Exemplo n.º 1
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
int32_t MergeColonies::getSeed(int32_t newFid)
{
  setErrorCondition(0);

  int32_t numfeatures = static_cast<int32_t>(m_FeaturePhasesPtr.lock()->getNumberOfTuples());

  SIMPL_RANDOMNG_NEW()
  int32_t seed = -1;
  int32_t randfeature = 0;

  // Precalculate some constants
  int32_t totalFMinus1 = numfeatures - 1;

  size_t counter = 0;
  randfeature = int32_t(float(rg.genrand_res53()) * float(totalFMinus1));
  while (seed == -1 && counter < numfeatures)
  {
    if (randfeature > totalFMinus1) { randfeature = randfeature - numfeatures; }
    if (m_FeatureParentIds[randfeature] == -1) { seed = randfeature; }
    randfeature++;
    counter++;
  }
  if (seed >= 0)
  {
    m_FeatureParentIds[seed] = newFid;
    QVector<size_t> tDims(1, newFid + 1);
    getDataContainerArray()->getDataContainer(m_FeatureIdsArrayPath.getDataContainerName())->getAttributeMatrix(getNewCellFeatureAttributeMatrixName())->resizeAttributeArrays(tDims);
    updateFeatureInstancePointers();
  }
  return seed;
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void PrimaryRolledPreset::initializeCOverATableModel(StatsGenPlotWidget* plot, QVector<float> binNumbers)
{
  // Make sure the distribution is set correctly
  plot->setDistributionType(SIMPL::DistributionType::Beta, false);
  // This line basically makes sure we have the distribution type we are looking for
  SGBetaTableModel* model = qobject_cast<SGBetaTableModel*> (plot->tableModel());
  if (NULL == model)
  {
    return;
  }
  qint32 count = binNumbers.count();

  // Remove all the current rows in the table model
  model->removeRows(0, model->rowCount());

  float alpha, beta;
  SIMPL_RANDOMNG_NEW()

  QVector<float> alphas;
  QVector<float> betas;
  QVector<QColor> colors = GenerateColors(count, 160, 255);

  for (qint32 i = 0; i < count; ++i)
  {
    alpha = (0 * i) + (1.1 + (28.9 * (1.0 / m_AspectRatio2))) + (rg.genrand_res53());
    beta = (0 * i) + (30 - (28.9 * (1.0 / m_AspectRatio2))) + (rg.genrand_res53());
    alphas.push_back(alpha);
    betas.push_back(beta);
  }

  QVector<QVector<float> > data;
  data.push_back(alphas);
  data.push_back(betas);
  model->setTableData(binNumbers, data, colors);
}
Exemplo n.º 3
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
int32_t GroupMicroTextureRegions::getSeed(int32_t newFid)
{
  setErrorCondition(0);

  int32_t numfeatures = static_cast<int32_t>(m_FeaturePhasesPtr.lock()->getNumberOfTuples());

  float c1[3] = { 0.0f, 0.0f, 0.0f };
  uint32_t phase1 = 0;
  QuatF* avgQuats = reinterpret_cast<QuatF*>(m_AvgQuats);
  float caxis[3] = { 0.0f, 0.0f, 1.0f };
  QuatF q1 = QuaternionMathF::New();
  float g1[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };
  float g1t[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };

  SIMPL_RANDOMNG_NEW()
  int32_t seed = -1;
  int32_t randfeature = 0;

  // Precalculate some constants
  int32_t totalFMinus1 = numfeatures - 1;

  size_t counter = 0;
  randfeature = int32_t(float(rg.genrand_res53()) * float(totalFMinus1));
  while (seed == -1 && counter < numfeatures)
  {
    if (randfeature > totalFMinus1) { randfeature = randfeature - numfeatures; }
    if (m_FeatureParentIds[randfeature] == -1) { seed = randfeature; }
    randfeature++;
    counter++;
  }
  if (seed >= 0)
  {
    m_FeatureParentIds[seed] = newFid;
    QVector<size_t> tDims(1, newFid + 1);
    getDataContainerArray()->getDataContainer(m_FeatureIdsArrayPath.getDataContainerName())->getAttributeMatrix(getNewCellFeatureAttributeMatrixName())->resizeAttributeArrays(tDims);
    updateFeatureInstancePointers();

