgetBestSol(scip);
   assert(bestsol != NULL);
   assert(!SCIPsolIsOriginal(bestsol));

   bestsolval = SCIPgetSolVal(scip, bestsol, cand);

   /* variable should be rounded (guided) into the direction of its incumbent solution value */
   if( candsol < bestsolval )
      *roundup = TRUE;
   else
      *roundup = FALSE;

   obj = SCIPvarGetObj(cand);
   objnorm = SCIPgetObjNorm(scip);

   /* divide by objective norm to normalize obj into [-1,1] */
   if( SCIPisPositive(scip, objnorm) )
      obj /= objnorm;

   /* calculate objective gain and fractionality for the selected rounding direction */
   if( *roundup )
   {
      candsfrac = 1.0 - candsfrac;
      objgain = obj * candsfrac;
   }
   else
      objgain = -obj * candsfrac;

   assert(objgain >= -1.0 && objgain <= 1.0);

   /* penalize too small fractions */
   if( candsfrac < 0.01 )
      candsfrac *= 0.1;

   /* prefer decisions on binary variables */
   if( !SCIPvarIsBinary(cand) )
      candsfrac *= 0.1;

   /* prefer variables which cannot be rounded by scoring their fractionality */
   if( !(SCIPvarMayRoundDown(cand) || SCIPvarMayRoundUp(cand)) )
      *score = -candsfrac;
   else
      *score = -2.0 - objgain;

   return SCIP_OKAY;
}
Exemplo n.º 6
0
/** read variable */
static
SCIP_RETCODE getVariable(
   SCIP*                 scip,               /**< SCIP data structure */
   CIPINPUT*             cipinput,           /**< CIP parsing data */
   SCIP_Bool             initial,            /**< should var's column be present in the initial root LP? */
   SCIP_Bool             removable,          /**< is var's column removable from the LP (due to aging or cleanup)? */
   SCIP_Real             objscale            /**< objective scale */
   )
{
   SCIP_Bool success;
   SCIP_VAR* var;
   char* buf;
   char* endptr;

   buf = cipinput->strbuf;

   if( strncmp(buf, "FIXED", 5) == 0 )
      cipinput->section = CIP_FIXEDVARS;
   else if( strncmp(buf, "CONSTRAINTS", 4) == 0 )
      cipinput->section = CIP_CONSTRAINTS;
   else if( strncmp(buf, "END", 3) == 0 )
      cipinput->section = CIP_END;

   if( cipinput->section != CIP_VARS )
      return SCIP_OKAY;

   SCIPdebugMessage("parse variable\n");

   /* parse the variable */
   SCIP_CALL( SCIPparseVar(scip, &var, buf, initial, removable, NULL, NULL, NULL, NULL, NULL, &endptr, &success) );

   if( !success )
   {
      SCIPerrorMessage("syntax error in variable information (line: %d):\n%s\n", cipinput->linenumber, cipinput->strbuf);
      cipinput->haserror = TRUE;
      return SCIP_OKAY;
   }

   if( objscale != 1.0 )
   {
      SCIP_CALL( SCIPchgVarObj(scip, var, SCIPvarGetObj(var) * objscale) );
   }

   SCIP_CALL( SCIPaddVar(scip, var) );

   SCIPdebug( SCIP_CALL( SCIPprintVar(scip, var, NULL) ) );

   SCIP_CALL( SCIPreleaseVar(scip, &var) );

   return SCIP_OKAY;
}
Exemplo n.º 7
0
/** adds given problem variable to pricing storage, if zero is not best bound w.r.t. objective function */
static
SCIP_RETCODE addBoundViolated(
   SCIP_PRICESTORE*      pricestore,         /**< pricing storage */
   BMS_BLKMEM*           blkmem,             /**< block memory buffers */
   SCIP_SET*             set,                /**< global SCIP settings */
   SCIP_STAT*            stat,               /**< dynamic problem statistics */
   SCIP_TREE*            tree,               /**< branch and bound tree */
   SCIP_LP*              lp,                 /**< LP data */
   SCIP_BRANCHCAND*      branchcand,         /**< branching candidate storage */
   SCIP_EVENTQUEUE*      eventqueue,         /**< event queue */
   SCIP_VAR*             var,                /**< problem variable */
   SCIP_Bool*            added               /**< pointer to store whether variable was added to pricing storage */
   )
{
   assert(tree != NULL);
   assert(added != NULL);

   *added = FALSE;

   /* add variable, if zero is not feasible within the bounds */
   if( SCIPsetIsPositive(set, SCIPvarGetLbLocal(var)) || SCIPsetIsNegative(set, SCIPvarGetUbLocal(var)) )
   {
      SCIPdebugMessage(" -> zero violates bounds of <%s> [%g,%g]\n",
         SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var));
      SCIP_CALL( SCIPpricestoreAddBdviolvar(pricestore, blkmem, set, stat, lp, branchcand, eventqueue, var) );
      *added = TRUE;
   }
   else
   {
      SCIP_Real bestbound;

      /* add variable, if zero is not best bound w.r.t. objective function */
      bestbound = SCIPvarGetBestBoundLocal(var);
      if( !SCIPsetIsZero(set, bestbound) )
      {
         SCIPdebugMessage(" -> best bound of <%s> [%g,%g] is not zero but %g\n",
            SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestbound);
         SCIP_CALL( SCIPpricestoreAddVar(pricestore, blkmem, set, eventqueue, lp, var, 
               -SCIPvarGetObj(var) * bestbound, (SCIPtreeGetCurrentDepth(tree) == 0)) );
         *added = TRUE;
      }
   }

   return SCIP_OKAY;
}
Exemplo n.º 8
0
/** generates the direction of the shooting ray as the inner normal of the objective function */
static
SCIP_RETCODE generateObjectiveRay(
   SCIP*                 scip,               /**< SCIP data structure                   */
   SCIP_Real*            raydirection,       /**< shooting ray                          */
   SCIP_VAR**            subspacevars,       /**< pointer to fractional space variables */
   int                   nsubspacevars       /**< dimension of fractional space         */
   )
{
   int v;

   assert(scip != NULL);
   assert(raydirection != NULL);
   assert(subspacevars != NULL);

   for( v = nsubspacevars - 1; v >= 0; --v )
      raydirection[v] = SCIPvarGetObj(subspacevars[v]);
   return SCIP_OKAY;
}
Exemplo n.º 9
0
/** adds a solution value for a new variable in the transformed problem that has no original counterpart
 * a value can only be set if no value has been set for this variable before
 */
extern
SCIP_RETCODE SCIPdebugAddSolVal(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_VAR*             var,                /**< variable for which to add a value */
   SCIP_Real             val                 /**< solution value for variable */
   )
{
   const char* varname;
   int i;

   assert(var != NULL);

   /* check if we are in the SCIP instance that we are debugging and not some different (subSCIP, auxiliary CIP, ...) */
   if( !isSolutionInMip(scip->set) )
      return SCIP_OKAY;

   if( SCIPvarIsOriginal(var) )
   {
      SCIPerrorMessage("adding solution values for original variables is forbidden\n");
      return SCIP_ERROR;
   }

   if( SCIPvarIsTransformedOrigvar(var) )
   {
      SCIPerrorMessage("adding solution values for variable that are direct counterparts of original variables is forbidden\n");
      return SCIP_ERROR;
   }

   /* allocate memory */
   if( nsolvals >= solsize )
   {
      solsize = MAX(2*solsize, nsolvals+1);
      SCIP_ALLOC( BMSreallocMemoryArray(&solnames, solsize) );
      SCIP_ALLOC( BMSreallocMemoryArray(&solvals,  solsize) );
   }
   assert(nsolvals < solsize);

   /* store solution value in sorted list */
   varname = SCIPvarGetName(var);
   for( i = nsolvals; i > 0 && strcmp(varname, solnames[i-1]) < 0; --i )
   {
      solnames[i] = solnames[i-1];
      solvals[i]  = solvals[i-1];
   }
   if( i > 0 && strcmp(varname, solnames[i-1]) == 0 )
   {
      if( REALABS(solvals[i-1] - val) > 1e-9 )
      {
         SCIPerrorMessage("already have stored different debugging solution value (%g) for variable <%s>, cannot store %g\n", solvals[i-1], varname, val);
         return SCIP_ERROR;
      }
      else
      {
         SCIPdebugMessage("already have stored debugging solution value %g for variable <%s>, do not store same value again\n", val, varname);
         for( ; i < nsolvals; ++i )
         {
            solnames[i] = solnames[i+1];
            solvals[i]  = solvals[i+1];
         }
         return SCIP_OKAY;
      }
   }

   /* insert new solution value */
   SCIP_ALLOC( BMSduplicateMemoryArray(&solnames[i], varname, strlen(varname)+1) );
   SCIPdebugMessage("add variable <%s>: value <%g>\n", solnames[i], val);
   solvals[i] = val;
   nsolvals++;

   /* update objective function value of debug solution */
   debugsolval += solvals[i] * SCIPvarGetObj(var);
   SCIPdebugMessage("Debug Solution value is now %g.\n", debugsolval);

   return SCIP_OKAY;
}
Exemplo n.º 10
0
/** execution method of presolver */
static
SCIP_DECL_PRESOLEXEC(presolExecDualfix)
{  /*lint --e{715}*/
   SCIP_VAR** vars;
   SCIP_Real bound;
   SCIP_Real roundbound;
   SCIP_Real obj;
   SCIP_Bool infeasible;
   SCIP_Bool fixed;
   int nvars;
   int v;

   assert(presol != NULL);
   assert(strcmp(SCIPpresolGetName(presol), PRESOL_NAME) == 0);
   assert(result != NULL);

   *result = SCIP_DIDNOTFIND;

   /* get active problem variables */
   vars = SCIPgetVars(scip);
   nvars = SCIPgetNVars(scip);

   /* look for fixable variables
    * loop backwards, since a variable fixing can change the current and the subsequent slots in the vars array
    */
   for( v = nvars - 1; v >= 0; --v )
   {
      /* don't perform dual presolving operations on deleted variables */
      if( SCIPvarIsDeleted(vars[v]) )
         continue;

      obj = SCIPvarGetObj(vars[v]);

      /* if the objective coefficient of the variable is 0 and it may be rounded both
       * up and down, then fix it to the closest feasible value to 0 */
      if( SCIPisZero(scip, obj) && SCIPvarMayRoundDown(vars[v]) && SCIPvarMayRoundUp(vars[v]) )
      {
         bound = SCIPvarGetLbGlobal(vars[v]);
         if( SCIPisLT(scip, bound, 0.0) )
         {
            if( SCIPisLE(scip, 0.0, SCIPvarGetUbGlobal(vars[v])) )
               bound = 0.0;
            else
            {
               /* try to take an integer value, only for polishing */
               roundbound = SCIPfloor(scip, SCIPvarGetUbGlobal(vars[v]));
               
               if( roundbound < bound )
                  bound = SCIPvarGetUbGlobal(vars[v]);
               else
                  bound = roundbound;
            }
         }
         else
         {
            /* try to take an integer value, only for polishing */
            roundbound = SCIPceil(scip, bound);

            if( roundbound < SCIPvarGetUbGlobal(vars[v]) )
               bound = roundbound;
         }
         SCIPdebugMessage("variable <%s> with objective 0 fixed to %g\n",
            SCIPvarGetName(vars[v]), bound);
      }
      else
      {
         /* if it is always possible to round variable in direction of objective value,
          * fix it to its proper bound
          */
         if( SCIPvarMayRoundDown(vars[v]) && !SCIPisNegative(scip, obj) )
         {
            bound = SCIPvarGetLbGlobal(vars[v]);
            if( SCIPisZero(scip, obj) && SCIPvarGetNLocksUp(vars[v]) == 1 && SCIPisInfinity(scip, -bound) )
            {
               /* variable can be set to -infinity, and it is only contained in one constraint:
                * we hope that the corresponding constraint handler is clever enough to set/aggregate the variable
                * to something more useful than -infinity and do nothing here
                */
               continue;
            }
            SCIPdebugMessage("variable <%s> with objective %g and %d uplocks fixed to lower bound %g\n",
               SCIPvarGetName(vars[v]), SCIPvarGetObj(vars[v]), SCIPvarGetNLocksUp(vars[v]), bound);
         }
         else if( SCIPvarMayRoundUp(vars[v]) && !SCIPisPositive(scip, obj) )
         {
            bound = SCIPvarGetUbGlobal(vars[v]);
            if( SCIPisZero(scip, obj) && SCIPvarGetNLocksDown(vars[v]) == 1 && SCIPisInfinity(scip, bound) )
            {
               /* variable can be set to +infinity, and it is only contained in one constraint:
                * we hope that the corresponding constraint handler is clever enough to set/aggregate the variable
                * to something more useful than +infinity and do nothing here
                */
               continue;
            }
            SCIPdebugMessage("variable <%s> with objective %g and %d downlocks fixed to upper bound %g\n",
               SCIPvarGetName(vars[v]), SCIPvarGetObj(vars[v]), SCIPvarGetNLocksDown(vars[v]), bound);
         }
         else
            continue;
      }

      /* apply the fixing */
      if( SCIPisInfinity(scip, REALABS(bound)) && !SCIPisZero(scip, obj) )
      {
         SCIPdebugMessage(" -> unbounded fixing\n");
         SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL,
            "problem infeasible or unbounded: variable <%s> with objective %.15g can be made infinitely %s\n",
            SCIPvarGetName(vars[v]), SCIPvarGetObj(vars[v]), bound < 0.0 ? "small" : "large");
         *result = SCIP_UNBOUNDED;
         return SCIP_OKAY;
      }
      SCIP_CALL( SCIPfixVar(scip, vars[v], bound, &infeasible, &fixed) );
      if( infeasible )
      {
         SCIPdebugMessage(" -> infeasible fixing\n");
         *result = SCIP_CUTOFF;
         return SCIP_OKAY;
      }
      assert(fixed);
      (*nfixedvars)++;
      *result = SCIP_SUCCESS;
   }

   return SCIP_OKAY;
}
Exemplo n.º 11
0
/** main procedure of the zeroobj heuristic, creates and solves a sub-SCIP */
SCIP_RETCODE SCIPapplyZeroobj(
   SCIP*                 scip,               /**< original SCIP data structure                                        */
   SCIP_HEUR*            heur,               /**< heuristic data structure                                            */
   SCIP_RESULT*          result,             /**< result data structure                                               */
   SCIP_Real             minimprove,         /**< factor by which zeroobj should at least improve the incumbent      */
   SCIP_Longint          nnodes              /**< node limit for the subproblem                                       */
   )
{
   SCIP*                 subscip;            /* the subproblem created by zeroobj              */
   SCIP_HASHMAP*         varmapfw;           /* mapping of SCIP variables to sub-SCIP variables */
   SCIP_VAR**            vars;               /* original problem's variables                    */
   SCIP_VAR**            subvars;            /* subproblem's variables                          */
   SCIP_HEURDATA*        heurdata;           /* heuristic's private data structure              */
   SCIP_EVENTHDLR*       eventhdlr;          /* event handler for LP events                     */

   SCIP_Real cutoff;                         /* objective cutoff for the subproblem             */
   SCIP_Real timelimit;                      /* time limit for zeroobj subproblem              */
   SCIP_Real memorylimit;                    /* memory limit for zeroobj subproblem            */
   SCIP_Real large;

   int nvars;                                /* number of original problem's variables          */
   int i;

   SCIP_Bool success;
   SCIP_Bool valid;
   SCIP_RETCODE retcode;
   SCIP_SOL** subsols;
   int nsubsols;

   assert(scip != NULL);
   assert(heur != NULL);
   assert(result != NULL);

   assert(nnodes >= 0);
   assert(0.0 <= minimprove && minimprove <= 1.0);

   *result = SCIP_DIDNOTRUN;

   /* only call heuristic once at the root */
   if( SCIPgetDepth(scip) <= 0 && SCIPheurGetNCalls(heur) > 0 )
      return SCIP_OKAY;

   /* get heuristic data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* only call the heuristic if we do not have an incumbent  */
   if( SCIPgetNSolsFound(scip) > 0 && heurdata->onlywithoutsol )
      return SCIP_OKAY;

   /* check whether there is enough time and memory left */
   timelimit = 0.0;
   memorylimit = 0.0;
   SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
   if( !SCIPisInfinity(scip, timelimit) )
      timelimit -= SCIPgetSolvingTime(scip);
   SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );

   /* substract the memory already used by the main SCIP and the estimated memory usage of external software */
   if( !SCIPisInfinity(scip, memorylimit) )
   {
      memorylimit -= SCIPgetMemUsed(scip)/1048576.0;
      memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0;
   }

   /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */
   if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   /* get variable data */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );

   /* initialize the subproblem */
   SCIP_CALL( SCIPcreate(&subscip) );

   /* create the variable mapping hash map */
   SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) );
   SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) );

   /* different methods to create sub-problem: either copy LP relaxation or the CIP with all constraints */
   valid = FALSE;

   /* copy complete SCIP instance */
   SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "zeroobj", TRUE, FALSE, TRUE, &valid) );
   SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not ");

   /* create event handler for LP events */
   eventhdlr = NULL;
   SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecZeroobj, NULL) );
   if( eventhdlr == NULL )
   {
      SCIPerrorMessage("event handler for "HEUR_NAME" heuristic not found.\n");
      return SCIP_PLUGINNOTFOUND;
   }

   /* determine large value to set variables to */
   large = SCIPinfinity(scip);
   if( !SCIPisInfinity(scip, 0.1 / SCIPfeastol(scip)) )
      large = 0.1 / SCIPfeastol(scip);

   /* get variable image and change to 0.0 in sub-SCIP */
   for( i = 0; i < nvars; i++ )
   {
      SCIP_Real adjustedbound;
      SCIP_Real lb;
      SCIP_Real ub;
      SCIP_Real inf;
      
      subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]);
      SCIP_CALL( SCIPchgVarObj(subscip, subvars[i], 0.0) );

      lb = SCIPvarGetLbGlobal(subvars[i]);
      ub = SCIPvarGetUbGlobal(subvars[i]);
      inf = SCIPinfinity(subscip);

