Exemplo n.º 1
0
/*
 * Straightforward Sieve of Eratosthenes, but skipping 3.
 *
 * Uses 1 bit per odd number.
 *
 * Time for Pi(10^10) = 48.5s
 */
static WTYPE* sieve_base23(WTYPE end)
{
  WTYPE* mem;
  size_t n, s;
  size_t last = (end+1)/2;

  mem = (WTYPE*) calloc( NWORDS(last), sizeof(WTYPE) );
  assert(mem != 0);

  SET_ARRAY_BIT(mem, 1/2);  /* 1 is composite */
  /* Mark all multiples of 3.  Could skip if callers know this. */
  for (n = 3*3; n <= end; n += 2*3) SET_ARRAY_BIT(mem,n/2);

  n = 5;
  while ( (n*n) <= end ) {
    if (!IS_SET_ARRAY_BIT(mem,n/2)) {
      for (s = n*n; s <= end; s += 2*n) {
        SET_ARRAY_BIT(mem,s/2);
      }
    }
    n += 2;
    if ( ((n*n) <= end) && (!IS_SET_ARRAY_BIT(mem,n/2)) ) {
      for (s = n*n; s <= end; s += 2*n) {
        SET_ARRAY_BIT(mem,s/2);
      }
    }
    n += 4;
  }
  return mem;
}
static tracer_cmdresp_t _event_op_set_all(tracer_event_state_t state)
{
   int ii;
   int saveBit;

   saveBit = GET_ARRAY_BIT(event_op_ctrl_t,
                           tracer_config.event_op_ctrl,
                           TRACER_EVENT_RESERVE_0);
   if (TRACER_EVENT_ON == state)
   {
      if ((TRACER_EVENT_ID_MAX - 1) !=
          tracer_config.event_in_use_count)
      {
         memset (tracer_config.event_op_ctrl, 0xFF,
                 TRACER_EVENT_ID_MAX >> 3);
         for (ii = (TRACER_EVENT_ID_MAX & (~(uint32)0x07));
              ii < TRACER_EVENT_ID_MAX; ii++)
         {
            SET_ARRAY_BIT(event_op_ctrl_t, tracer_config.event_op_ctrl,
                          ii);
         }
         if (0 == saveBit)
         {
            CLR_ARRAY_BIT(event_op_ctrl_t,
                          tracer_config.event_op_ctrl,
                          TRACER_EVENT_RESERVE_0);
         }
         tracer_config.event_in_use_count =
            TRACER_EVENT_ID_MAX - 1; // less RESERVE0 event
         return TRACER_CMDRESP_SUCCESS;
      }
   }
// Dependency: bTracerInitialized is TRUE.
static tracer_cmdresp_t _entity_op_set(tracer_ost_entity_id_enum_t eid,
                                       tracer_entity_state_t state)
{
   if (TRACER_ENTITY_SWEVT == eid)
   {
      return TRACER_CMDRESP_F_INVALID;
   }

   if (((0 == state) ? TRACER_ENTITY_OFF : TRACER_ENTITY_ON) !=
       GET_ARRAY_BIT(entity_op_ctrl_t, tracer_config.entity_op_ctrl, eid))
   {
      if (TRACER_ENTITY_ON == state)
      {
         SET_ARRAY_BIT(entity_op_ctrl_t, tracer_config.entity_op_ctrl, eid);
         tracer_config.entity_in_use_count++;
      }
      else
      {
         CLR_ARRAY_BIT(entity_op_ctrl_t, tracer_config.entity_op_ctrl, eid);
         tracer_config.entity_in_use_count--;
      }
      return TRACER_CMDRESP_SUCCESS;
   }
   return TRACER_CMDRESP_S_UNCHANGED;
}
// Dependency: bTracerInitialized is TRUE.
static tracer_cmdresp_t _entity_op_set_all(tracer_entity_state_t state)
{
   tracer_cmdresp_t ret_val;
   int ii;