    if (m_UseRunningAverage == true)
    {
      QuaternionMathF::Copy(avgQuats[seed], q1);
      phase1 = m_CrystalStructures[m_FeaturePhases[seed]];
      FOrientArrayType om(9);
      FOrientTransformsType::qu2om(FOrientArrayType(q1), om);
      om.toGMatrix(g1);
      // transpose the g matrix so when caxis is multiplied by it
      // it will give the sample direction that the caxis is along
      MatrixMath::Transpose3x3(g1, g1t);
      MatrixMath::Multiply3x3with3x1(g1t, caxis, c1);
      // normalize so that the dot product can be taken below without
      // dividing by the magnitudes (they would be 1)
      MatrixMath::Normalize3x1(c1);
      MatrixMath::Copy3x1(c1, avgCaxes);
      MatrixMath::Multiply3x1withConstant(avgCaxes, m_Volumes[seed]);
    }
  }
  return seed;
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void RegularGridSampleSurfaceMesh::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  SIMPL_RANDOMNG_NEW()

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getDataContainerName());

  m->getGeometryAs<ImageGeom>()->setDimensions(m_XPoints, m_YPoints, m_ZPoints);
  m->getGeometryAs<ImageGeom>()->setOrigin(m_Origin.x, m_Origin.y, m_Origin.z);
  m->getGeometryAs<ImageGeom>()->setResolution(m_Resolution.x, m_Resolution.y, m_Resolution.z);

  SampleSurfaceMesh::execute();

  notifyStatusMessage(getHumanLabel(), "Complete");
}
Exemplo n.º 5
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void PrimaryEquiaxedPreset::initializeNeighborTableModel(StatsGenPlotWidget* plot, QVector<float> binNumbers)
{
  // Make sure the distribution is set correctly
  plot->setDistributionType(DREAM3D::DistributionType::LogNormal, false);
  // This line basically makes sure we have the distribution type we are looking for
  SGLogNormalTableModel* model = qobject_cast<SGLogNormalTableModel*> (plot->tableModel());
  if (NULL == model)
  {
    return;
  }

  qint32 count = binNumbers.count();

  // Remove all the current rows in the table model
  model->removeRows(0, model->rowCount());

  float mu, sigma;
  SIMPL_RANDOMNG_NEW()

  QVector<float> mus;
  QVector<float> sigmas;
  QVector<QString> colors;
  QStringList colorNames = QColor::colorNames();
  qint32 colorOffset = 21;
  int middlebin = count / 2;
  for (qint32 i = 0; i < count; ++i)
  {
    mu = log(14.0 + (2.0 * float(i - middlebin)));
    sigma = 0.3 + (float(middlebin - i) / float(middlebin * 10));
    mus.push_back(mu);
    sigmas.push_back(sigma);
    colors.push_back(colorNames[colorOffset++]);
    if (colorOffset == colorNames.size())
    {
      colorOffset = 21;
    }
  }

  QVector<QVector<float> > data;
  data.push_back(mus);
  data.push_back(sigmas);
  model->setTableData(binNumbers, data, colors);

}
Exemplo n.º 6
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void PrimaryEquiaxedPreset::initializeOmega3TableModel(StatsGenPlotWidget* plot, QVector<float> binNumbers)
{
  // Make sure the distribution is set correctly
  plot->setDistributionType(DREAM3D::DistributionType::Beta, false);
  // This line basically makes sure we have the distribution type we are looking for
  SGBetaTableModel* model = qobject_cast<SGBetaTableModel*>(plot->tableModel());
  if (NULL == model)
  {
    return;
  }
  qint32 count = binNumbers.count();

  // Remove all the current rows in the table model
  //  model->removeRows(0, model->rowCount());

  float alpha, beta;
  SIMPL_RANDOMNG_NEW()

  QVector<float> alphas;
  QVector<float> betas;
  QVector<QString> colors;
  QStringList colorNames = QColor::colorNames();
  qint32 colorOffset = 21;
  for (qint32 i = 0; i < count; ++i)
  {
    alpha = (0 * i) + 10.0 + rg.genrand_res53();
    beta = (0 * i) + 1.5 + (0.5 * rg.genrand_res53());
    alphas.push_back(alpha);
    betas.push_back(beta);
    colors.push_back(colorNames[colorOffset++]);
    if (colorOffset == colorNames.size())
    {
      colorOffset = 21;
    }
  }