      /* adjust infinite bounds in order to avoid that variables with non-zero objective 
       * get fixed to infinite value in zeroobj subproblem
       */
      if( SCIPisInfinity(subscip, ub ) )
      {
         adjustedbound = MAX(large, lb+large);
         adjustedbound = MIN(adjustedbound, inf);
         SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], adjustedbound) );
      }
      if( SCIPisInfinity(subscip, -lb ) )
      {
         adjustedbound = MIN(-large, ub-large);
         adjustedbound = MAX(adjustedbound, -inf);
         SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], adjustedbound) );
      }
   }

   /* free hash map */
   SCIPhashmapFree(&varmapfw);

   /* do not abort subproblem on CTRL-C */
   SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );

   /* disable output to console */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );

   /* set limits for the subproblem */
   SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nnodes) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );
   SCIP_CALL( SCIPsetIntParam(subscip, "limits/solutions", 1) );

   /* forbid recursive call of heuristics and separators solving sub-SCIPs */
   SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) );

   /* disable expensive techniques that merely work on the dual bound */

   /* disable cutting plane separation */
   SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) );

   /* disable expensive presolving */
   SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) );
   if( !SCIPisParamFixed(subscip, "presolving/maxrounds") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "presolving/maxrounds", 50) );
   }

   /* use best dfs node selection */
   if( SCIPfindNodesel(subscip, "dfs") != NULL && !SCIPisParamFixed(subscip, "nodeselection/dfs/stdpriority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/dfs/stdpriority", INT_MAX/4) );
   }

   /* use inference branching */
   if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "branching/leastinf/priority", INT_MAX/4) );
   }

   /* employ a limit on the number of enforcement rounds in the quadratic constraint handler; this fixes the issue that
    * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the
    * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad
    * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no deductions shall be
    * made for the original SCIP
    */
   if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) );
   }

   /* disable feaspump and fracdiving */
   if( !SCIPisParamFixed(subscip, "heuristics/feaspump/freq") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/feaspump/freq", -1) );
   }
   if( !SCIPisParamFixed(subscip, "heuristics/fracdiving/freq") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/fracdiving/freq", -1) );
   }

   /* restrict LP iterations */
   SCIP_CALL( SCIPsetLongintParam(subscip, "lp/iterlim", 2*heurdata->maxlpiters / MAX(1,nnodes)) );
   SCIP_CALL( SCIPsetLongintParam(subscip, "lp/rootiterlim", heurdata->maxlpiters) );

#ifdef SCIP_DEBUG
   /* for debugging zeroobj, enable MIP output */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 5) );
   SCIP_CALL( SCIPsetIntParam(subscip, "display/freq", 100000000) );
#endif

   /* if there is already a solution, add an objective cutoff */
   if( SCIPgetNSols(scip) > 0 )
   {
      SCIP_Real upperbound;
      SCIP_CONS* origobjcons;
#ifndef NDEBUG
      int nobjvars;
      nobjvars = 0;
#endif

      cutoff = SCIPinfinity(scip);
      assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) );

      upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip);

      if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) )
      {
         cutoff = (1-minimprove)*SCIPgetUpperbound(scip) + minimprove*SCIPgetLowerbound(scip);
      }
      else
      {
         if( SCIPgetUpperbound(scip) >= 0 )
            cutoff = ( 1 - minimprove ) * SCIPgetUpperbound ( scip );
         else
            cutoff = ( 1 + minimprove ) * SCIPgetUpperbound ( scip );
      }
      cutoff = MIN(upperbound, cutoff);

      SCIP_CALL( SCIPcreateConsLinear(subscip, &origobjcons, "objbound_of_origscip", 0, NULL, NULL, -SCIPinfinity(subscip), cutoff,
            TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE) );
      for( i = 0; i < nvars; ++i)
      {
         if( !SCIPisFeasZero(subscip, SCIPvarGetObj(vars[i])) )
         {
            SCIP_CALL( SCIPaddCoefLinear(subscip, origobjcons, subvars[i], SCIPvarGetObj(vars[i])) );
#ifndef NDEBUG
            nobjvars++;
#endif
         }
      }
      SCIP_CALL( SCIPaddCons(subscip, origobjcons) );
      SCIP_CALL( SCIPreleaseCons(subscip, &origobjcons) );
      assert(nobjvars == SCIPgetNObjVars(scip));
   }

   /* catch LP events of sub-SCIP */
   SCIP_CALL( SCIPtransformProb(subscip) );
   SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) );

   SCIPdebugMessage("solving subproblem: nnodes=%"SCIP_LONGINT_FORMAT"\n", nnodes);
   retcode = SCIPsolve(subscip);

   /* drop LP events of sub-SCIP */
   SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) );

   /* errors in solving the subproblem should not kill the overall solving process;
    * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
    */
   if( retcode != SCIP_OKAY )
   {
#ifndef NDEBUG
      SCIP_CALL( retcode );
#endif
      SCIPwarningMessage(scip, "Error while solving subproblem in zeroobj heuristic; sub-SCIP terminated with code <%d>\n",retcode);
   }

   /* check, whether a solution was found;
    * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted
    */
   nsubsols = SCIPgetNSols(subscip);
   subsols = SCIPgetSols(subscip);
   success = FALSE;
   for( i = 0; i < nsubsols && (!success || heurdata->addallsols); ++i )
   {
      SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) );
      if( success )
         *result = SCIP_FOUNDSOL;
   }

#ifdef SCIP_DEBUG
   SCIP_CALL( SCIPprintStatistics(subscip, NULL) );
#endif

   /* free subproblem */
   SCIPfreeBufferArray(scip, &subvars);
   SCIP_CALL( SCIPfree(&subscip) );

   return SCIP_OKAY;
}
Exemplo n.º 12
0
/** perform randomized rounding of the given solution. Domain propagation is optionally applied after every rounding
 *  step
 */
static
SCIP_RETCODE performRandRounding(
   SCIP*                 scip,               /**< SCIP main data structure */
   SCIP_HEURDATA*        heurdata,           /**< heuristic data */
   SCIP_SOL*             sol,                /**< solution to round */
   SCIP_VAR**            cands,              /**< candidate variables */
   int                   ncands,             /**< number of candidates */
   SCIP_Bool             propagate,          /**< should the rounding be propagated? */
   SCIP_RESULT*          result              /**< pointer to store the result of the heuristic call */
   )
{
   int c;
   SCIP_Bool stored;
   SCIP_VAR** permutedcands;
   SCIP_Bool cutoff;

   assert(heurdata != NULL);

   /* start probing tree before rounding begins */
   if( propagate )
   {
      SCIP_CALL( SCIPstartProbing(scip) );
      SCIPenableVarHistory(scip);
   }

   /* copy and permute the candidate array */
   SCIP_CALL( SCIPduplicateBufferArray(scip, &permutedcands, cands, ncands) );

   assert(permutedcands != NULL);

   SCIPpermuteArray((void **)permutedcands, 0, ncands, &heurdata->randseed);
   cutoff = FALSE;

   /* loop over candidates and perform randomized rounding and optionally probing. */
   for (c = 0; c < ncands && !cutoff; ++c)
   {
      SCIP_VAR* var;
      SCIP_Real oldsolval;
      SCIP_Real newsolval;
      SCIP_Bool mayrounddown;
      SCIP_Bool mayroundup;
      SCIP_Longint ndomreds;
      SCIP_Real lb;
      SCIP_Real ub;
      SCIP_Real ceilval;
      SCIP_Real floorval;

      /* get next variable from permuted candidate array */
      var = permutedcands[c];
      oldsolval = SCIPgetSolVal(scip, sol, var);
      lb = SCIPvarGetLbLocal(var);
      ub = SCIPvarGetUbLocal(var);

      assert( ! SCIPisFeasIntegral(scip, oldsolval) );
      assert( SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN );

      mayrounddown = SCIPvarMayRoundDown(var);
      mayroundup = SCIPvarMayRoundUp(var);
      ceilval = SCIPfeasCeil(scip, oldsolval);
      floorval = SCIPfeasFloor(scip, oldsolval);

      SCIPdebugMessage("rand rounding heuristic: var <%s>, val=%g, rounddown=%u, roundup=%u\n",
         SCIPvarGetName(var), oldsolval, mayrounddown, mayroundup);

      /* abort if rounded ceil and floor value lie outside the variable domain. Otherwise, check if
       * bounds allow only one rounding direction, anyway */
      if( lb > ceilval + 0.5 || ub < floorval - 0.5 )
      {
         cutoff = TRUE;
         break;
      }
      else if( SCIPisFeasEQ(scip, lb, ceilval) )
      {
         /* only rounding up possible */
         assert(SCIPisFeasGE(scip, ub, ceilval));
         newsolval = ceilval;
      }
      else if( SCIPisFeasEQ(scip, ub, floorval) )
      {
         /* only rounding down possible */
         assert(SCIPisFeasLE(scip,lb, floorval));
         newsolval = floorval;
      }
      else if( !heurdata->usesimplerounding || !(mayroundup || mayrounddown) )
      {
         /* the standard randomized rounding */
         SCIP_Real randnumber;

         randnumber = SCIPgetRandomReal(0.0, 1.0, &heurdata->randseed);
         if( randnumber <= oldsolval - floorval )
            newsolval = ceilval;
         else
            newsolval = floorval;
      }
      /* choose rounding direction, if possible, or use the only direction guaranteed to be feasible */
      else if( mayrounddown && mayroundup )
      {
         /* we can round in both directions: round in objective function direction */
         if ( SCIPvarGetObj(var) >= 0.0 )
            newsolval = floorval;
         else
            newsolval = ceilval;
      }
      else if( mayrounddown )
         newsolval = floorval;
      else
      {
         assert(mayroundup);
         newsolval = ceilval;
      }

      assert(SCIPisFeasLE(scip, lb, newsolval));
      assert(SCIPisFeasGE(scip, ub, newsolval));

      /* if propagation is enabled, fix the candidate variable to its rounded value and propagate the solution */
      if( propagate )
      {
         SCIP_Bool lbadjust;
         SCIP_Bool ubadjust;

         lbadjust = SCIPisGT(scip, newsolval, lb);
         ubadjust = SCIPisLT(scip, newsolval, ub);

         assert( lbadjust || ubadjust || SCIPisFeasEQ(scip, lb, ub));

         /* enter a new probing node if the variable was not already fixed before */
         if( lbadjust || ubadjust )
         {
            SCIP_RETCODE retcode;

            if( SCIPisStopped(scip) )
               break;

            retcode = SCIPnewProbingNode(scip);
            if( retcode == SCIP_MAXDEPTHLEVEL )
               break;

            SCIP_CALL( retcode );

            /* tighten the bounds to fix the variable for the probing node */
            if( lbadjust )
            {
               SCIP_CALL( SCIPchgVarLbProbing(scip, var, newsolval) );
            }
            if( ubadjust )
            {
               SCIP_CALL( SCIPchgVarUbProbing(scip, var, newsolval) );
            }

            /* call propagation routines for the reduced problem */
            SCIP_CALL( SCIPpropagateProbing(scip, heurdata->maxproprounds, &cutoff, &ndomreds) );
         }
      }
      /* store new solution value */
      SCIP_CALL( SCIPsetSolVal(scip, sol, var, newsolval) );
   }

   /* if no cutoff was detected, the solution is a candidate to be checked for feasibility */
   if( !cutoff && ! SCIPisStopped(scip) )
   {
      if( SCIPallColsInLP(scip) )
      {
         /* check solution for feasibility, and add it to solution store if possible
          * neither integrality nor feasibility of LP rows has to be checked, because all fractional
          * variables were already moved in feasible direction to the next integer
          */
         SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) );
      }
      else
      {
         /* if there are variables which are not present in the LP, e.g., for
          * column generation, we need to check their bounds
          */
         SCIP_CALL( SCIPtrySol(scip, sol, FALSE, TRUE, FALSE, TRUE, &stored) );
      }

      if( stored )
      {
#ifdef SCIP_DEBUG
         SCIPdebugMessage("found feasible rounded solution:\n");
         SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) );
#endif
         *result = SCIP_FOUNDSOL;
      }
   }

   assert( !propagate || SCIPinProbing(scip) );

   /* exit probing mode and free locally allocated memory */
   if( propagate )
   {
      SCIP_CALL( SCIPendProbing(scip) );
   }

   SCIPfreeBufferArray(scip, &permutedcands);

   return SCIP_OKAY;
}
Exemplo n.º 13
0
/** presolving execution method */
static
SCIP_DECL_PRESOLEXEC(presolExecBoundshift)
{  /*lint --e{715}*/
   SCIP_PRESOLDATA* presoldata;
   SCIP_VAR** scipvars;
   SCIP_VAR** vars;
   int nbinvars;
   int nvars;
   int v;

   assert(scip != NULL);
   assert(presol != NULL);
   assert(strcmp(SCIPpresolGetName(presol), PRESOL_NAME) == 0);
   assert(result != NULL);

   *result = SCIP_DIDNOTRUN;

   /* get presolver data */
   presoldata = SCIPpresolGetData(presol);
   assert(presoldata != NULL);
   
   /* get the problem variables */
   scipvars = SCIPgetVars(scip);
   nbinvars = SCIPgetNBinVars(scip);
   nvars = SCIPgetNVars(scip) - nbinvars;

   if( nvars == 0 )
      return SCIP_OKAY;
   
   if( SCIPdoNotAggr(scip) )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   /* copy the integer variables into an own array, since adding new integer variables affects the left-most slots in
    * the array and thereby interferes with our search loop
    */
   SCIP_CALL( SCIPduplicateBufferArray(scip, &vars, &scipvars[nbinvars], nvars) );
   
   /* scan the integer, implicit, and continuous variables for possible conversion */
   for( v = nvars - 1; v >= 0; --v )
   {
      SCIP_VAR* var = vars[v];
      SCIP_Real lb;
      SCIP_Real ub;

      assert(SCIPvarGetType(var) != SCIP_VARTYPE_BINARY);

      /* get current variable's bounds */
      lb = SCIPvarGetLbGlobal(var);
      ub = SCIPvarGetUbGlobal(var);

      assert( SCIPisLE(scip, lb, ub) );
      if( SCIPisEQ(scip, lb, ub) )
         continue;
      if( presoldata->integer && !SCIPisIntegral(scip, ub - lb) ) 
         continue;

      /* check if bounds are shiftable */
      if( !SCIPisEQ(scip, lb, 0.0) &&                           /* lower bound != 0.0 */
         SCIPisLT(scip, ub, SCIPinfinity(scip)) &&              /* upper bound != infinity */
         SCIPisGT(scip, lb, -SCIPinfinity(scip)) &&             /* lower bound != -infinity */
#if 0
         SCIPisLT(scip, ub - lb, SCIPinfinity(scip)) &&         /* interval length less than SCIPinfinity(scip) */
#endif
         SCIPisLT(scip, ub - lb, (SCIP_Real) presoldata->maxshift) )        /* less than max shifting */
      {
         SCIP_VAR* newvar;
         char newvarname[SCIP_MAXSTRLEN];
         SCIP_Bool infeasible;
         SCIP_Bool redundant;
         SCIP_Bool aggregated;

         SCIPdebugMessage("convert range <%s>[%g,%g] to [%g,%g]\n", SCIPvarGetName(var), lb, ub, 0.0, (ub - lb) );

         /* create new variable */
         (void) SCIPsnprintf(newvarname, SCIP_MAXSTRLEN, "%s_shift", SCIPvarGetName(var));
         SCIP_CALL( SCIPcreateVar(scip, &newvar, newvarname, 0.0, (ub - lb), 0.0, SCIPvarGetType(var),
               SCIPvarIsInitial(var), SCIPvarIsRemovable(var), NULL, NULL, NULL, NULL, NULL) );
         SCIP_CALL( SCIPaddVar(scip, newvar) );

         /* aggregate old variable with new variable */
         if( presoldata->flipping )
         {
            if( REALABS(ub) < REALABS(lb) )
            {
               SCIP_CALL( SCIPaggregateVars(scip, var, newvar, 1.0, 1.0, ub, &infeasible, &redundant, &aggregated) );
            }
            else
            {
               SCIP_CALL( SCIPaggregateVars(scip, var, newvar, 1.0, -1.0, lb, &infeasible, &redundant, &aggregated) );
            }
         }
         else
         {
            SCIP_CALL( SCIPaggregateVars(scip, var, newvar, 1.0, -1.0, lb, &infeasible, &redundant, &aggregated) );
         }

         assert(!infeasible);
         assert(redundant);
         assert(aggregated);
         SCIPdebugMessage("var <%s> with bounds [%f,%f] has obj %f\n",
            SCIPvarGetName(newvar),SCIPvarGetLbGlobal(newvar),SCIPvarGetUbGlobal(newvar),SCIPvarGetObj(newvar));

         /* release variable */
         SCIP_CALL( SCIPreleaseVar(scip, &newvar) );
         
         /* take care of statistic */
         (*naggrvars)++;
         *result = SCIP_SUCCESS;
      }
   }

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &vars);
   
   return SCIP_OKAY;
}
Exemplo n.º 14
0
/** perform dual presolving */
static
SCIP_RETCODE performDualfix(
   SCIP*                 scip,               /**< SCIP data structure */
   int*                  nfixedvars,         /**< pointer to store number of fixed variables */
   SCIP_Bool*            unbounded,          /**< pointer to store if an unboundness was detected */
   SCIP_Bool*            cutoff              /**< pointer to store if a cutoff was detected */
   )
{
   SCIP_VAR** vars;
   int nvars;
   int v;

   /* get active problem variables */
   vars = SCIPgetVars(scip);
   nvars = SCIPgetNVars(scip);