   ret_val = TRACER_CMDRESP_S_UNCHANGED;
   for (ii = 0; ii < TRACER_NUM_USER_ENTITIES; ii++)
   {
      if (TRACER_ENTITY_SWEVT != tracer_entity_vals[ii])
      {
         if (((0 == state) ? TRACER_ENTITY_OFF : TRACER_ENTITY_ON) !=
             GET_ARRAY_BIT(entity_op_ctrl_t, tracer_config.entity_op_ctrl,
                           tracer_entity_vals[ii]))
         {
            if (TRACER_ENTITY_ON == state)
            {
               SET_ARRAY_BIT(entity_op_ctrl_t, tracer_config.entity_op_ctrl,
                             tracer_entity_vals[ii]);
               tracer_config.entity_in_use_count++;
            }
            else
            {
               CLR_ARRAY_BIT(entity_op_ctrl_t, tracer_config.entity_op_ctrl,
                             tracer_entity_vals[ii]);
               tracer_config.entity_in_use_count--;
            }
            ret_val = TRACER_CMDRESP_SUCCESS;
         }
      }
   }
   return ret_val;
}
Exemplo n.º 5
0
/*
 * Naive Wheel factoring based on algorithm Ek from Sorenson 1991
 *
 * Uses 1 bit per odd number.
 *
 * Note we're including initialization code that marks all 3,5 multiples.
 * If the caller didn't look at these, this could be skipped.
 *
 * Time for Pi(10^10) = 46.4s
 */
static WTYPE* sieve_eratek(WTYPE end)
{
  WTYPE* mem;
  size_t p, f, x;
  size_t last = (end+1)/2;
  static const WTYPE wheel[] = {1, 7, 11, 13, 17, 19, 23, 29};
  static const WTYPE W[] = {0,6,0,0,0,0,0,4,0,0,0,2,0,4,0,0,0,2,0,4,0,0,0,6,0,0,0,0,0,2,0};

  mem = (WTYPE*) calloc( NWORDS(last), sizeof(WTYPE) );
  assert(mem != 0);

  /* Mark all multiples of 3 and 5 as composite. */
  //for (p = 3*3; p <= end; p += 2*3) SET_ARRAY_BIT(mem,p/2);
  //for (p = 5*5; p <= end; p += 2*5) SET_ARRAY_BIT(mem,p/2);
  p = 9;
  while (p <= end) {
    SET_ARRAY_BIT(mem,p/2); p += 6; if (p > end) break;  // mark  9, p = 15
    SET_ARRAY_BIT(mem,p/2); p += 6; if (p > end) break;  // mark 15, p = 21
    SET_ARRAY_BIT(mem,p/2); p += 4; if (p > end) break;  // mark 21, p = 25
    SET_ARRAY_BIT(mem,p/2); p += 2; if (p > end) break;  // mark 25, p = 27
    SET_ARRAY_BIT(mem,p/2); p += 6; if (p > end) break;  // mark 27, p = 33
    SET_ARRAY_BIT(mem,p/2); p += 2; if (p > end) break;  // mark 33, p = 35
    SET_ARRAY_BIT(mem,p/2); p += 4;                      // mark 35, p = 39
  }

  p = 7;
  while ((p*p) <= end) {
    {
      size_t fidx = p%30;
      f = p;
      /* Here's the problem -- for each prime, we're walking the array from
       * start to finish 8 times.  The operation count is the same as the
       * faster wheel-30 sieves, but this is just horrible for the cache. */
      while (f < p+30) {
        for (x = p*f; x <= end; x += p*30)
          SET_ARRAY_BIT(mem,x/2);
        size_t move = W[fidx];
        f += move;  fidx += move;
        if (fidx > 30) fidx -= 30;
      }
    }
    //p = next_prime(p);
    do { p += 2; } while (IS_SET_ARRAY_BIT(mem,p/2));
  }

  SET_ARRAY_BIT(mem, 1/2);  /* 1 is composite */
  CLR_ARRAY_BIT(mem, 3/2);     /* 3 is prime */
  CLR_ARRAY_BIT(mem, 5/2);     /* 5 is prime */
  return mem;
}
Exemplo n.º 6
0
/*
 * Better Sieve of Atkin.
 *
 * Uses 1 bit per odd number.
 *
 * Just some simple optimizations to make it a little better.  Still not good.
 *
 * Time for Pi(10^10) = 97.2s
 */
static WTYPE* sieve_atkin_2(WTYPE end)
{
  WTYPE* mem;
  size_t x, y, n, sqlimit;
  size_t last = (end+1+1)/2;
  long loopend, y_limit, dn;

  end++;
  mem = (WTYPE*) malloc( NWORDS(last) * sizeof(WTYPE) );
  assert(mem != 0);
  /* mark everything as a composite */
  memset(mem, 0xFF, NBYTES(last));