  QVector<QVector<float> > data;
  data.push_back(alphas);
  data.push_back(betas);
  model->setTableData(binNumbers, data, colors);
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void PrimaryRolledPreset::initializeNeighborTableModel(StatsGenPlotWidget* plot, QVector<float> binNumbers)
{
  // Make sure the distribution is set correctly
  plot->setDistributionType(SIMPL::DistributionType::LogNormal, false);
  // This line basically makes sure we have the distribution type we are looking for
  SGLogNormalTableModel* model = qobject_cast<SGLogNormalTableModel*> (plot->tableModel());
  if (NULL == model)
  {
    return;
  }

  qint32 count = binNumbers.count();

  // Remove all the current rows in the table model
  model->removeRows(0, model->rowCount());

  float mu, sigma;
  SIMPL_RANDOMNG_NEW()

  QVector<float> mus;
  QVector<float> sigmas;
  QVector<QColor> colors = GenerateColors(count, 160, 255);

  int middlebin = count / 2;
  for (qint32 i = 0; i < count; ++i)
  {
    mu = log(8.0 + (1.0 * float(i - middlebin)));
    sigma = 0.3 + (float(middlebin - i) / float(middlebin * 10));
    mus.push_back(mu);
    sigmas.push_back(sigma);
  }

  QVector<QVector<float> > data;
  data.push_back(mus);
  data.push_back(sigmas);
  model->setTableData(binNumbers, data, colors);

}
Exemplo n.º 8
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void InsertAtoms::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  // Validate that the selected AvgQuats array has tuples equal to the largest
  // Feature Id; the filter would not crash otherwise, but the user should
  // be notified of unanticipated behavior ; this cannot be done in the dataCheck since
  // we don't have acces to the data yet
  int32_t numFeaturesIn = static_cast<int32_t>(m_AvgQuatsPtr.lock()->getNumberOfTuples());
  bool mismatchedFeatures = true;
  int32_t largestFeature = 0;
  size_t numTuples = m_SurfaceMeshFaceLabelsPtr.lock()->getNumberOfTuples();
  for (size_t i = 0; i < numTuples; i++)
  {
    if (m_SurfaceMeshFaceLabels[2 * i] > largestFeature)
    {
      largestFeature = m_SurfaceMeshFaceLabels[2 * i];
      if (largestFeature >= numFeaturesIn)
      {
        mismatchedFeatures = true;
        break;
      }
    }
    else if (m_SurfaceMeshFaceLabels[2 * i + 1] > largestFeature)
    {
      largestFeature = m_SurfaceMeshFaceLabels[2 * i + 1];
      if (largestFeature >= numFeaturesIn)
      {
        mismatchedFeatures = true;
        break;
      }
    }
  }

  if (mismatchedFeatures == true)
  {
    QString ss = QObject::tr("The number of Features in the AvgQuats array (%1) is larger than the largest Feature Id in the SurfaceMeshFaceLabels array").arg(numFeaturesIn);
    setErrorCondition(-5555);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }

  if (largestFeature != (numFeaturesIn - 1))
  {
    QString ss = QObject::tr("The number of Features in the AvgQuats array (%1) does not match the largest Feature Id in the SurfaceMeshFaceLabels array").arg(numFeaturesIn);
    setErrorCondition(-5555);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }

  FloatVec3_t latticeConstants;
  latticeConstants.x = m_LatticeConstants.x / 10000.0;
  latticeConstants.y = m_LatticeConstants.y / 10000.0;
  latticeConstants.z = m_LatticeConstants.z / 10000.0;

  DataContainer::Pointer sm = getDataContainerArray()->getDataContainer(getSurfaceMeshFaceLabelsArrayPath().getDataContainerName());
  SIMPL_RANDOMNG_NEW()

#ifdef SIMPLib_USE_PARALLEL_ALGORITHMS
  tbb::task_scheduler_init init;
  bool doParallel = true;
#endif