   /* look for fixable variables
    * loop backwards, since a variable fixing can change the current and the subsequent slots in the vars array
    */
   for( v = nvars - 1; v >= 0; --v )
   {
      SCIP_VAR* var;
      SCIP_Real bound;
      SCIP_Real obj;
      SCIP_Bool infeasible;
      SCIP_Bool fixed;

      var = vars[v];
      assert(var != NULL);

      /* don't perform dual presolving operations on deleted variables */
      if( SCIPvarIsDeleted(var) )
         continue;

      /* ignore already fixed variables (use feasibility tolerance since this is used in SCIPfixVar() */
      if( SCIPisFeasEQ(scip, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var)) )
         continue;

      obj = SCIPvarGetObj(var);

      /* if the objective coefficient of the variable is 0 and it may be rounded both
       * up and down, then fix it to the closest feasible value to 0 */
      if( SCIPisZero(scip, obj) && SCIPvarMayRoundDown(var) && SCIPvarMayRoundUp(var) )
      {
         SCIP_Real roundbound;

         bound = SCIPvarGetLbGlobal(var);
         if( SCIPisLT(scip, bound, 0.0) )
         {
            if( SCIPisLE(scip, 0.0, SCIPvarGetUbGlobal(var)) )
               bound = 0.0;
            else
            {
               /* try to take an integer value, only for polishing */
               roundbound = SCIPfloor(scip, SCIPvarGetUbGlobal(var));

               if( roundbound < bound )
                  bound = SCIPvarGetUbGlobal(var);
               else
                  bound = roundbound;
            }
         }
         else
         {
            /* try to take an integer value, only for polishing */
            roundbound = SCIPceil(scip, bound);

            if( roundbound < SCIPvarGetUbGlobal(var) )
               bound = roundbound;
         }
         SCIPdebugMessage("fixing variable <%s> with objective 0 to %g\n", SCIPvarGetName(var), bound);
      }
      else
      {
         /* if it is always possible to round variable in direction of objective value, fix it to its proper bound */
         if( SCIPvarMayRoundDown(var) && !SCIPisNegative(scip, obj) )
         {
            bound = SCIPvarGetLbGlobal(var);
            if ( SCIPisInfinity(scip, -bound) )
            {
               /* variable can be fixed to -infinity */
               if ( SCIPgetStage(scip) > SCIP_STAGE_PRESOLVING )
               {
                  /* Fixing variables to infinity is not allowed after presolving, since LP-solvers cannot handle this
                   * consistently. We thus have to ignore this (should better be handled in presolving). */
                  continue;
               }
               if ( SCIPisZero(scip, obj) && SCIPvarGetNLocksUp(var) == 1 )
               {
                  /* Variable is only contained in one constraint: we hope that the corresponding constraint handler is
                   * clever enough to set/aggregate the variable to something more useful than -infinity and do nothing
                   * here. */
                  continue;
               }
            }
            SCIPdebugMessage("fixing variable <%s> with objective %g and %d uplocks to lower bound %g\n",
               SCIPvarGetName(var), SCIPvarGetObj(var), SCIPvarGetNLocksUp(var), bound);
         }
         else if( SCIPvarMayRoundUp(var) && !SCIPisPositive(scip, obj) )
         {
            bound = SCIPvarGetUbGlobal(var);
            if ( SCIPisInfinity(scip, bound) )
            {
               /* variable can be fixed to infinity */
               if ( SCIPgetStage(scip) > SCIP_STAGE_PRESOLVING )
               {
                  /* Fixing variables to infinity is not allowed after presolving, since LP-solvers cannot handle this
                   * consistently. We thus have to ignore this (should better be handled in presolving). */
                  continue;
               }
               if ( SCIPisZero(scip, obj) && SCIPvarGetNLocksDown(var) == 1 )
               {
                  /* Variable is only contained in one constraint: we hope that the corresponding constraint handler is
                   * clever enough to set/aggregate the variable to something more useful than +infinity and do nothing
                   * here */
                  continue;
               }
            }
            SCIPdebugMessage("fixing variable <%s> with objective %g and %d downlocks to upper bound %g\n",
               SCIPvarGetName(var), SCIPvarGetObj(var), SCIPvarGetNLocksDown(var), bound);
         }
         else
            continue;
      }

      if( SCIPisInfinity(scip, REALABS(bound)) && !SCIPisZero(scip, obj) )
      {
         SCIPdebugMessage(" -> unbounded fixing\n");
         SCIPverbMessage(scip, SCIP_VERBLEVEL_NORMAL, NULL,
            "problem infeasible or unbounded: variable <%s> with objective %.15g can be made infinitely %s\n",
            SCIPvarGetName(var), SCIPvarGetObj(var), bound < 0.0 ? "small" : "large");
         *unbounded = TRUE;
         return SCIP_OKAY;
      }

      /* apply the fixing */
      SCIPdebugMessage("apply fixing of variable %s to %g\n", SCIPvarGetName(var), bound);
      SCIP_CALL( SCIPfixVar(scip, var, bound, &infeasible, &fixed) );

      if( infeasible )
      {
         SCIPdebugMessage(" -> infeasible fixing\n");
         *cutoff = TRUE;
         return SCIP_OKAY;
      }

      assert(fixed || (SCIPgetStage(scip) == SCIP_STAGE_SOLVING && SCIPisFeasEQ(scip, bound, SCIPvarGetLbLocal(var))
            && SCIPisFeasEQ(scip, bound, SCIPvarGetUbLocal(var))));
      (*nfixedvars)++;
   }

   return SCIP_OKAY;
}
/** returns a variable, that pushes activity of the row in the given direction with minimal negative impact on other rows;
 *  if variables have equal impact, chooses the one with best objective value improvement in corresponding direction;
 *  rounding in a direction is forbidden, if this forces the objective value over the upper bound
 */
static
SCIP_RETCODE selectRounding(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_SOL*             sol,                /**< primal solution */
   SCIP_Real             minobj,             /**< minimal objective value possible after rounding remaining fractional vars */
   SCIP_ROW*             row,                /**< LP row */
   int                   direction,          /**< should the activity be increased (+1) or decreased (-1)? */
   SCIP_VAR**            roundvar,           /**< pointer to store the rounding variable, returns NULL if impossible */
   SCIP_Real*            oldsolval,          /**< pointer to store old (fractional) solution value of rounding variable */
   SCIP_Real*            newsolval           /**< pointer to store new (rounded) solution value of rounding variable */
   )
{
   SCIP_COL* col;
   SCIP_VAR* var;
   SCIP_Real val;
   SCIP_COL** rowcols;
   SCIP_Real* rowvals;
   SCIP_Real solval;
   SCIP_Real roundval;
   SCIP_Real obj;
   SCIP_Real deltaobj;
   SCIP_Real bestdeltaobj;
   SCIP_VARTYPE vartype;
   int nrowcols;
   int nlocks;
   int minnlocks;
   int c;

   assert(direction == +1 || direction == -1);
   assert(roundvar != NULL);
   assert(oldsolval != NULL);
   assert(newsolval != NULL);

   /* get row entries */
   rowcols = SCIProwGetCols(row);
   rowvals = SCIProwGetVals(row);
   nrowcols = SCIProwGetNLPNonz(row);

   /* select rounding variable */
   minnlocks = INT_MAX;
   bestdeltaobj = SCIPinfinity(scip);
   *roundvar = NULL;
   for( c = 0; c < nrowcols; ++c )
   {
      col = rowcols[c];
      var = SCIPcolGetVar(col);

      vartype = SCIPvarGetType(var);
      if( vartype == SCIP_VARTYPE_BINARY || vartype == SCIP_VARTYPE_INTEGER )
      {
         solval = SCIPgetSolVal(scip, sol, var);

         if( !SCIPisFeasIntegral(scip, solval) )
         {
            val = rowvals[c];
            obj = SCIPvarGetObj(var);

            if( direction * val < 0.0 )
            {
               /* rounding down */
               nlocks = SCIPvarGetNLocksDown(var);
               if( nlocks <= minnlocks )
               {
                  roundval = SCIPfeasFloor(scip, solval);
                  deltaobj = obj * (roundval - solval);
                  if( (nlocks < minnlocks || deltaobj < bestdeltaobj) && minobj - obj < SCIPgetCutoffbound(scip) )
                  {
                     minnlocks = nlocks;
                     bestdeltaobj = deltaobj;
                     *roundvar = var;
                     *oldsolval = solval;
                     *newsolval = roundval;
                  }
               }
            }
            else
            {
               /* rounding up */
               assert(direction * val > 0.0);
               nlocks = SCIPvarGetNLocksUp(var);
               if( nlocks <= minnlocks )
               {
                  roundval = SCIPfeasCeil(scip, solval);
                  deltaobj = obj * (roundval - solval);
                  if( (nlocks < minnlocks || deltaobj < bestdeltaobj) && minobj + obj < SCIPgetCutoffbound(scip) )
                  {
                     minnlocks = nlocks;
                     bestdeltaobj = deltaobj;
                     *roundvar = var;
                     *oldsolval = solval;
                     *newsolval = roundval;
                  }
               }
            }
         }
      }
   }

   return SCIP_OKAY;
}
Exemplo n.º 16
0
/** returns a variable, that pushes activity of the row in the given direction with minimal negative impact on other rows;
 *  if variables have equal impact, chooses the one with best objective value improvement in corresponding direction;
 *  prefer fractional integers over other variables in order to become integral during the process;
 *  shifting in a direction is forbidden, if this forces the objective value over the upper bound, or if the variable
 *  was already shifted in the opposite direction
 */
static
SCIP_RETCODE selectShifting(
    SCIP*                 scip,               /**< SCIP data structure */
    SCIP_SOL*             sol,                /**< primal solution */
    SCIP_ROW*             row,                /**< LP row */
    SCIP_Real             rowactivity,        /**< activity of LP row */
    int                   direction,          /**< should the activity be increased (+1) or decreased (-1)? */
    SCIP_Real*            nincreases,         /**< array with weighted number of increasings per variables */
    SCIP_Real*            ndecreases,         /**< array with weighted number of decreasings per variables */
    SCIP_Real             increaseweight,     /**< current weight of increase/decrease updates */
    SCIP_VAR**            shiftvar,           /**< pointer to store the shifting variable, returns NULL if impossible */
    SCIP_Real*            oldsolval,          /**< pointer to store old solution value of shifting variable */
    SCIP_Real*            newsolval           /**< pointer to store new (shifted) solution value of shifting variable */
)
{
    SCIP_COL** rowcols;
    SCIP_Real* rowvals;
    int nrowcols;
    SCIP_Real activitydelta;
    SCIP_Real bestshiftscore;
    SCIP_Real bestdeltaobj;
    int c;

    assert(direction == +1 || direction == -1);
    assert(nincreases != NULL);
    assert(ndecreases != NULL);
    assert(shiftvar != NULL);
    assert(oldsolval != NULL);
    assert(newsolval != NULL);

    /* get row entries */
    rowcols = SCIProwGetCols(row);
    rowvals = SCIProwGetVals(row);
    nrowcols = SCIProwGetNLPNonz(row);

    /* calculate how much the activity must be shifted in order to become feasible */
    activitydelta = (direction == +1 ? SCIProwGetLhs(row) - rowactivity : SCIProwGetRhs(row) - rowactivity);
    assert((direction == +1 && SCIPisPositive(scip, activitydelta))
           || (direction == -1 && SCIPisNegative(scip, activitydelta)));

    /* select shifting variable */
    bestshiftscore = SCIP_REAL_MAX;
    bestdeltaobj = SCIPinfinity(scip);
    *shiftvar = NULL;
    *newsolval = 0.0;
    *oldsolval = 0.0;
    for( c = 0; c < nrowcols; ++c )
    {
        SCIP_COL* col;
        SCIP_VAR* var;
        SCIP_Real val;
        SCIP_Real solval;
        SCIP_Real shiftval;
        SCIP_Real shiftscore;
        SCIP_Bool isinteger;
        SCIP_Bool isfrac;
        SCIP_Bool increase;

        col = rowcols[c];
        var = SCIPcolGetVar(col);
        val = rowvals[c];
        assert(!SCIPisZero(scip, val));
        solval = SCIPgetSolVal(scip, sol, var);

        isinteger = (SCIPvarGetType(var) == SCIP_VARTYPE_BINARY || SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER);
        isfrac = isinteger && !SCIPisFeasIntegral(scip, solval);
        increase = (direction * val > 0.0);

        /* calculate the score of the shifting (prefer smaller values) */
        if( isfrac )
            shiftscore = increase ? -1.0 / (SCIPvarGetNLocksUp(var) + 1.0) :
                         -1.0 / (SCIPvarGetNLocksDown(var) + 1.0);
        else
        {
            int probindex;
            probindex = SCIPvarGetProbindex(var);

            if( increase )
                shiftscore = ndecreases[probindex]/increaseweight;
            else
                shiftscore = nincreases[probindex]/increaseweight;
            if( isinteger )
                shiftscore += 1.0;
        }

        if( shiftscore <= bestshiftscore )
        {
            SCIP_Real deltaobj;

            if( !increase )
            {
                /* shifting down */
                assert(direction * val < 0.0);
                if( isfrac )
                    shiftval = SCIPfeasFloor(scip, solval);
                else
                {
                    SCIP_Real lb;

                    assert(activitydelta/val < 0.0);
                    shiftval = solval + activitydelta/val;
                    assert(shiftval <= solval); /* may be equal due to numerical digit erasement in the subtraction */
                    if( SCIPvarIsIntegral(var) )
                        shiftval = SCIPfeasFloor(scip, shiftval);
                    lb = SCIPvarGetLbGlobal(var);
                    shiftval = MAX(shiftval, lb);
                }
            }
            else
            {
                /* shifting up */
                assert(direction * val > 0.0);
                if( isfrac )
                    shiftval = SCIPfeasCeil(scip, solval);
                else
                {
                    SCIP_Real ub;

                    assert(activitydelta/val > 0.0);
                    shiftval = solval + activitydelta/val;
                    assert(shiftval >= solval); /* may be equal due to numerical digit erasement in the subtraction */
                    if( SCIPvarIsIntegral(var) )
                        shiftval = SCIPfeasCeil(scip, shiftval);
                    ub = SCIPvarGetUbGlobal(var);
                    shiftval = MIN(shiftval, ub);
                }
            }

            if( SCIPisEQ(scip, shiftval, solval) )
                continue;

            deltaobj = SCIPvarGetObj(var) * (shiftval - solval);
            if( shiftscore < bestshiftscore || deltaobj < bestdeltaobj )
            {
                bestshiftscore = shiftscore;
                bestdeltaobj = deltaobj;
                *shiftvar = var;
                *oldsolval = solval;
                *newsolval = shiftval;
            }
        }
    }

    return SCIP_OKAY;
}
Exemplo n.º 17
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecZirounding)
{  /*lint --e{715}*/
   SCIP_HEURDATA*     heurdata;
   SCIP_SOL*          sol;
   SCIP_VAR**         lpcands;
   SCIP_VAR**         zilpcands;

   SCIP_VAR**         slackvars;
   SCIP_Real*         upslacks;
   SCIP_Real*         downslacks;
   SCIP_Real*         activities;
   SCIP_Real*         slackvarcoeffs;
   SCIP_Bool*         rowneedsslackvar;

   SCIP_ROW**         rows;
   SCIP_Real*         lpcandssol;
   SCIP_Real*         solarray;

   SCIP_Longint       nlps;
   int                currentlpcands;
   int                nlpcands;
   int                nimplfracs;
   int                i;
   int                c;
   int                nslacks;
   int                nroundings;

   SCIP_RETCODE       retcode;

   SCIP_Bool          improvementfound;
   SCIP_Bool          numericalerror;

   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DIDNOTRUN;

   /* do not call heuristic of node was already detected to be infeasible */
   if( nodeinfeasible )
      return SCIP_OKAY;

   /* only call heuristic if an optimal LP-solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
   if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
      return SCIP_OKAY;

   /* get heuristic data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* Do not call heuristic if deactivation check is enabled and percentage of found solutions in relation
    * to number of calls falls below heurdata->stoppercentage */
   if( heurdata->stopziround && SCIPheurGetNCalls(heur) >= heurdata->minstopncalls
      && SCIPheurGetNSolsFound(heur)/(SCIP_Real)SCIPheurGetNCalls(heur) < heurdata->stoppercentage )
      return SCIP_OKAY;

   /* assure that heuristic has not already been called after the last LP had been solved */
   nlps = SCIPgetNLPs(scip);
   if( nlps == heurdata->lastlp )
      return SCIP_OKAY;

   heurdata->lastlp = nlps;

   /* get fractional variables */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, &nimplfracs) );
   nlpcands = nlpcands + nimplfracs;
   /* make sure that there is at least one fractional variable that should be integral */
   if( nlpcands == 0 )
      return SCIP_OKAY;

   assert(nlpcands > 0);
   assert(lpcands != NULL);
   assert(lpcandssol != NULL);

   /* get LP rows data */
   rows    = SCIPgetLPRows(scip);
   nslacks = SCIPgetNLPRows(scip);

   /* cannot do anything if LP is empty */
   if( nslacks == 0 )
      return SCIP_OKAY;

   assert(rows != NULL);
   assert(nslacks > 0);

   /* get the working solution from heuristic's local data */
   sol = heurdata->sol;
   assert(sol != NULL);

   *result = SCIP_DIDNOTFIND;

   solarray = NULL;
   zilpcands = NULL;

   retcode = SCIP_OKAY;
   /* copy the current LP solution to the working solution and allocate memory for local data */
   SCIP_CALL( SCIPlinkLPSol(scip, sol) );
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &solarray, nlpcands), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &zilpcands, nlpcands), TERMINATE);

   /* copy necessary data to local arrays */
   BMScopyMemoryArray(solarray, lpcandssol, nlpcands);
   BMScopyMemoryArray(zilpcands, lpcands, nlpcands);

   /* allocate buffer data arrays */
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &slackvars, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &upslacks, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &downslacks, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &slackvarcoeffs, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &rowneedsslackvar, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &activities, nslacks), TERMINATE);