  sqlimit = sqrtf(end);
  for (x = 1; x <= sqlimit; x++) {
    {
      size_t xx4 = 4*x*x;
      y = 1;
      for (n = xx4+1; n <= end; n = xx4+y*y) {
        size_t nmod12 = n%12;
        if ( (nmod12 == 1) || (nmod12 == 5) )
          XOR_ARRAY_BIT(mem,n/2);
        y++;
      }
    }
    {
      size_t xx3 = 3*x*x;
      y = 1;
      for (n = xx3+1; n <= end; n = xx3+y*y) {
        size_t nmod12 = n%12;
        if (nmod12 == 7)
          XOR_ARRAY_BIT(mem,n/2);
        y++;
      }

      y = x-1;
      while ( y*y >= xx3 )
        y--;
      for (n = xx3-y*y; y >= 1 && n <= end; n = xx3-y*y) {
        size_t nmod12 = n%12;
        if (nmod12 == 11)
          XOR_ARRAY_BIT(mem,n/2);
        y--;
      }
    }
  }

  /* Mark all squares of primes as composite */
  for (n = 5; n <= sqlimit; n += 2)
    if (!IS_SET_ARRAY_BIT(mem,n/2))
      for (y = n*n; y <= end; y += 2*n*n)
        SET_ARRAY_BIT(mem,y/2);

  CLR_ARRAY_BIT(mem, 3/2);     /* 3 is prime */

  return mem;
}
Exemplo n.º 7
0
/*
 * Straightforward Sieve of Eratosthenes.
 *
 * Uses 1 bit per odd number.
 *
 * Time for Pi(10^10) = 54.6s
 */
static WTYPE* sieve_erat(WTYPE end)
{
  WTYPE* mem;
  size_t n, s;
  size_t last = (end+1)/2;

  mem = (WTYPE*) calloc( NWORDS(last), sizeof(WTYPE) );
  assert(mem != 0);

  // Tight:
  //    for (n = 3; (n*n) <= end; n = next_prime(n))
  //      for (s = n*n; s <= end; s += 2*n)
  //        SET_ARRAY_BIT(mem,s/2);
  n = 3;
  while ( (n*n) <= end) {
    for (s = n*n; s <= end; s += 2*n)
      SET_ARRAY_BIT(mem,s/2);
    // Could do:   n = next_prime(n)
    do { n += 2; } while (IS_SET_ARRAY_BIT(mem,n/2));
  }

  SET_ARRAY_BIT(mem, 1/2);  /* 1 is composite */
  return mem;
}
Exemplo n.º 8
0
/*
 * Naive Sieve of Atkin.
 *
 * Uses 1 bit per odd number.
 *
 * This is really slow.  Just keeping it here as a reference.
 *
 * Time for Pi(10^10) = 123.5s
 */
static WTYPE* sieve_atkin_naive(WTYPE end)
{
  WTYPE* mem;
  size_t x, y, n, sqlimit;
  size_t last = (end+1+1)/2;
  long loopend, y_limit, dn;

  end++;
  mem = (WTYPE*) malloc( NWORDS(last) * sizeof(WTYPE) );
  assert(mem != 0);
  /* mark everything as a composite */
  memset(mem, 0xFF, NBYTES(last));

  sqlimit = sqrt(end);
  for (x = 1; x <= sqlimit; x++) {
    for (y = 1; y <= sqlimit; y++) {
      n = 4*x*x + y*y;
      if ( (n <= end) && (n % 12 == 1 || n % 12 == 5) )
        XOR_ARRAY_BIT(mem,n/2);

      n = 3*x*x + y*y;
      if ( (n <= end) && (n % 12 == 7) )
        XOR_ARRAY_BIT(mem,n/2);

      n = 3*x*x - y*y;
      if ( (n <= end) && (x > y) && (n % 12 == 11) )
        XOR_ARRAY_BIT(mem,n/2);
    }
  }

  /* Mark all squares of primes as composite */
  for (n = 5; n <= sqlimit; n += 2)
    if (!IS_SET_ARRAY_BIT(mem,n/2))
      for (y = n*n; y <= end; y += 2*n*n)
        SET_ARRAY_BIT(mem,y/2);

  CLR_ARRAY_BIT(mem, 3/2);     /* 3 is prime */

  return mem;
}