   BMSclearMemoryArray(slackvars, nslacks);
   BMSclearMemoryArray(slackvarcoeffs, nslacks);
   BMSclearMemoryArray(rowneedsslackvar, nslacks);

   numericalerror = FALSE;
   nroundings = 0;

   /* loop over fractional variables and involved LP rows to find all rows which require a slack variable */
   for( c = 0; c < nlpcands; ++c )
   {
      SCIP_VAR* cand;
      SCIP_ROW** candrows;
      int r;
      int ncandrows;

      cand = zilpcands[c];
      assert(cand != NULL);
      assert(SCIPcolGetLPPos(SCIPvarGetCol(cand)) >= 0);

      candrows = SCIPcolGetRows(SCIPvarGetCol(cand));
      ncandrows = SCIPcolGetNLPNonz(SCIPvarGetCol(cand));

      assert(candrows == NULL || ncandrows > 0);

      for( r = 0; r < ncandrows; ++r )
      {
         int rowpos;

         assert(candrows != NULL); /* to please flexelint */
         assert(candrows[r] != NULL);
         rowpos = SCIProwGetLPPos(candrows[r]);

         if( rowpos >= 0 && SCIPisFeasEQ(scip, SCIProwGetLhs(candrows[r]), SCIProwGetRhs(candrows[r])) )
         {
            rowneedsslackvar[rowpos] = TRUE;
            SCIPdebugMessage("  Row %s needs slack variable for variable %s\n", SCIProwGetName(candrows[r]), SCIPvarGetName(cand));
         }
      }
   }

   /* calculate row slacks for every every row that belongs to the current LP and ensure, that the current solution
    * has no violated constraint -- if any constraint is violated, i.e. a slack is significantly smaller than zero,
    * this will cause the termination of the heuristic because Zirounding does not provide feasibility recovering
    */
   for( i = 0; i < nslacks; ++i )
   {
      SCIP_ROW*          row;
      SCIP_Real          lhs;
      SCIP_Real          rhs;

      row = rows[i];

      assert(row != NULL);

      lhs = SCIProwGetLhs(row);
      rhs = SCIProwGetRhs(row);

      /* get row activity */
      activities[i] = SCIPgetRowActivity(scip, row);
      assert(SCIPisFeasLE(scip, lhs, activities[i]) && SCIPisFeasLE(scip, activities[i], rhs));

      /* in special case if LHS or RHS is (-)infinity slacks have to be initialized as infinity */
      if( SCIPisInfinity(scip, -lhs) )
         downslacks[i] = SCIPinfinity(scip);
      else
         downslacks[i] = activities[i] - lhs;

      if( SCIPisInfinity(scip, rhs) )
         upslacks[i] = SCIPinfinity(scip);
      else
         upslacks[i] = rhs - activities[i];

      SCIPdebugMessage("lhs:%5.2f <= act:%5.2g <= rhs:%5.2g --> down: %5.2g, up:%5.2g\n", lhs, activities[i], rhs, downslacks[i], upslacks[i]);

      /* row is an equation. Try to find a slack variable in the row, i.e.,
       * a continuous variable which occurs only in this row. If no such variable exists,
       * there is no hope for an IP-feasible solution in this round
       */
      if( SCIPisFeasEQ(scip, lhs, rhs) && rowneedsslackvar[i] )
      {
         /* @todo: This is only necessary for rows containing fractional variables. */
         rowFindSlackVar(scip, row, &(slackvars[i]), &(slackvarcoeffs[i]));

         if( slackvars[i] == NULL )
         {
            SCIPdebugMessage("No slack variable found for equation %s, terminating ZI Round heuristic\n", SCIProwGetName(row));
            goto TERMINATE;
         }
         else
         {
            SCIP_Real ubslackvar;
            SCIP_Real lbslackvar;
            SCIP_Real solvalslackvar;
            SCIP_Real coeffslackvar;
            SCIP_Real ubgap;
            SCIP_Real lbgap;

            assert(SCIPvarGetType(slackvars[i]) == SCIP_VARTYPE_CONTINUOUS);
            solvalslackvar = SCIPgetSolVal(scip, sol, slackvars[i]);
            ubslackvar = SCIPvarGetUbGlobal(slackvars[i]);
            lbslackvar = SCIPvarGetLbGlobal(slackvars[i]);

            coeffslackvar = slackvarcoeffs[i];
            assert(!SCIPisFeasZero(scip, coeffslackvar));

            ubgap = ubslackvar - solvalslackvar;
            lbgap = solvalslackvar - lbslackvar;

            if( SCIPisFeasZero(scip, ubgap) )
              ubgap = 0.0;
            if( SCIPisFeasZero(scip, lbgap) )
              lbgap = 0.0;

            if( SCIPisFeasPositive(scip, coeffslackvar) )
            {
              if( !SCIPisInfinity(scip, lbslackvar) )
                upslacks[i] += coeffslackvar * lbgap;
              else
                upslacks[i] = SCIPinfinity(scip);
              if( !SCIPisInfinity(scip, ubslackvar) )
                downslacks[i] += coeffslackvar * ubgap;
              else
                downslacks[i] = SCIPinfinity(scip);
            }
            else
            {
               if( !SCIPisInfinity(scip, ubslackvar) )
                  upslacks[i] -= coeffslackvar * ubgap;
               else
                  upslacks[i] = SCIPinfinity(scip);
               if( !SCIPisInfinity(scip, lbslackvar) )
                  downslacks[i] -= coeffslackvar * lbgap;
               else
                  downslacks[i] = SCIPinfinity(scip);
            }
            SCIPdebugMessage("  Slack variable for row %s at pos %d: %g <= %s = %g <= %g; Coeff %g, upslack = %g, downslack = %g  \n",
               SCIProwGetName(row), SCIProwGetLPPos(row), lbslackvar, SCIPvarGetName(slackvars[i]), solvalslackvar, ubslackvar, coeffslackvar,
               upslacks[i], downslacks[i]);
         }
      }
      /* due to numerical inaccuracies, the rows might be feasible, even if the slacks are
       * significantly smaller than zero -> terminate
       */
      if( SCIPisFeasLT(scip, upslacks[i], 0.0) || SCIPisFeasLT(scip, downslacks[i], 0.0) )
         goto TERMINATE;
   }

   assert(nslacks == 0 || (upslacks != NULL && downslacks != NULL && activities != NULL));

   /* initialize number of remaining variables and flag to enter the main loop */
   currentlpcands = nlpcands;
   improvementfound = TRUE;

   /* iterate over variables as long as there are fractional variables left */
   while( currentlpcands > 0 && improvementfound && (heurdata->maxroundingloops == -1 || nroundings < heurdata->maxroundingloops) )
   {  /*lint --e{850}*/
      improvementfound = FALSE;
      nroundings++;
      SCIPdebugMessage("zirounding enters while loop for %d time with %d candidates left. \n", nroundings, currentlpcands);

      /* check for every remaining fractional variable if a shifting decreases ZI-value of the variable */
      for( c = 0; c < currentlpcands; ++c )
      {
         SCIP_VAR* var;
         SCIP_Real oldsolval;
         SCIP_Real upperbound;
         SCIP_Real lowerbound;
         SCIP_Real up;
         SCIP_Real down;
         SCIP_Real ziup;
         SCIP_Real zidown;
         SCIP_Real zicurrent;
         SCIP_Real shiftval;

         DIRECTION direction;

         /* get values from local data */
         oldsolval = solarray[c];
         var = zilpcands[c];

         assert(!SCIPisFeasIntegral(scip, oldsolval));
         assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);

         /* calculate bounds for variable and make sure that there are no numerical inconsistencies */
         upperbound = SCIPinfinity(scip);
         lowerbound = SCIPinfinity(scip);
         calculateBounds(scip, var, oldsolval, &upperbound, &lowerbound, upslacks, downslacks, nslacks, &numericalerror);

         if( numericalerror )
            goto TERMINATE;

         /* calculate the possible values after shifting */
         up   = oldsolval + upperbound;
         down = oldsolval - lowerbound;

         /* if the variable is integer or implicit binary, do not shift further than the nearest integer */
         if( SCIPvarGetType(var) != SCIP_VARTYPE_BINARY)
         {
            SCIP_Real ceilx;
            SCIP_Real floorx;

            ceilx = SCIPfeasCeil(scip, oldsolval);
            floorx = SCIPfeasFloor(scip, oldsolval);
            up   = MIN(up, ceilx);
            down = MAX(down, floorx);
         }

         /* calculate necessary values */
         ziup      = getZiValue(scip, up);
         zidown    = getZiValue(scip, down);
         zicurrent = getZiValue(scip, oldsolval);

         /* calculate the shifting direction that reduces ZI-value the most,
          * if both directions improve ZI-value equally, take the direction which improves the objective
          */
         if( SCIPisFeasLT(scip, zidown, zicurrent) || SCIPisFeasLT(scip, ziup, zicurrent) )
         {
            if( SCIPisFeasEQ(scip,ziup, zidown) )
               direction  = SCIPisFeasGE(scip, SCIPvarGetObj(var), 0.0) ? DIRECTION_DOWN : DIRECTION_UP;
            else if( SCIPisFeasLT(scip, zidown, ziup) )
               direction = DIRECTION_DOWN;
            else
               direction = DIRECTION_UP;

            /* once a possible shifting direction and value have been found, variable value is updated */
            shiftval = (direction == DIRECTION_UP ? up - oldsolval : down - oldsolval);

            /* this improves numerical stability in some cases */
            if( direction == DIRECTION_UP )
               shiftval = MIN(shiftval, upperbound);
            else
               shiftval = MIN(shiftval, lowerbound);
            /* update the solution */
            solarray[c] = direction == DIRECTION_UP ? up : down;
            SCIP_CALL( SCIPsetSolVal(scip, sol, var, solarray[c]) );

            /* update the rows activities and slacks */
            SCIP_CALL( updateSlacks(scip, sol, var, shiftval, upslacks,
                  downslacks, activities, slackvars, slackvarcoeffs, nslacks) );

            SCIPdebugMessage("zirounding update step : %d var index, oldsolval=%g, shiftval=%g\n",
               SCIPvarGetIndex(var), oldsolval, shiftval);
            /* since at least one improvement has been found, heuristic will enter main loop for another time because the improvement
             * might affect many LP rows and their current slacks and thus make further rounding steps possible */
            improvementfound = TRUE;
         }

         /* if solution value of variable has become feasibly integral due to rounding step,
          * variable is put at the end of remaining candidates array so as not to be considered in future loops
          */
         if( SCIPisFeasIntegral(scip, solarray[c]) )
         {
            zilpcands[c] = zilpcands[currentlpcands - 1];
            solarray[c] = solarray[currentlpcands - 1];
            currentlpcands--;

            /* counter is decreased if end of candidates array has not been reached yet */
            if( c < currentlpcands )
               c--;
         }
         else if( nroundings == heurdata->maxroundingloops - 1 )
            goto TERMINATE;
      }
   }

   /* in case that no candidate is left for rounding after the final main loop
    * the found solution has to be checked for feasibility in the original problem
    */
   if( currentlpcands == 0 )
   {
      SCIP_Bool stored;
      SCIP_CALL(SCIPtrySol(scip, sol, FALSE, FALSE, TRUE, FALSE, &stored));
      if( stored )
      {
#ifdef SCIP_DEBUG
         SCIPdebugMessage("found feasible rounded solution:\n");
         SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) );
#endif
         SCIPstatisticMessage("  ZI Round solution value: %g \n", SCIPgetSolOrigObj(scip, sol));

         *result = SCIP_FOUNDSOL;
      }
   }

   /* free memory for all locally allocated data */
 TERMINATE:
   SCIPfreeBufferArrayNull(scip, &activities);
   SCIPfreeBufferArrayNull(scip, &rowneedsslackvar);
   SCIPfreeBufferArrayNull(scip, &slackvarcoeffs);
   SCIPfreeBufferArrayNull(scip, &downslacks);
   SCIPfreeBufferArrayNull(scip, &upslacks);
   SCIPfreeBufferArrayNull(scip, &slackvars);
   SCIPfreeBufferArrayNull(scip, &zilpcands);
   SCIPfreeBufferArrayNull(scip, &solarray);

   return retcode;
}
Exemplo n.º 18
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecOneopt)
{  /*lint --e{715}*/

   SCIP_HEURDATA* heurdata;
   SCIP_SOL* bestsol;                        /* incumbent solution */
   SCIP_SOL* worksol;                        /* heuristic's working solution */
   SCIP_VAR** vars;                          /* SCIP variables                */
   SCIP_VAR** shiftcands;                    /* shiftable variables           */
   SCIP_ROW** lprows;                        /* SCIP LP rows                  */
   SCIP_Real* activities;                    /* row activities for working solution */
   SCIP_Real* shiftvals;

   SCIP_Real lb;
   SCIP_Real ub;
   SCIP_Bool localrows;
   SCIP_Bool valid;
   int nchgbound;
   int nbinvars;
   int nintvars;
   int nvars;
   int nlprows;
   int i;
   int nshiftcands;
   int shiftcandssize;
   SCIP_RETCODE retcode;

   assert(heur != NULL);
   assert(scip != NULL);
   assert(result != NULL);

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   *result = SCIP_DELAYED;

   /* we only want to process each solution once */
   bestsol = SCIPgetBestSol(scip);
   if( bestsol == NULL || heurdata->lastsolindex == SCIPsolGetIndex(bestsol) )
      return SCIP_OKAY;

   /* reset the timing mask to its default value (at the root node it could be different) */
   if( SCIPgetNNodes(scip) > 1 )
      SCIPheurSetTimingmask(heur, HEUR_TIMING);

   /* get problem variables */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );
   nintvars += nbinvars;

   /* do not run if there are no discrete variables */
   if( nintvars == 0 )
   {
      *result = SCIP_DIDNOTRUN;
      return SCIP_OKAY;
   }

   if( heurtiming == SCIP_HEURTIMING_BEFOREPRESOL )
   {
      SCIP*                 subscip;            /* the subproblem created by zeroobj              */
      SCIP_HASHMAP*         varmapfw;           /* mapping of SCIP variables to sub-SCIP variables */
      SCIP_VAR**            subvars;            /* subproblem's variables                          */
      SCIP_Real* subsolvals;                    /* solution values of the subproblem               */

      SCIP_Real timelimit;                      /* time limit for zeroobj subproblem              */
      SCIP_Real memorylimit;                    /* memory limit for zeroobj subproblem            */

      SCIP_SOL* startsol;
      SCIP_SOL** subsols;
      int nsubsols;

      if( !heurdata->beforepresol )
         return SCIP_OKAY;

      /* check whether there is enough time and memory left */
      timelimit = 0.0;
      memorylimit = 0.0;
      SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
      if( !SCIPisInfinity(scip, timelimit) )
         timelimit -= SCIPgetSolvingTime(scip);
      SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );

      /* substract the memory already used by the main SCIP and the estimated memory usage of external software */
      if( !SCIPisInfinity(scip, memorylimit) )
      {
         memorylimit -= SCIPgetMemUsed(scip)/1048576.0;
         memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0;
      }

      /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */
      if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 )
         return SCIP_OKAY;

      /* initialize the subproblem */
      SCIP_CALL( SCIPcreate(&subscip) );

      /* create the variable mapping hash map */
      SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) );
      SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) );

      /* copy complete SCIP instance */
      valid = FALSE;
      SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "oneopt", TRUE, FALSE, TRUE, &valid) );
      SCIP_CALL( SCIPtransformProb(subscip) );

      /* get variable image */
      for( i = 0; i < nvars; i++ )
         subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]);

      /* copy the solution */
      SCIP_CALL( SCIPallocBufferArray(scip, &subsolvals, nvars) );
      SCIP_CALL( SCIPgetSolVals(scip, bestsol, nvars, vars, subsolvals) );

      /* create start solution for the subproblem */
      SCIP_CALL( SCIPcreateOrigSol(subscip, &startsol, NULL) );
      SCIP_CALL( SCIPsetSolVals(subscip, startsol, nvars, subvars, subsolvals) );

      /* try to add new solution to sub-SCIP and free it immediately */
      valid = FALSE;
      SCIP_CALL( SCIPtrySolFree(subscip, &startsol, FALSE, FALSE, FALSE, FALSE, &valid) );
      SCIPfreeBufferArray(scip, &subsolvals);
      SCIPhashmapFree(&varmapfw);

      /* disable statistic timing inside sub SCIP */
      SCIP_CALL( SCIPsetBoolParam(subscip, "timing/statistictiming", FALSE) );

      /* deactivate basically everything except oneopt in the sub-SCIP */
      SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_OFF, TRUE) );
      SCIP_CALL( SCIPsetHeuristics(subscip, SCIP_PARAMSETTING_OFF, TRUE) );
      SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) );
      SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", 1LL) );
      SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
      SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );
      SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );
      SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );

      /* if necessary, some of the parameters have to be unfixed first */
      if( SCIPisParamFixed(subscip, "lp/solvefreq") )
      {
         SCIPwarningMessage(scip, "unfixing parameter lp/solvefreq in subscip of oneopt heuristic\n");
         SCIP_CALL( SCIPunfixParam(subscip, "lp/solvefreq") );
      }
      SCIP_CALL( SCIPsetIntParam(subscip, "lp/solvefreq", -1) );

      if( SCIPisParamFixed(subscip, "heuristics/oneopt/freq") )
      {
         SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/freq in subscip of oneopt heuristic\n");
         SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/freq") );
      }
      SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/oneopt/freq", 1) );

      if( SCIPisParamFixed(subscip, "heuristics/oneopt/forcelpconstruction") )
      {
         SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/forcelpconstruction in subscip of oneopt heuristic\n");
         SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/forcelpconstruction") );
      }
      SCIP_CALL( SCIPsetBoolParam(subscip, "heuristics/oneopt/forcelpconstruction", TRUE) );

      /* avoid recursive call, which would lead to an endless loop */
      if( SCIPisParamFixed(subscip, "heuristics/oneopt/beforepresol") )
      {
         SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/beforepresol in subscip of oneopt heuristic\n");
         SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/beforepresol") );
      }
      SCIP_CALL( SCIPsetBoolParam(subscip, "heuristics/oneopt/beforepresol", FALSE) );

      if( valid )
      {
         retcode = SCIPsolve(subscip);

         /* errors in solving the subproblem should not kill the overall solving process;
          * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
          */
         if( retcode != SCIP_OKAY )
         {
#ifndef NDEBUG
            SCIP_CALL( retcode );
#endif
            SCIPwarningMessage(scip, "Error while solving subproblem in zeroobj heuristic; sub-SCIP terminated with code <%d>\n",retcode);
         }

#ifdef SCIP_DEBUG
         SCIP_CALL( SCIPprintStatistics(subscip, NULL) );
#endif
      }

      /* check, whether a solution was found;
       * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted
       */
      nsubsols = SCIPgetNSols(subscip);
      subsols = SCIPgetSols(subscip);
      valid = FALSE;
      for( i = 0; i < nsubsols && !valid; ++i )
      {
         SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &valid) );
         if( valid )
            *result = SCIP_FOUNDSOL;
      }

      /* free subproblem */
      SCIPfreeBufferArray(scip, &subvars);
      SCIP_CALL( SCIPfree(&subscip) );

      return SCIP_OKAY;
   }

   /* we can only work on solutions valid in the transformed space */
   if( SCIPsolIsOriginal(bestsol) )
      return SCIP_OKAY;

   if( heurtiming == SCIP_HEURTIMING_BEFORENODE && (SCIPhasCurrentNodeLP(scip) || heurdata->forcelpconstruction) )
   {
      SCIP_Bool cutoff;
      cutoff = FALSE;
      SCIP_CALL( SCIPconstructLP(scip, &cutoff) );
      SCIP_CALL( SCIPflushLP(scip) );

      /* get problem variables again, SCIPconstructLP() might have added new variables */
      SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );
      nintvars += nbinvars;
   }

   /* we need an LP */
   if( SCIPgetNLPRows(scip) == 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   nchgbound = 0;

   /* initialize data */
   nshiftcands = 0;
   shiftcandssize = 8;
   heurdata->lastsolindex = SCIPsolGetIndex(bestsol);
   SCIP_CALL( SCIPcreateSolCopy(scip, &worksol, bestsol) );
   SCIPsolSetHeur(worksol,heur);

   SCIPdebugMessage("Starting bound adjustment in 1-opt heuristic\n");

   /* maybe change solution values due to global bound changes first */
   for( i = nvars - 1; i >= 0; --i )
   {
      SCIP_VAR* var;
      SCIP_Real solval;

      var = vars[i];
      lb = SCIPvarGetLbGlobal(var);
      ub = SCIPvarGetUbGlobal(var);

      solval = SCIPgetSolVal(scip, bestsol,var);
      /* old solution value is smaller than the actual lower bound */
      if( SCIPisFeasLT(scip, solval, lb) )
      {
         /* set the solution value to the global lower bound */
         SCIP_CALL( SCIPsetSolVal(scip, worksol, var, lb) );
         ++nchgbound;
         SCIPdebugMessage("var <%s> type %d, old solval %g now fixed to lb %g\n", SCIPvarGetName(var), SCIPvarGetType(var), solval, lb);
      }
      /* old solution value is greater than the actual upper bound */
      else if( SCIPisFeasGT(scip, solval, SCIPvarGetUbGlobal(var)) )
      {
         /* set the solution value to the global upper bound */
         SCIP_CALL( SCIPsetSolVal(scip, worksol, var, ub) );
         ++nchgbound;
         SCIPdebugMessage("var <%s> type %d, old solval %g now fixed to ub %g\n", SCIPvarGetName(var), SCIPvarGetType(var), solval, ub);
      }
   }

   SCIPdebugMessage("number of bound changes (due to global bounds) = %d\n", nchgbound);
   SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) );

   localrows = FALSE;
   valid = TRUE;

   /* initialize activities */
   for( i = 0; i < nlprows; ++i )
   {
      SCIP_ROW* row;

      row = lprows[i];
      assert(SCIProwGetLPPos(row) == i);

      if( !SCIProwIsLocal(row) )
      {
         activities[i] = SCIPgetRowSolActivity(scip, row, worksol);
         SCIPdebugMessage("Row <%s> has activity %g\n", SCIProwGetName(row), activities[i]);
         if( SCIPisFeasLT(scip, activities[i], SCIProwGetLhs(row)) || SCIPisFeasGT(scip, activities[i], SCIProwGetRhs(row)) )
         {
            valid = FALSE;
            SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) );
            SCIPdebugMessage("row <%s> activity %g violates bounds, lhs = %g, rhs = %g\n", SCIProwGetName(row), activities[i], SCIProwGetLhs(row), SCIProwGetRhs(row));
            break;
         }
      }
      else
         localrows = TRUE;
   }

   if( !valid )
   {
      /** @todo try to correct lp rows */
      SCIPdebugMessage("Some global bound changes were not valid in lp rows.\n");
      goto TERMINATE;
   }

   SCIP_CALL( SCIPallocBufferArray(scip, &shiftcands, shiftcandssize) );
   SCIP_CALL( SCIPallocBufferArray(scip, &shiftvals, shiftcandssize) );


   SCIPdebugMessage("Starting 1-opt heuristic\n");

   /* enumerate all integer variables and find out which of them are shiftable */
   for( i = 0; i < nintvars; i++ )
   {
      if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN )
      {
         SCIP_Real shiftval;
         SCIP_Real solval;

         /* find out whether the variable can be shifted */
         solval = SCIPgetSolVal(scip, worksol, vars[i]);
         shiftval = calcShiftVal(scip, vars[i], solval, activities);

         /* insert the variable into the list of shifting candidates */
         if( !SCIPisFeasZero(scip, shiftval) )
         {
            SCIPdebugMessage(" -> Variable <%s> can be shifted by <%1.1f> \n", SCIPvarGetName(vars[i]), shiftval);

            if( nshiftcands == shiftcandssize)
            {
               shiftcandssize *= 8;
               SCIP_CALL( SCIPreallocBufferArray(scip, &shiftcands, shiftcandssize) );
               SCIP_CALL( SCIPreallocBufferArray(scip, &shiftvals, shiftcandssize) );
            }
            shiftcands[nshiftcands] = vars[i];
            shiftvals[nshiftcands] = shiftval;
            nshiftcands++;
         }
      }
   }

   /* if at least one variable can be shifted, shift variables sorted by their objective */
   if( nshiftcands > 0 )
   {
      SCIP_Real shiftval;
      SCIP_Real solval;
      SCIP_VAR* var;

      /* the case that exactly one variable can be shifted is slightly easier */
      if( nshiftcands == 1 )
      {
         var = shiftcands[0];
         assert(var != NULL);
         solval = SCIPgetSolVal(scip, worksol, var);
         shiftval = shiftvals[0];
         assert(!SCIPisFeasZero(scip,shiftval));
         SCIPdebugMessage(" Only one shiftcand found, var <%s>, which is now shifted by<%1.1f> \n",
            SCIPvarGetName(var), shiftval);
         SCIP_CALL( SCIPsetSolVal(scip, worksol, var, solval+shiftval) );
      }
      else
      {
         SCIP_Real* objcoeffs;

         SCIP_CALL( SCIPallocBufferArray(scip, &objcoeffs, nshiftcands) );

         SCIPdebugMessage(" %d shiftcands found \n", nshiftcands);

         /* sort the variables by their objective, optionally weighted with the shiftval */
         if( heurdata->weightedobj )
         {
            for( i = 0; i < nshiftcands; ++i )
               objcoeffs[i] = SCIPvarGetObj(shiftcands[i])*shiftvals[i];
         }
         else
         {
            for( i = 0; i < nshiftcands; ++i )
               objcoeffs[i] = SCIPvarGetObj(shiftcands[i]);
         }

         /* sort arrays with respect to the first one */
         SCIPsortRealPtr(objcoeffs, (void**)shiftcands, nshiftcands);

         /* try to shift each variable -> Activities have to be updated */
         for( i = 0; i < nshiftcands; ++i )
         {
            var = shiftcands[i];
            assert(var != NULL);
            solval = SCIPgetSolVal(scip, worksol, var);
            shiftval = calcShiftVal(scip, var, solval, activities);
            SCIPdebugMessage(" -> Variable <%s> is now shifted by <%1.1f> \n", SCIPvarGetName(vars[i]), shiftval);
            assert(i > 0 || !SCIPisFeasZero(scip, shiftval));
            assert(SCIPisFeasGE(scip, solval+shiftval, SCIPvarGetLbGlobal(var)) && SCIPisFeasLE(scip, solval+shiftval, SCIPvarGetUbGlobal(var)));
            SCIP_CALL( SCIPsetSolVal(scip, worksol, var, solval+shiftval) );
            SCIP_CALL( updateRowActivities(scip, activities, var, shiftval) );
         }

         SCIPfreeBufferArray(scip, &objcoeffs);
      }

      /* if the problem is a pure IP, try to install the solution, if it is a MIP, solve LP again to set the continuous
       * variables to the best possible value
       */
      if( nvars == nintvars || !SCIPhasCurrentNodeLP(scip) || SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      {
         SCIP_Bool success;

         /* since we ignore local rows, we cannot guarantee their feasibility and have to set the checklprows flag to
          * TRUE if local rows are present
          */
         SCIP_CALL( SCIPtrySol(scip, worksol, FALSE, FALSE, FALSE, localrows, &success) );

         if( success )
         {
            SCIPdebugMessage("found feasible shifted solution:\n");
            SCIPdebug( SCIP_CALL( SCIPprintSol(scip, worksol, NULL, FALSE) ) );
            heurdata->lastsolindex = SCIPsolGetIndex(bestsol);
            *result = SCIP_FOUNDSOL;
         }
      }
      else
      {
         SCIP_Bool lperror;
#ifdef NDEBUG
         SCIP_RETCODE retstat;
#endif

         SCIPdebugMessage("shifted solution should be feasible -> solve LP to fix continuous variables to best values\n");

         /* start diving to calculate the LP relaxation */
         SCIP_CALL( SCIPstartDive(scip) );

         /* set the bounds of the variables: fixed for integers, global bounds for continuous */
         for( i = 0; i < nvars; ++i )
         {
            if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN )
            {
               SCIP_CALL( SCIPchgVarLbDive(scip, vars[i], SCIPvarGetLbGlobal(vars[i])) );
               SCIP_CALL( SCIPchgVarUbDive(scip, vars[i], SCIPvarGetUbGlobal(vars[i])) );
            }
         }
         /* apply this after global bounds to not cause an error with intermediate empty domains */
         for( i = 0; i < nintvars; ++i )
         {
            if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN )
            {
               solval = SCIPgetSolVal(scip, worksol, vars[i]);
               SCIP_CALL( SCIPchgVarLbDive(scip, vars[i], solval) );
               SCIP_CALL( SCIPchgVarUbDive(scip, vars[i], solval) );
            }
         }

         /* solve LP */
         SCIPdebugMessage(" -> old LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip));

         /**@todo in case of an MINLP, if SCIPisNLPConstructed() is TRUE, say, rather solve the NLP instead of the LP */
         /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
          * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
          */
#ifdef NDEBUG
         retstat = SCIPsolveDiveLP(scip, -1, &lperror, NULL);
         if( retstat != SCIP_OKAY )
         { 
            SCIPwarningMessage(scip, "Error while solving LP in Oneopt heuristic; LP solve terminated with code <%d>\n",retstat);
         }
#else
         SCIP_CALL( SCIPsolveDiveLP(scip, -1, &lperror, NULL) );
#endif

         SCIPdebugMessage(" -> new LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip));
         SCIPdebugMessage(" -> error=%u, status=%d\n", lperror, SCIPgetLPSolstat(scip));

         /* check if this is a feasible solution */
         if( !lperror && SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_OPTIMAL )
         {
            SCIP_Bool success;

            /* copy the current LP solution to the working solution */
            SCIP_CALL( SCIPlinkLPSol(scip, worksol) );
            SCIP_CALL( SCIPtrySol(scip, worksol, FALSE, FALSE, FALSE, FALSE, &success) );

            /* check solution for feasibility */
            if( success )
            {
               SCIPdebugMessage("found feasible shifted solution:\n");
               SCIPdebug( SCIP_CALL( SCIPprintSol(scip, worksol, NULL, FALSE) ) );
               heurdata->lastsolindex = SCIPsolGetIndex(bestsol);
               *result = SCIP_FOUNDSOL;
            }
         }

         /* terminate the diving */
         SCIP_CALL( SCIPendDive(scip) );
      }
   }
   SCIPdebugMessage("Finished 1-opt heuristic\n");

   SCIPfreeBufferArray(scip, &shiftvals);
   SCIPfreeBufferArray(scip, &shiftcands);

 TERMINATE:
   SCIPfreeBufferArray(scip, &activities);
   SCIP_CALL( SCIPfreeSol(scip, &worksol) );

   return SCIP_OKAY;
}
Exemplo n.º 19
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecRounding) /*lint --e{715}*/
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_SOL* sol;
   SCIP_VAR** lpcands;
   SCIP_Real* lpcandssol;
   SCIP_ROW** lprows;
   SCIP_Real* activities;
   SCIP_ROW** violrows;
   int* violrowpos;
   SCIP_Real obj;
   SCIP_Real bestroundval;
   SCIP_Real minobj;
   int nlpcands;
   int nlprows;
   int nfrac;
   int nviolrows;
   int c;
   int r;
   SCIP_Longint nlps;
   SCIP_Longint ncalls;
   SCIP_Longint nsolsfound;
   SCIP_Longint nnodes;

   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DIDNOTRUN;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
   if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
      return SCIP_OKAY;

   /* get heuristic data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* don't call heuristic, if we have already processed the current LP solution */
   nlps = SCIPgetNLPs(scip);
   if( nlps == heurdata->lastlp )
      return SCIP_OKAY;
   heurdata->lastlp = nlps;

   /* don't call heuristic, if it was not successful enough in the past */
   ncalls = SCIPheurGetNCalls(heur);
   nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + SCIPheurGetNSolsFound(heur);
   nnodes = SCIPgetNNodes(scip);
   if( nnodes % ((ncalls/heurdata->successfactor)/(nsolsfound+1)+1) != 0 )
      return SCIP_OKAY;

   /* get fractional variables, that should be integral */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, NULL) );
   nfrac = nlpcands;

   /* only call heuristic, if LP solution is fractional */
   if( nfrac == 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   /* get LP rows */
   SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) );

   SCIPdebugMessage("executing rounding heuristic: %d LP rows, %d fractionals\n", nlprows, nfrac);

   /* get memory for activities, violated rows, and row violation positions */
   SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &violrows, nlprows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &violrowpos, nlprows) );

   /* get the activities for all globally valid rows;
    * the rows should be feasible, but due to numerical inaccuracies in the LP solver, they can be violated
    */
   nviolrows = 0;
   for( r = 0; r < nlprows; ++r )
   {
      SCIP_ROW* row;

      row = lprows[r];
      assert(SCIProwGetLPPos(row) == r);

      if( !SCIProwIsLocal(row) )
      {
         activities[r] = SCIPgetRowActivity(scip, row);
         if( SCIPisFeasLT(scip, activities[r], SCIProwGetLhs(row))
            || SCIPisFeasGT(scip, activities[r], SCIProwGetRhs(row)) )
         {
            violrows[nviolrows] = row;
            violrowpos[r] = nviolrows;
            nviolrows++;
         }
         else
            violrowpos[r] = -1;
      }
   }

   /* get the working solution from heuristic's local data */
   sol = heurdata->sol;
   assert(sol != NULL);

   /* copy the current LP solution to the working solution */
   SCIP_CALL( SCIPlinkLPSol(scip, sol) );

   /* calculate the minimal objective value possible after rounding fractional variables */
   minobj = SCIPgetSolTransObj(scip, sol);
   assert(minobj < SCIPgetCutoffbound(scip));
   for( c = 0; c < nlpcands; ++c )
   {
      obj = SCIPvarGetObj(lpcands[c]);
      bestroundval = obj > 0.0 ? SCIPfeasFloor(scip, lpcandssol[c]) : SCIPfeasCeil(scip, lpcandssol[c]);
      minobj += obj * (bestroundval - lpcandssol[c]);
   }

   /* try to round remaining variables in order to become/stay feasible */
   while( nfrac > 0 )
   {
      SCIP_VAR* roundvar;
      SCIP_Real oldsolval;
      SCIP_Real newsolval;

      SCIPdebugMessage("rounding heuristic: nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n",
         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj));

      /* minobj < SCIPgetCutoffbound(scip) should be true, otherwise the rounding variable selection
       * should have returned NULL. Due to possible cancellation we use SCIPisLE. */
      assert( SCIPisLE(scip, minobj, SCIPgetCutoffbound(scip)) );

      /* choose next variable to process:
       *  - if a violated row exists, round a variable decreasing the violation, that has least impact on other rows
       *  - otherwise, round a variable, that has strongest devastating impact on rows in opposite direction
       */
      if( nviolrows > 0 )
      {
         SCIP_ROW* row;
         int rowpos;

         row = violrows[nviolrows-1];
         rowpos = SCIProwGetLPPos(row);
         assert(0 <= rowpos && rowpos < nlprows);
         assert(violrowpos[rowpos] == nviolrows-1);

         SCIPdebugMessage("rounding heuristic: try to fix violated row <%s>: %g <= %g <= %g\n",
            SCIProwGetName(row), SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row));
         if( SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) )
         {
            /* lhs is violated: select a variable rounding, that increases the activity */
            SCIP_CALL( selectIncreaseRounding(scip, sol, minobj, row, &roundvar, &oldsolval, &newsolval) );
         }
         else
         {
            assert(SCIPisFeasGT(scip, activities[rowpos], SCIProwGetRhs(row)));
            /* rhs is violated: select a variable rounding, that decreases the activity */
            SCIP_CALL( selectDecreaseRounding(scip, sol, minobj, row, &roundvar, &oldsolval, &newsolval) );
         }
      }
      else
      {
         SCIPdebugMessage("rounding heuristic: search rounding variable and try to stay feasible\n");
         SCIP_CALL( selectEssentialRounding(scip, sol, minobj, lpcands, nlpcands, &roundvar, &oldsolval, &newsolval) );
      }

      /* check, whether rounding was possible */
      if( roundvar == NULL )
      {
         SCIPdebugMessage("rounding heuristic:  -> didn't find a rounding variable\n");
         break;
      }

      SCIPdebugMessage("rounding heuristic:  -> round var <%s>, oldval=%g, newval=%g, obj=%g\n",
         SCIPvarGetName(roundvar), oldsolval, newsolval, SCIPvarGetObj(roundvar));

      /* update row activities of globally valid rows */
      SCIP_CALL( updateActivities(scip, activities, violrows, violrowpos, &nviolrows, nlprows, 
            roundvar, oldsolval, newsolval) );

      /* store new solution value and decrease fractionality counter */
      SCIP_CALL( SCIPsetSolVal(scip, sol, roundvar, newsolval) );
      nfrac--;

      /* update minimal objective value possible after rounding remaining variables */
      obj = SCIPvarGetObj(roundvar);
      if( obj > 0.0 && newsolval > oldsolval )
         minobj += obj;
      else if( obj < 0.0 && newsolval < oldsolval )
         minobj -= obj;

      SCIPdebugMessage("rounding heuristic:  -> nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n",
         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj));
   }

   /* check, if the new solution is feasible */
   if( nfrac == 0 && nviolrows == 0 )
   {
      SCIP_Bool stored;

      /* check solution for feasibility, and add it to solution store if possible
       * neither integrality nor feasibility of LP rows has to be checked, because this is already
       * done in the rounding heuristic itself; however, be better check feasibility of LP rows,
       * because of numerical problems with activity updating
       */
      SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) );

      if( stored )
      {
#ifdef SCIP_DEBUG
         SCIPdebugMessage("found feasible rounded solution:\n");
         SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) );
#endif
         *result = SCIP_FOUNDSOL;
      }
   }

   /* free memory buffers */
   SCIPfreeBufferArray(scip, &violrowpos);
   SCIPfreeBufferArray(scip, &violrows);
   SCIPfreeBufferArray(scip, &activities);

   return SCIP_OKAY;
}
Exemplo n.º 20
0
/** compute value by which the solution of variable @p var can be shifted */
static
SCIP_Real calcShiftVal(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_VAR*             var,                /**< variable that should be shifted */
   SCIP_Real             solval,             /**< current solution value */
   SCIP_Real*            activities          /**< LP row activities */
   )
{
   SCIP_Real lb;
   SCIP_Real ub;
   SCIP_Real obj;
   SCIP_Real shiftval;

   SCIP_COL* col;
   SCIP_ROW** colrows;
   SCIP_Real* colvals;
   SCIP_Bool shiftdown;

   int ncolrows;
   int i;


   /* get variable's solution value, global bounds and objective coefficient */
   lb = SCIPvarGetLbGlobal(var);
   ub = SCIPvarGetUbGlobal(var);
   obj = SCIPvarGetObj(var);
   shiftval = 0.0;
   shiftdown = TRUE;

   /* determine shifting direction and maximal possible shifting w.r.t. corresponding bound */
   if( obj > 0.0 && SCIPisFeasGE(scip, solval - 1.0, lb) )
      shiftval = SCIPfeasFloor(scip, solval - lb);
   else if( obj < 0.0 && SCIPisFeasLE(scip, solval + 1.0, ub) )
   {
      shiftval = SCIPfeasFloor(scip, ub - solval);
      shiftdown = FALSE;
   }
   else
      return 0.0;


   SCIPdebugMessage("Try to shift %s variable <%s> with\n", shiftdown ? "down" : "up", SCIPvarGetName(var) );
   SCIPdebugMessage("    lb:<%g> <= val:<%g> <= ub:<%g> and obj:<%g> by at most: <%g>\n", lb, solval, ub, obj, shiftval);

   /* get data of LP column */
   col = SCIPvarGetCol(var);
   colrows = SCIPcolGetRows(col);
   colvals = SCIPcolGetVals(col);
   ncolrows = SCIPcolGetNLPNonz(col);

   assert(ncolrows == 0 || (colrows != NULL && colvals != NULL));

   /* find minimal shift value, st. all rows stay valid */
   for( i = 0; i < ncolrows && shiftval > 0.0; ++i )
   {
      SCIP_ROW* row;
      int rowpos;

      row = colrows[i];
      rowpos = SCIProwGetLPPos(row);
      assert(-1 <= rowpos && rowpos < SCIPgetNLPRows(scip) );

      /* only global rows need to be valid */
      if( rowpos >= 0 && !SCIProwIsLocal(row) )
      {
         SCIP_Real shiftvalrow;

         assert(SCIProwIsInLP(row));

         if( shiftdown == (colvals[i] > 0) )
            shiftvalrow = SCIPfeasFloor(scip, (activities[rowpos] - SCIProwGetLhs(row)) / ABS(colvals[i]));
         else
            shiftvalrow = SCIPfeasFloor(scip, (SCIProwGetRhs(row) -  activities[rowpos]) / ABS(colvals[i]));
#ifdef SCIP_DEBUG
         if( shiftvalrow < shiftval )
         {
            SCIPdebugMessage(" -> The shift value had to be reduced to <%g>, because of row <%s>.\n",
               shiftvalrow, SCIProwGetName(row));
            SCIPdebugMessage("    lhs:<%g> <= act:<%g> <= rhs:<%g>, colval:<%g>\n",
               SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row), colvals[i]);
         }
#endif
         shiftval = MIN(shiftval, shiftvalrow);
         /* shiftvalrow might be negative, if we detected infeasibility -> make sure that shiftval is >= 0 */
         shiftval = MAX(shiftval, 0.0);
      }
   }
   if( shiftdown )
      shiftval *= -1.0;

   /* we must not shift variables to infinity */
   if( SCIPisInfinity(scip, solval + shiftval) )
      shiftval = 0.0;

   return shiftval;
}
Exemplo n.º 21
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecShifting) /*lint --e{715}*/
{   /*lint --e{715}*/
    SCIP_HEURDATA* heurdata;
    SCIP_SOL* sol;
    SCIP_VAR** lpcands;
    SCIP_Real* lpcandssol;
    SCIP_ROW** lprows;
    SCIP_Real* activities;
    SCIP_ROW** violrows;
    SCIP_Real* nincreases;
    SCIP_Real* ndecreases;
    int* violrowpos;
    int* nfracsinrow;
    SCIP_Real increaseweight;
    SCIP_Real obj;
    SCIP_Real bestshiftval;
    SCIP_Real minobj;
    int nlpcands;
    int nlprows;
    int nvars;
    int nfrac;
    int nviolrows;
    int nprevviolrows;
    int minnviolrows;
    int nnonimprovingshifts;
    int c;
    int r;
    SCIP_Longint nlps;
    SCIP_Longint ncalls;
    SCIP_Longint nsolsfound;
    SCIP_Longint nnodes;

    assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
    assert(scip != NULL);
    assert(result != NULL);
    assert(SCIPhasCurrentNodeLP(scip));

    *result = SCIP_DIDNOTRUN;

    /* only call heuristic, if an optimal LP solution is at hand */
    if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
        return SCIP_OKAY;

    /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
    if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
        return SCIP_OKAY;

    /* get heuristic data */
    heurdata = SCIPheurGetData(heur);
    assert(heurdata != NULL);

    /* don't call heuristic, if we have already processed the current LP solution */
    nlps = SCIPgetNLPs(scip);
    if( nlps == heurdata->lastlp )
        return SCIP_OKAY;
    heurdata->lastlp = nlps;

    /* don't call heuristic, if it was not successful enough in the past */
    ncalls = SCIPheurGetNCalls(heur);
    nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + SCIPheurGetNSolsFound(heur);
    nnodes = SCIPgetNNodes(scip);
    if( nnodes % ((ncalls/100)/(nsolsfound+1)+1) != 0 )
        return SCIP_OKAY;

    /* get fractional variables, that should be integral */
    /* todo check if heuristic should include implicit integer variables for its calculations */
    SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, NULL) );
    nfrac = nlpcands;

    /* only call heuristic, if LP solution is fractional */
    if( nfrac == 0 )
        return SCIP_OKAY;

    *result = SCIP_DIDNOTFIND;

    /* get LP rows */
    SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) );

    SCIPdebugMessage("executing shifting heuristic: %d LP rows, %d fractionals\n", nlprows, nfrac);

    /* get memory for activities, violated rows, and row violation positions */
    nvars = SCIPgetNVars(scip);
    SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &violrows, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &violrowpos, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &nfracsinrow, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &nincreases, nvars) );
    SCIP_CALL( SCIPallocBufferArray(scip, &ndecreases, nvars) );
    BMSclearMemoryArray(nfracsinrow, nlprows);
    BMSclearMemoryArray(nincreases, nvars);
    BMSclearMemoryArray(ndecreases, nvars);

    /* get the activities for all globally valid rows;
     * the rows should be feasible, but due to numerical inaccuracies in the LP solver, they can be violated
     */
    nviolrows = 0;
    for( r = 0; r < nlprows; ++r )
    {
        SCIP_ROW* row;

        row = lprows[r];
        assert(SCIProwGetLPPos(row) == r);

        if( !SCIProwIsLocal(row) )
        {
            activities[r] = SCIPgetRowActivity(scip, row);
            if( SCIPisFeasLT(scip, activities[r], SCIProwGetLhs(row))
                    || SCIPisFeasGT(scip, activities[r], SCIProwGetRhs(row)) )
            {
                violrows[nviolrows] = row;
                violrowpos[r] = nviolrows;
                nviolrows++;
            }
            else
                violrowpos[r] = -1;
        }
    }

    /* calc the current number of fractional variables in rows */
    for( c = 0; c < nlpcands; ++c )
        addFracCounter(nfracsinrow, nlprows, lpcands[c], +1);

    /* get the working solution from heuristic's local data */
    sol = heurdata->sol;
    assert(sol != NULL);

    /* copy the current LP solution to the working solution */
    SCIP_CALL( SCIPlinkLPSol(scip, sol) );

    /* calculate the minimal objective value possible after rounding fractional variables */
    minobj = SCIPgetSolTransObj(scip, sol);
    assert(minobj < SCIPgetCutoffbound(scip));
    for( c = 0; c < nlpcands; ++c )
    {
        obj = SCIPvarGetObj(lpcands[c]);
        bestshiftval = obj > 0.0 ? SCIPfeasFloor(scip, lpcandssol[c]) : SCIPfeasCeil(scip, lpcandssol[c]);
        minobj += obj * (bestshiftval - lpcandssol[c]);
    }

    /* try to shift remaining variables in order to become/stay feasible */
    nnonimprovingshifts = 0;
    minnviolrows = INT_MAX;
    increaseweight = 1.0;
    while( (nfrac > 0 || nviolrows > 0) && nnonimprovingshifts < MAXSHIFTINGS )
    {
        SCIP_VAR* shiftvar;
        SCIP_Real oldsolval;
        SCIP_Real newsolval;
        SCIP_Bool oldsolvalisfrac;
        int probindex;

        SCIPdebugMessage("shifting heuristic: nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g), cutoff=%g\n",
                         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj),
                         SCIPretransformObj(scip, SCIPgetCutoffbound(scip)));

        nprevviolrows = nviolrows;

        /* choose next variable to process:
         *  - if a violated row exists, shift a variable decreasing the violation, that has least impact on other rows
         *  - otherwise, shift a variable, that has strongest devastating impact on rows in opposite direction
         */
        shiftvar = NULL;
        oldsolval = 0.0;
        newsolval = 0.0;
        if( nviolrows > 0 && (nfrac == 0 || nnonimprovingshifts < MAXSHIFTINGS-1) )
        {
            SCIP_ROW* row;
            int rowidx;
            int rowpos;
            int direction;

            rowidx = -1;
            rowpos = -1;
            row = NULL;
            if( nfrac > 0 )
            {
                for( rowidx = nviolrows-1; rowidx >= 0; --rowidx )
                {
                    row = violrows[rowidx];
                    rowpos = SCIProwGetLPPos(row);
                    assert(violrowpos[rowpos] == rowidx);
                    if( nfracsinrow[rowpos] > 0 )
                        break;
                }
            }
            if( rowidx == -1 )
            {
                rowidx = SCIPgetRandomInt(0, nviolrows-1, &heurdata->randseed);
                row = violrows[rowidx];
                rowpos = SCIProwGetLPPos(row);
                assert(0 <= rowpos && rowpos < nlprows);
                assert(violrowpos[rowpos] == rowidx);
                assert(nfracsinrow[rowpos] == 0);
            }
            assert(violrowpos[rowpos] == rowidx);

            SCIPdebugMessage("shifting heuristic: try to fix violated row <%s>: %g <= %g <= %g\n",
                             SCIProwGetName(row), SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row));
            SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) );

            /* get direction in which activity must be shifted */
            assert(SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row))
                   || SCIPisFeasGT(scip, activities[rowpos], SCIProwGetRhs(row)));
            direction = SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) ? +1 : -1;

            /* search a variable that can shift the activity in the necessary direction */
            SCIP_CALL( selectShifting(scip, sol, row, activities[rowpos], direction,
                                      nincreases, ndecreases, increaseweight, &shiftvar, &oldsolval, &newsolval) );
        }

        if( shiftvar == NULL && nfrac > 0 )
        {
            SCIPdebugMessage("shifting heuristic: search rounding variable and try to stay feasible\n");
            SCIP_CALL( selectEssentialRounding(scip, sol, minobj, lpcands, nlpcands, &shiftvar, &oldsolval, &newsolval) );
        }

        /* check, whether shifting was possible */
        if( shiftvar == NULL || SCIPisEQ(scip, oldsolval, newsolval) )
        {
            SCIPdebugMessage("shifting heuristic:  -> didn't find a shifting variable\n");
            break;
        }

        SCIPdebugMessage("shifting heuristic:  -> shift var <%s>[%g,%g], type=%d, oldval=%g, newval=%g, obj=%g\n",
                         SCIPvarGetName(shiftvar), SCIPvarGetLbGlobal(shiftvar), SCIPvarGetUbGlobal(shiftvar), SCIPvarGetType(shiftvar),
                         oldsolval, newsolval, SCIPvarGetObj(shiftvar));

        /* update row activities of globally valid rows */
        SCIP_CALL( updateActivities(scip, activities, violrows, violrowpos, &nviolrows, nlprows,
                                    shiftvar, oldsolval, newsolval) );
        if( nviolrows >= nprevviolrows )
            nnonimprovingshifts++;
        else if( nviolrows < minnviolrows )
        {
            minnviolrows = nviolrows;
            nnonimprovingshifts = 0;
        }

        /* store new solution value and decrease fractionality counter */
        SCIP_CALL( SCIPsetSolVal(scip, sol, shiftvar, newsolval) );

        /* update fractionality counter and minimal objective value possible after shifting remaining variables */
        oldsolvalisfrac = !SCIPisFeasIntegral(scip, oldsolval)
                          && (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER);
        obj = SCIPvarGetObj(shiftvar);
        if( (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER)
                && oldsolvalisfrac )
        {
            assert(SCIPisFeasIntegral(scip, newsolval));
            nfrac--;
            nnonimprovingshifts = 0;
            minnviolrows = INT_MAX;
            addFracCounter(nfracsinrow, nlprows, shiftvar, -1);

            /* the rounding was already calculated into the minobj -> update only if rounding in "wrong" direction */
            if( obj > 0.0 && newsolval > oldsolval )
                minobj += obj;
            else if( obj < 0.0 && newsolval < oldsolval )
                minobj -= obj;
        }
        else
        {
            /* update minimal possible objective value */
            minobj += obj * (newsolval - oldsolval);
        }

        /* update increase/decrease arrays */
        if( !oldsolvalisfrac )
        {
            probindex = SCIPvarGetProbindex(shiftvar);
            assert(0 <= probindex && probindex < nvars);
            increaseweight *= WEIGHTFACTOR;
            if( newsolval < oldsolval )
                ndecreases[probindex] += increaseweight;
            else
                nincreases[probindex] += increaseweight;
            if( increaseweight >= 1e+09 )
            {
                int i;

                for( i = 0; i < nvars; ++i )
                {
                    nincreases[i] /= increaseweight;
                    ndecreases[i] /= increaseweight;
                }
                increaseweight = 1.0;
            }
        }

        SCIPdebugMessage("shifting heuristic:  -> nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n",
                         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj));
    }

    /* check, if the new solution is feasible */
    if( nfrac == 0 && nviolrows == 0 )
    {
        SCIP_Bool stored;

        /* check solution for feasibility, and add it to solution store if possible
         * neither integrality nor feasibility of LP rows has to be checked, because this is already
         * done in the shifting heuristic itself; however, we better check feasibility of LP rows,
         * because of numerical problems with activity updating
         */
        SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) );

        if( stored )
        {
            SCIPdebugMessage("found feasible shifted solution:\n");
            SCIPdebug( SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) ) );
            *result = SCIP_FOUNDSOL;
        }
    }

    /* free memory buffers */
    SCIPfreeBufferArray(scip, &ndecreases);
    SCIPfreeBufferArray(scip, &nincreases);
    SCIPfreeBufferArray(scip, &nfracsinrow);
    SCIPfreeBufferArray(scip, &violrowpos);
    SCIPfreeBufferArray(scip, &violrows);
    SCIPfreeBufferArray(scip, &activities);

    return SCIP_OKAY;
}
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecSimplerounding) /*lint --e{715}*/
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_SOL* sol;
   SCIP_VAR** lpcands;
   SCIP_Real* lpcandssol;
   SCIP_Longint nlps;
   int nlpcands;
   int c;

   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DIDNOTRUN;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* get heuristic data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* on our first call or after each pricing round, calculate the number of roundable variables */
   if( heurdata->nroundablevars == -1  || heurtiming == SCIP_HEURTIMING_DURINGPRICINGLOOP )
   {
      SCIP_VAR** vars;
      int nvars;
      int nroundablevars;
      int i;

      vars = SCIPgetVars(scip);
      nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
      nroundablevars = 0;
      for( i = 0; i < nvars; ++i )
      {
         if( SCIPvarMayRoundDown(vars[i]) || SCIPvarMayRoundUp(vars[i]) )
            nroundablevars++;
      }
      heurdata->nroundablevars = nroundablevars;
   }

   /* don't call heuristic if there are no roundable variables; except we are called during pricing, in this case we
    * want to detect a (mixed) integer (LP) solution which is primal feasible */
   if( heurdata->nroundablevars == 0 && heurtiming != SCIP_HEURTIMING_DURINGPRICINGLOOP )
      return SCIP_OKAY;

   /* don't call heuristic, if we have already processed the current LP solution */
   nlps = SCIPgetNLPs(scip);
   if( nlps == heurdata->lastlp )
      return SCIP_OKAY;
   heurdata->lastlp = nlps;

   /* get fractional variables, that should be integral */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL) );

   /* only call heuristic, if LP solution is fractional; except we are called during pricing, in this case we
    * want to detect a (mixed) integer (LP) solution which is primal feasible */
   if( nlpcands == 0  && heurtiming != SCIP_HEURTIMING_DURINGPRICINGLOOP )
      return SCIP_OKAY;

   /* don't call heuristic, if there are more fractional variables than roundable ones */
   if( nlpcands > heurdata->nroundablevars )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   SCIPdebugMessage("executing simple rounding heuristic: %d fractionals\n", nlpcands);

   /* get the working solution from heuristic's local data */
   sol = heurdata->sol;
   assert(sol != NULL);

   /* copy the current LP solution to the working solution */
   SCIP_CALL( SCIPlinkLPSol(scip, sol) );

   /* round all roundable fractional columns in the corresponding direction as long as no unroundable column was found */
   for( c = 0; c < nlpcands; ++c )
   {
      SCIP_VAR* var;
      SCIP_Real oldsolval;
      SCIP_Real newsolval;
      SCIP_Bool mayrounddown;
      SCIP_Bool mayroundup;

      oldsolval = lpcandssol[c];
      assert(!SCIPisFeasIntegral(scip, oldsolval));
      var = lpcands[c];
      assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
      mayrounddown = SCIPvarMayRoundDown(var);
      mayroundup = SCIPvarMayRoundUp(var);
      SCIPdebugMessage("simple rounding heuristic: var <%s>, val=%g, rounddown=%u, roundup=%u\n",
         SCIPvarGetName(var), oldsolval, mayrounddown, mayroundup);

      /* choose rounding direction */
      if( mayrounddown && mayroundup )
      {
         /* we can round in both directions: round in objective function direction */
         if( SCIPvarGetObj(var) >= 0.0 )
            newsolval = SCIPfeasFloor(scip, oldsolval);
         else
            newsolval = SCIPfeasCeil(scip, oldsolval);
      }
      else if( mayrounddown )
         newsolval = SCIPfeasFloor(scip, oldsolval);
      else if( mayroundup )
         newsolval = SCIPfeasCeil(scip, oldsolval);
      else
         break;

      /* store new solution value */
      SCIP_CALL( SCIPsetSolVal(scip, sol, var, newsolval) );
   }

   /* check, if rounding was successful */
   if( c == nlpcands )
   {
      SCIP_Bool stored;

      /* check solution for feasibility, and add it to solution store if possible
       * neither integrality nor feasibility of LP rows has to be checked, because all fractional
       * variables were already moved in feasible direction to the next integer
       */
      SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, FALSE, &stored) );

      if( stored )
      {
#ifdef SCIP_DEBUG
         SCIPdebugMessage("found feasible rounded solution:\n");
         SCIPprintSol(scip, sol, NULL, FALSE);
#endif
         *result = SCIP_FOUNDSOL;
      }
   }

   return SCIP_OKAY;
}
Exemplo n.º 23
0
/** creates the objective value inequality and the objective value variable, if not yet existing */
static
SCIP_RETCODE createObjRow(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_SEPA*            sepa,               /**< separator */
   SCIP_SEPADATA*        sepadata            /**< separator data */
   )
{
   assert(sepadata != NULL);

   if( sepadata->objrow == NULL )
   {
      SCIP_VAR** vars;
      SCIP_Real obj;
      SCIP_Real intobjval;
      int nvars;
      int v;
      SCIP_Bool attendobjvarbound;

      attendobjvarbound = FALSE;
      /* create and add objective value variable */
      if( sepadata->objvar == NULL )
      {
         SCIP_CALL( SCIPcreateVar(scip, &sepadata->objvar, "objvar", -SCIPinfinity(scip), SCIPinfinity(scip), 0.0,
               SCIP_VARTYPE_IMPLINT, FALSE, TRUE, NULL, NULL, NULL, NULL, NULL) );
         SCIP_CALL( SCIPaddVar(scip, sepadata->objvar) );
         SCIP_CALL( SCIPaddVarLocks(scip, sepadata->objvar, +1, +1) );
      }
      else
         attendobjvarbound = TRUE;

      /* get problem variables */
      vars = SCIPgetOrigVars(scip);
      nvars = SCIPgetNOrigVars(scip);

      /* create objective value inequality */
      if( SCIPgetObjsense(scip) == SCIP_OBJSENSE_MINIMIZE )
      {
         if( attendobjvarbound )
            intobjval = SCIPceil(scip, SCIPgetDualbound(scip)) - SCIPvarGetLbGlobal(sepadata->objvar);
         else
            intobjval = SCIPceil(scip, SCIPgetDualbound(scip));
         SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &sepadata->objrow, sepa, "objrow", intobjval, SCIPinfinity(scip),
               FALSE, !SCIPallVarsInProb(scip), TRUE) );
         sepadata->setoff = intobjval;
      }
      else
      {
         if( attendobjvarbound )
            intobjval = SCIPceil(scip, SCIPgetDualbound(scip)) - SCIPvarGetUbGlobal(sepadata->objvar);
         else
            intobjval = SCIPfloor(scip, SCIPgetDualbound(scip));
         SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &sepadata->objrow, sepa, "objrow", -SCIPinfinity(scip), intobjval,
               FALSE, !SCIPallVarsInProb(scip), TRUE) );
         sepadata->setoff = intobjval;
      }

      SCIP_CALL( SCIPcacheRowExtensions(scip, sepadata->objrow) );
      for( v = 0; v < nvars; ++v )
      {
         obj = SCIPvarGetObj(vars[v]);
         if( !SCIPisZero(scip, obj) )
         {
            SCIP_CALL( SCIPaddVarToRow(scip, sepadata->objrow, vars[v], obj) );
         }
      }
      SCIP_CALL( SCIPaddVarToRow(scip, sepadata->objrow, sepadata->objvar, -1.0) );
      SCIP_CALL( SCIPflushRowExtensions(scip, sepadata->objrow) );

      SCIPdebugMessage("created objective value row: ");
      SCIPdebug( SCIP_CALL( SCIPprintRow(scip, sepadata->objrow, NULL) ) );
   }

   return SCIP_OKAY;
}
Exemplo n.º 24
0
/** reads solution from given file into given arrays */
static
SCIP_RETCODE readSolfile(
   SCIP_SET*             set,                /**< global SCIP settings */
   const char*           solfilename,        /**< solution filename to read */
   char***               names,              /**< pointer to store the array of variable names */
   SCIP_Real**           vals,               /**< pointer to store the array of solution values */
   int*                  nvals,              /**< pointer to store the number of non-zero elements */
   int*                  valssize            /**< pointer to store the length of the variable names and solution values arrays */
   )
{
   FILE* file;
   int nonvalues;
   int i;

   assert(set != NULL);
   assert(solfilename != NULL);
   assert(names != NULL);
   assert(*names == NULL);
   assert(vals != NULL);
   assert(*vals == NULL);
   assert(nvals != NULL);
   assert(valssize != NULL);

   printf("***** debug: reading solution file <%s>\n", solfilename);

   /* open solution file */
   file = fopen(solfilename, "r");
   if( file == NULL )
   {
      SCIPerrorMessage("cannot open solution file <%s> specified in scip/debug.h\n", solfilename);
      SCIPprintSysError(solfilename);
      return SCIP_NOFILE;
   }

   /* read data */
   nonvalues = 0;
   *valssize = 0;

   while( !feof(file) )
   {
      char buf[SCIP_MAXSTRLEN];
      char name[SCIP_MAXSTRLEN];
      char objstring[SCIP_MAXSTRLEN];
      SCIP_Real val;
      int nread;

      if( fgets(buf, SCIP_MAXSTRLEN, file) == NULL )
      {
         if( feof(file) )
            break;
         else
            return SCIP_READERROR;
      }

      /* the lines "solution status: ..." and "objective value: ..." may preceed the solution information */
      if( strncmp(buf, "solution", 8) == 0 || strncmp(buf, "objective", 9) == 0 )
      {
         nonvalues++;
         continue;
      }

      /* skip empty lines */
      if( strlen(buf) == 1 )
      {
         nonvalues++;
         continue;
      }


      nread = sscanf(buf, "%s %lf %s\n", name, &val, objstring);
      if( nread < 2 )
      {
         printf("invalid input line %d in solution file <%s>: <%s>\n", *nvals + nonvalues, SCIP_DEBUG_SOLUTION, name);
         fclose(file);
         return SCIP_READERROR;
      }

      /* allocate memory */
      if( *nvals >= *valssize )
      {
         *valssize = MAX(2 * *valssize, (*nvals)+1);
         SCIP_ALLOC( BMSreallocMemoryArray(names, *valssize) );
         SCIP_ALLOC( BMSreallocMemoryArray(vals, *valssize) );
      }
      assert(*nvals < *valssize);

      /* store solution value in sorted list */
      for( i = *nvals; i > 0 && strcmp(name, (*names)[i-1]) < 0; --i )
      {
         (*names)[i] = (*names)[i-1];
         (*vals)[i] = (*vals)[i-1];
      }
      SCIP_ALLOC( BMSduplicateMemoryArray(&(*names)[i], name, strlen(name)+1) );
      SCIPdebugMessage("found variable <%s>: value <%g>\n", (*names)[i], val);
      (*vals)[i] = val;
      (*nvals)++;
   }

   debugsolval = 0.0;

   /* get solution value */
   for( i = *nvals - 1; i >= 0; --i)
   {
      SCIP_VAR* var;
      var = SCIPfindVar(set->scip, (*names)[i]);
      if( var != NULL )
         debugsolval += (*vals)[i] * SCIPvarGetObj(var);
   }
   SCIPdebugMessage("Debug Solution value is %g.\n", debugsolval);

   /* close file */
   fclose(file);

   /* remember the set pointer to identify sub-MIP calls */
   mainscipset = set;

   printf("***** debug: read %d non-zero entries\n", *nvals);

   return SCIP_OKAY;
}
Exemplo n.º 25
0
/** calculate score and preferred rounding direction for the candidate variable; the best candidate maximizes the
 *  score
 */
static
SCIP_DECL_DIVESETGETSCORE(divesetGetScoreFracdiving)
{
   SCIP_Real obj;
   SCIP_Real objnorm;
   SCIP_Real objgain;
   SCIP_Bool mayrounddown;
   SCIP_Bool mayroundup;

   /* score fractionality if candidate is an SOS1 variable */
   if ( divetype == SCIP_DIVETYPE_SOS1VARIABLE )
   {
      *score = candsfrac;

      /* 'round' in nonzero direction, i.e., fix the candidates neighbors in the conflict graph to zero */
      *roundup = SCIPisFeasPositive(scip, candsol);

      return SCIP_OKAY;
   }

   mayrounddown = SCIPvarMayRoundDown(cand);
   mayroundup = SCIPvarMayRoundUp(cand);

   /* choose rounding direction:
    * - if variable may be rounded in either both or neither direction, round corresponding to the fractionality
    * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding
    *   the current fractional solution
    */
   if( mayrounddown != mayroundup )
      *roundup = mayrounddown;
   else
      *roundup = (candsfrac > 0.5);

   obj = SCIPvarGetObj(cand);
   objnorm = SCIPgetObjNorm(scip);

   /* divide by objective norm to normalize obj into [-1,1] */
   if( SCIPisPositive(scip, objnorm) )
      obj /= objnorm;

   /* calculate objective gain and fractionality for the selected rounding direction */
   if( *roundup )
   {
      candsfrac = 1.0 - candsfrac;
      objgain = obj * candsfrac;
   }
   else
      objgain = -obj * candsfrac;

   assert(objgain >= -1.0 && objgain <= 1.0);

      /* penalize too small fractions */
      if( candsfrac < 0.01 )
         candsfrac += 10.0;

      /* prefer decisions on binary variables */
      if( !SCIPvarIsBinary(cand) )
         candsfrac *= 1000.0;

      /* prefer variables which cannot be rounded by scoring their fractionality */
      if( !(mayrounddown || mayroundup) )
         *score = -candsfrac;
      else
         *score =  -2.0 - objgain;

      return SCIP_OKAY;
}
Exemplo n.º 26
0
/** compares the so far best branching candidate with a new candidate and updates best candidate, if new candidate is better */
static
void updateBestCandidate(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_VAR**            bestvar,            /**< best branching candidate */
   SCIP_Real*            bestscore,          /**< score of best branching candidate */
   SCIP_Real*            bestobj,            /**< absolute objective value of best branching candidate */
   SCIP_Real*            bestsol,            /**< proposed branching point of best branching candidate */
   SCIP_VAR*             cand,               /**< branching candidate to consider */
   SCIP_Real             candscore,          /**< scoring of branching candidate */
   SCIP_Real             candsol             /**< proposed branching point of branching candidate */
   )
{
   SCIP_Real obj;

   assert(scip != NULL);
   assert(bestvar != NULL);
   assert(bestscore != NULL);
   assert(bestobj != NULL);
   assert(*bestobj >= 0.0);
   assert(cand != NULL);

   /* a branching variable candidate should either be an active problem variable or a multi-aggregated variable */
   assert(SCIPvarIsActive(SCIPvarGetProbvar(cand)) ||
      SCIPvarGetStatus(SCIPvarGetProbvar(cand)) == SCIP_VARSTATUS_MULTAGGR);

   if( SCIPvarGetStatus(SCIPvarGetProbvar(cand)) == SCIP_VARSTATUS_MULTAGGR )
   {
      /* for a multi-aggregated variable, we call updateBestCandidate function recursively with all variables in the multi-aggregation */
      SCIP_VAR** multvars;
      int nmultvars;
      int i;
      SCIP_Bool success;
      SCIP_Real multvarlb;
      SCIP_Real multvarub;

      cand = SCIPvarGetProbvar(cand);
      multvars = SCIPvarGetMultaggrVars(cand);
      nmultvars = SCIPvarGetMultaggrNVars(cand);

      /* if we have a candidate branching point, then first register only aggregation variables
       * for which we can compute a corresponding branching point too (see also comments below)
       * if this fails, then register all (unfixed) aggregation variables, thereby forgetting about candsol
       */
      success = FALSE;
      if( candsol != SCIP_INVALID ) /*lint !e777*/
      {
         SCIP_Real* multscalars;
         SCIP_Real minact;
         SCIP_Real maxact;
         SCIP_Real aggrvarsol;
         SCIP_Real aggrvarsol1;
         SCIP_Real aggrvarsol2;

         multscalars = SCIPvarGetMultaggrScalars(cand);

         /* for computing the branching point, we need the current bounds of the multi-aggregated variable */
         minact = SCIPcomputeVarLbLocal(scip, cand);
         maxact = SCIPcomputeVarUbLocal(scip, cand);

         for( i = 0; i < nmultvars; ++i )
         {
            /* skip fixed variables */
            multvarlb = SCIPcomputeVarLbLocal(scip, multvars[i]);
            multvarub = SCIPcomputeVarUbLocal(scip, multvars[i]);
            if( SCIPisEQ(scip, multvarlb, multvarub) )
               continue;

            assert(multscalars != NULL);
            assert(multscalars[i] != 0.0);

            /* we cannot ensure that both the upper bound in the left node and the lower bound in the right node
             * will be candsol by a clever choice for the branching point of multvars[i],
             * but we can try to ensure that at least one of them will be at candsol
             */
            if( multscalars[i] > 0.0 )
            {
               /*    cand >= candsol
                * if multvars[i] >= (candsol - (maxact - multscalars[i] * ub(multvars[i]))) / multscalars[i]
                *                 = (candsol - maxact) / multscalars[i] + ub(multvars[i])
                */
               aggrvarsol1 = (candsol - maxact) / multscalars[i] + multvarub;

               /*     cand <= candsol
                * if multvars[i] <= (candsol - (minact - multscalar[i] * lb(multvars[i]))) / multscalars[i]
                *                 = (candsol - minact) / multscalars[i] + lb(multvars[i])
                */
               aggrvarsol2 = (candsol - minact) / multscalars[i] + multvarlb;
            }
            else
            {
               /*    cand >= candsol
                * if multvars[i] <= (candsol - (maxact - multscalars[i] * lb(multvars[i]))) / multscalars[i]
                *                 = (candsol - maxact) / multscalars[i] + lb(multvars[i])
                */
               aggrvarsol2 = (candsol - maxact) / multscalars[i] + multvarlb;

               /*    cand <= candsol
                * if multvars[i] >= (candsol - (minact - multscalar[i] * ub(multvars[i]))) / multscalars[i]
                *                 = (candsol - minact) / multscalars[i] + ub(multvars[i])
                */
               aggrvarsol1 = (candsol - minact) / multscalars[i] + multvarub;
            }

            /* by the above choice, aggrvarsol1 <= ub(multvars[i]) and aggrvarsol2 >= lb(multvars[i])
             * if aggrvarsol1 <= lb(multvars[i]) or aggrvarsol2 >= ub(multvars[i]), then choose the other one
             * if both are out of bounds, then give up
             * if both are inside bounds, then choose the one closer to 0.0 (someone has better idea???)
             */
            if( SCIPisFeasLE(scip, aggrvarsol1, multvarlb) )
            {
               if( SCIPisFeasGE(scip, aggrvarsol2, multvarub) )
                  continue;
               else
                  aggrvarsol = aggrvarsol2;
            }
            else
            {
               if( SCIPisFeasGE(scip, aggrvarsol2, multvarub) )
                  aggrvarsol = aggrvarsol1;
               else
                  aggrvarsol = REALABS(aggrvarsol1) < REALABS(aggrvarsol2) ? aggrvarsol1 : aggrvarsol2;
            }
            success = TRUE;

            updateBestCandidate(scip, bestvar, bestscore, bestobj, bestsol,
                  multvars[i], candscore, aggrvarsol);
         }
      }

      if( !success )
         for( i = 0; i < nmultvars; ++i )
         {
            /* skip fixed variables */
            multvarlb = SCIPcomputeVarLbLocal(scip, multvars[i]);
            multvarub = SCIPcomputeVarUbLocal(scip, multvars[i]);
            if( SCIPisEQ(scip, multvarlb, multvarub) )
               continue;

            updateBestCandidate(scip, bestvar, bestscore, bestobj, bestsol,
               multvars[i], candscore, SCIP_INVALID);
         }

      assert(*bestvar != NULL); /* if all variables were fixed, something is strange */

      return;
   }

   candscore *= SCIPvarGetBranchFactor(cand);
   obj = SCIPvarGetObj(cand);
   obj = REALABS(obj);
   if( SCIPisInfinity(scip, *bestscore)
      || (!SCIPisInfinity(scip, candscore) && 
          (SCIPisLT(scip, candscore, *bestscore) || (SCIPisLE(scip, candscore, *bestscore) && obj > *bestobj))) )
   {
      *bestvar = cand;
      *bestscore = candscore;
      *bestobj = obj;
      *bestsol = candsol;
   }
}
Exemplo n.º 27
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecGuideddiving) /*lint --e{715}*/
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_LPSOLSTAT lpsolstat;
   SCIP_SOL* bestsol;
   SCIP_VAR* var;
   SCIP_VAR** lpcands;
   SCIP_Real* lpcandssol;
   SCIP_Real* lpcandsfrac;
   SCIP_Real searchubbound;
   SCIP_Real searchavgbound;
   SCIP_Real searchbound;
   SCIP_Real objval;
   SCIP_Real oldobjval;
   SCIP_Real obj;
   SCIP_Real objgain;
   SCIP_Real bestobjgain;
   SCIP_Real frac;
   SCIP_Real bestfrac;
   SCIP_Real solval;
   SCIP_Real bestsolval;
   SCIP_Bool bestcandmayrounddown;
   SCIP_Bool bestcandmayroundup;
   SCIP_Bool bestcandroundup;
   SCIP_Bool mayrounddown;
   SCIP_Bool mayroundup;
   SCIP_Bool roundup;
   SCIP_Bool lperror;
   SCIP_Bool cutoff;
   SCIP_Bool backtracked;
   SCIP_Longint ncalls;
   SCIP_Longint nsolsfound;
   SCIP_Longint nlpiterations;
   SCIP_Longint maxnlpiterations;
   int nlpcands;
   int startnlpcands;
   int depth;
   int maxdepth;
   int maxdivedepth;
   int divedepth;
   int bestcand;
   int c;

   assert(heur != NULL);
   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DELAYED;

   /* do not call heuristic of node was already detected to be infeasible */
   if( nodeinfeasible )
      return SCIP_OKAY;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
   if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
      return SCIP_OKAY;

   /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* don't dive two times at the same node */
   if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

  /* don't dive, if no feasible solutions exist */
   if( SCIPgetNSols(scip) == 0 )
      return SCIP_OKAY;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */
   depth = SCIPgetDepth(scip);
   maxdepth = SCIPgetMaxDepth(scip);
   maxdepth = MAX(maxdepth, 30);
   if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth )
      return SCIP_OKAY;

   /* calculate the maximal number of LP iterations until heuristic is aborted */
   nlpiterations = SCIPgetNNodeLPIterations(scip);
   ncalls = SCIPheurGetNCalls(heur);
   nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess;
   maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations);
   maxnlpiterations += heurdata->maxlpiterofs;

   /* don't try to dive, if we took too many LP iterations during diving */
   if( heurdata->nlpiterations >= maxnlpiterations )
      return SCIP_OKAY;

   /* allow at least a certain number of LP iterations in this dive */
   maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER);

   /* get fractional variables that should be integral */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) );

   /* don't try to dive, if there are no fractional variables */
   if( nlpcands == 0 )
      return SCIP_OKAY;

   /* calculate the objective search bound */
   if( heurdata->maxdiveubquot > 0.0 )
      searchubbound = SCIPgetLowerbound(scip)
         + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
   else
      searchubbound = SCIPinfinity(scip);
   if( heurdata->maxdiveavgquot > 0.0 )
      searchavgbound = SCIPgetLowerbound(scip)
         + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
   else
      searchavgbound = SCIPinfinity(scip);
   searchbound = MIN(searchubbound, searchavgbound);
   if( SCIPisObjIntegral(scip) )
      searchbound = SCIPceil(scip, searchbound);

   /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */
   maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
   maxdivedepth = MIN(maxdivedepth, maxdepth);
   maxdivedepth *= 10;

   /* get best solution that should guide the search; if this solution lives in the original variable space,
    * we cannot use it since it might violate the global bounds of the current problem
    */
   if( SCIPsolIsOriginal(SCIPgetBestSol(scip)) )
      return SCIP_OKAY;

   /* store a copy of the best solution */
   SCIP_CALL( SCIPcreateSolCopy(scip, &bestsol, SCIPgetBestSol(scip)) );

   *result = SCIP_DIDNOTFIND;

   /* start diving */
   SCIP_CALL( SCIPstartProbing(scip) );

   /* enables collection of variable statistics during probing */
   SCIPenableVarHistory(scip);

   /* get LP objective value */
   lpsolstat = SCIP_LPSOLSTAT_OPTIMAL;
   objval = SCIPgetLPObjval(scip);

   SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing guideddiving heuristic: depth=%d, %d fractionals, dualbound=%g, searchbound=%g\n",
      SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), SCIPretransformObj(scip, searchbound));

   /* dive as long we are in the given objective, depth and iteration limits and fractional variables exist, but
    * - if possible, we dive at least with the depth 10
    * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving
    */
   lperror = FALSE;
   cutoff = FALSE;
   divedepth = 0;
   bestcandmayrounddown = FALSE;
   bestcandmayroundup = FALSE;
   startnlpcands = nlpcands;
   while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0
      && (divedepth < 10
         || nlpcands <= startnlpcands - divedepth/2
         || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound))
      && !SCIPisStopped(scip) )
   {
      SCIP_CALL( SCIPnewProbingNode(scip) );
      divedepth++;

      /* choose variable fixing:
       * - prefer variables that may not be rounded without destroying LP feasibility:
       *   - of these variables, round a variable to its value in direction of incumbent solution, and choose the
       *     variable that is closest to its rounded value
       * - if all remaining fractional variables may be rounded without destroying LP feasibility:
       *   - round variable in direction that destroys LP feasibility (other direction is checked by SCIProundSol())
       *   - round variable with least increasing objective value
       */
      bestcand = -1;
      bestobjgain = SCIPinfinity(scip);
      bestfrac = SCIP_INVALID;
      bestcandmayrounddown = TRUE;
      bestcandmayroundup = TRUE;
      bestcandroundup = FALSE;
      for( c = 0; c < nlpcands; ++c )
      {
         var = lpcands[c];
         mayrounddown = SCIPvarMayRoundDown(var);
         mayroundup = SCIPvarMayRoundUp(var);
         solval = lpcandssol[c];
         frac = lpcandsfrac[c];
         obj = SCIPvarGetObj(var);
         bestsolval = SCIPgetSolVal(scip, bestsol, var);

         /* select default rounding direction */
         roundup = (solval < bestsolval);

         if( mayrounddown || mayroundup )
         {
            /* the candidate may be rounded: choose this candidate only, if the best candidate may also be rounded */
            if( bestcandmayrounddown || bestcandmayroundup )
            {
               /* choose rounding direction:
                * - if variable may be rounded in both directions, round corresponding to its value in incumbent solution
                * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding
                *   the current fractional solution with SCIProundSol()
                */
               if( !mayrounddown || !mayroundup )
                  roundup = mayrounddown;

               if( roundup )
               {
                  frac = 1.0 - frac;
                  objgain = frac*obj;
               }
               else
                  objgain = -frac*obj;

               /* penalize too small fractions */
               if( frac < 0.01 )
                  objgain *= 1000.0;

               /* prefer decisions on binary variables */
               if( !SCIPvarIsBinary(var) )
                  objgain *= 1000.0;

               /* check, if candidate is new best candidate */
               if( SCIPisLT(scip, objgain, bestobjgain) || (SCIPisEQ(scip, objgain, bestobjgain) && frac < bestfrac) )
               {
                  bestcand = c;
                  bestobjgain = objgain;
                  bestfrac = frac;
                  bestcandmayrounddown = mayrounddown;
                  bestcandmayroundup = mayroundup;
                  bestcandroundup = roundup;
               }
            }
         }
         else
         {
            /* the candidate may not be rounded */
            if( roundup )
               frac = 1.0 - frac;

            /* penalize too small fractions */
            if( frac < 0.01 )
               frac += 10.0;

            /* prefer decisions on binary variables */
            if( !SCIPvarIsBinary(var) )
               frac *= 1000.0;

            /* check, if candidate is new best candidate: prefer unroundable candidates in any case */
            if( bestcandmayrounddown || bestcandmayroundup || frac < bestfrac )
            {
               bestcand = c;
               bestfrac = frac;
               bestcandmayrounddown = FALSE;
               bestcandmayroundup = FALSE;
               bestcandroundup = roundup;
            }
         }
      }
      assert(bestcand != -1);

      /* if all candidates are roundable, try to round the solution */
      if( bestcandmayrounddown || bestcandmayroundup )
      {
         SCIP_Bool success;

         /* create solution from diving LP and try to round it */
         SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
         SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) );

         if( success )
         {
            SCIPdebugMessage("guideddiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

            /* try to add solution to SCIP */
            SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

            /* check, if solution was feasible and good enough */
            if( success )
            {
               SCIPdebugMessage(" -> solution was feasible and good enough\n");
               *result = SCIP_FOUNDSOL;
            }
         }
      }

      var = lpcands[bestcand];

      backtracked = FALSE;
      do
      {
         /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have
          * occured or variable was fixed by propagation while backtracking => Abort diving!
          */
         if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 )
         {
            SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g] (solval: %.9f), diving aborted \n",
               SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]);
            cutoff = TRUE;
            break;
         }
         if( SCIPisFeasLT(scip, lpcandssol[bestcand], SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, lpcandssol[bestcand], SCIPvarGetUbLocal(var)) )
         {
            SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n",
               SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]);
            assert(backtracked);
            break;
         }

         /* apply rounding of best candidate */
         if( bestcandroundup == !backtracked )
         {
            /* round variable up */
            SCIPdebugMessage("  dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, bestsol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n",
               divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
               SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup,
               lpcandssol[bestcand], SCIPgetSolVal(scip, bestsol, var),
               SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var),
               SCIPfeasCeil(scip, lpcandssol[bestcand]), SCIPvarGetUbLocal(var));
            SCIP_CALL( SCIPchgVarLbProbing(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) );
         }
         else
         {
            /* round variable down */
            SCIPdebugMessage("  dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, bestsol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n",
               divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
               SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup,
               lpcandssol[bestcand], SCIPgetSolVal(scip, bestsol, var),
               SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var),
               SCIPvarGetLbLocal(var), SCIPfeasFloor(scip, lpcandssol[bestcand]));
            SCIP_CALL( SCIPchgVarUbProbing(scip, var, SCIPfeasFloor(scip, lpcandssol[bestcand])) );
         }

         /* apply domain propagation */
         SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, NULL) );
         if( !cutoff )
         {
           /* resolve the diving LP */
            /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
             * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
             */
#ifdef NDEBUG
            SCIP_RETCODE retstat;
            nlpiterations = SCIPgetNLPIterations(scip);
            retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff);
            if( retstat != SCIP_OKAY )
            {
               SCIPwarningMessage(scip, "Error while solving LP in Guideddiving heuristic; LP solve terminated with code <%d>\n",retstat);
            }
#else
            nlpiterations = SCIPgetNLPIterations(scip);
            SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) );
#endif

            if( lperror )
               break;

            /* update iteration count */
            heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations;

            /* get LP solution status, objective value, and fractional variables, that should be integral */
            lpsolstat = SCIPgetLPSolstat(scip);
            assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE &&
                  (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)))));
         }

         /* perform backtracking if a cutoff was detected */
         if( cutoff && !backtracked && heurdata->backtrack )
         {
            SCIPdebugMessage("  *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip));
            SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) );
            SCIP_CALL( SCIPnewProbingNode(scip) );
            backtracked = TRUE;
         }
         else
            backtracked = FALSE;
      }
      while( backtracked );

      if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
      {
         /* get new objective value */
         oldobjval = objval;
         objval = SCIPgetLPObjval(scip);

         /* update pseudo cost values */
         if( SCIPisGT(scip, objval, oldobjval) )
         {
            if( bestcandroundup )
            {
               SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 1.0-lpcandsfrac[bestcand],
                     objval - oldobjval, 1.0) );
            }
            else
            {
               SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 0.0-lpcandsfrac[bestcand],
                     objval - oldobjval, 1.0) );
            }
         }

         /* get new fractional variables */
         SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) );
      }
      SCIPdebugMessage("   -> lpsolstat=%d, objval=%g, nfrac=%d\n", lpsolstat, objval, nlpcands);
   }

   /* check if a solution has been found */
   if( nlpcands == 0 && !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
   {
      SCIP_Bool success;

      /* create solution from diving LP */
      SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
      SCIPdebugMessage("guideddiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

      /* try to add solution to SCIP */
      SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

      /* check, if solution was feasible and good enough */
      if( success )
      {
         SCIPdebugMessage(" -> solution was feasible and good enough\n");
         *result = SCIP_FOUNDSOL;
      }
   }

   /* end diving */
   SCIP_CALL( SCIPendProbing(scip) );

   /* free copied best solution */
   SCIP_CALL( SCIPfreeSol(scip, &bestsol) );

   if( *result == SCIP_FOUNDSOL )
      heurdata->nsuccess++;

   SCIPdebugMessage("guideddiving heuristic finished\n");

   return SCIP_OKAY;
}
/** returns a fractional variable, that has most impact on rows in opposite direction, i.e. that is most crucial to
 *  fix in the other direction;
 *  if variables have equal impact, chooses the one with best objective value improvement in corresponding direction;
 *  rounding in a direction is forbidden, if this forces the objective value over the upper bound
 */
static
SCIP_RETCODE selectEssentialRounding(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_SOL*             sol,                /**< primal solution */
   SCIP_Real             minobj,             /**< minimal objective value possible after rounding remaining fractional vars */
   SCIP_VAR**            lpcands,            /**< fractional variables in LP */
   int                   nlpcands,           /**< number of fractional variables in LP */
   SCIP_VAR**            roundvar,           /**< pointer to store the rounding variable, returns NULL if impossible */
   SCIP_Real*            oldsolval,          /**< old (fractional) solution value of rounding variable */
   SCIP_Real*            newsolval           /**< new (rounded) solution value of rounding variable */
   )
{
   SCIP_VAR* var;
   SCIP_Real solval;
   SCIP_Real roundval;
   SCIP_Real obj;
   SCIP_Real deltaobj;
   SCIP_Real bestdeltaobj;
   int maxnlocks;
   int nlocks;
   int v;

   assert(roundvar != NULL);
   assert(oldsolval != NULL);
   assert(newsolval != NULL);

   /* select rounding variable */
   maxnlocks = -1;
   bestdeltaobj = SCIPinfinity(scip);
   *roundvar = NULL;
   for( v = 0; v < nlpcands; ++v )
   {
      var = lpcands[v];
      assert(SCIPvarGetType(var) == SCIP_VARTYPE_BINARY || SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER);

      solval = SCIPgetSolVal(scip, sol, var);
      if( !SCIPisFeasIntegral(scip, solval) )
      {
         obj = SCIPvarGetObj(var);

         /* rounding down */
         nlocks = SCIPvarGetNLocksUp(var);
         if( nlocks >= maxnlocks )
         {
            roundval = SCIPfeasFloor(scip, solval);
            deltaobj = obj * (roundval - solval);
            if( (nlocks > maxnlocks || deltaobj < bestdeltaobj) && minobj - obj < SCIPgetCutoffbound(scip) )
            {
               maxnlocks = nlocks;
               bestdeltaobj = deltaobj;
               *roundvar = var;
               *oldsolval = solval;
               *newsolval = roundval;
            }
         }

         /* rounding up */
         nlocks = SCIPvarGetNLocksDown(var);
         if( nlocks >= maxnlocks )
         {
            roundval = SCIPfeasCeil(scip, solval);
            deltaobj = obj * (roundval - solval);
            if( (nlocks > maxnlocks || deltaobj < bestdeltaobj) && minobj + obj < SCIPgetCutoffbound(scip) )
            {
               maxnlocks = nlocks;
               bestdeltaobj = deltaobj;
               *roundvar = var;
               *oldsolval = solval;
               *newsolval = roundval;
            }
         }
      }
   }

   return SCIP_OKAY;
}