  // pull down faces
  TriangleGeom::Pointer triangleGeom = sm->getGeometryAs<TriangleGeom>();
  int64_t numFaces = m_SurfaceMeshFaceLabelsPtr.lock()->getNumberOfTuples();

  // create array to hold bounding vertices for each face
  FloatArrayType::Pointer llPtr = FloatArrayType::CreateArray(3, "Lower_Left_Internal_Use_Only");
  FloatArrayType::Pointer urPtr = FloatArrayType::CreateArray(3, "Upper_Right_Internal_Use_Only");
  float* ll = llPtr->getPointer(0);
  float* ur = urPtr->getPointer(0);
  VertexGeom::Pointer faceBBs = VertexGeom::CreateGeometry(2 * numFaces, "faceBBs");

  // walk through faces to see how many features there are
  int32_t g1 = 0, g2 = 0;
  int32_t maxFeatureId = 0;
  for (int64_t i = 0; i < numFaces; i++)
  {
    g1 = m_SurfaceMeshFaceLabels[2 * i];
    g2 = m_SurfaceMeshFaceLabels[2 * i + 1];
    if (g1 > maxFeatureId) { maxFeatureId = g1; }
    if (g2 > maxFeatureId) { maxFeatureId = g2; }
  }

  // add one to account for feature 0
  int32_t numFeatures = maxFeatureId + 1;

  // create a dynamic list array to hold face lists
  Int32Int32DynamicListArray::Pointer faceLists = Int32Int32DynamicListArray::New();
  QVector<int32_t> linkCount(numFeatures, 0);

  // fill out lists with number of references to cells
  typedef boost::shared_array<int32_t> SharedInt32Array_t;
  SharedInt32Array_t linkLocPtr(new int32_t[numFaces]);
  int32_t* linkLoc = linkLocPtr.get();

  ::memset(linkLoc, 0, numFaces * sizeof(int32_t));

  // traverse data to determine number of faces belonging to each feature
  for (int64_t i = 0; i < numFaces; i++)
  {
    g1 = m_SurfaceMeshFaceLabels[2 * i];
    g2 = m_SurfaceMeshFaceLabels[2 * i + 1];
    if (g1 > 0) { linkCount[g1]++; }
    if (g2 > 0) { linkCount[g2]++; }
  }

  // now allocate storage for the faces
  faceLists->allocateLists(linkCount);

  // traverse data again to get the faces belonging to each feature
  for (int64_t i = 0; i < numFaces; i++)
  {
    g1 = m_SurfaceMeshFaceLabels[2 * i];
    g2 = m_SurfaceMeshFaceLabels[2 * i + 1];
    if (g1 > 0) { faceLists->insertCellReference(g1, (linkLoc[g1])++, i); }
    if (g2 > 0) { faceLists->insertCellReference(g2, (linkLoc[g2])++, i); }
    // find bounding box for each face
    GeometryMath::FindBoundingBoxOfFace(triangleGeom, i, ll, ur);
    faceBBs->setCoords(2 * i, ll);
    faceBBs->setCoords(2 * i + 1, ur);
  }

  // generate the list of sampling points fom subclass
  QVector<VertexGeom::Pointer> points(numFeatures);
  QVector<BoolArrayType::Pointer> inFeature(numFeatures);
  for (int32_t i = 0; i < numFeatures; i++)
  {
    points[i] = VertexGeom::CreateGeometry(0, "_INTERNAL_USE_ONLY_points");
    inFeature[i] = BoolArrayType::CreateArray(0, "_INTERNAL_USE_ONLY_inside");
  }

  QuatF* avgQuats = reinterpret_cast<QuatF*>(m_AvgQuats);

#ifdef SIMPLib_USE_PARALLEL_ALGORITHMS
  if (doParallel == true)
  {
    tbb::parallel_for(tbb::blocked_range<size_t>(0, numFeatures),
                      InsertAtomsImpl(triangleGeom, faceLists, faceBBs, avgQuats, latticeConstants, m_Basis, points, inFeature), tbb::auto_partitioner());

  }
  else
#endif
  {
    InsertAtomsImpl serial(triangleGeom, faceLists, faceBBs, avgQuats, latticeConstants, m_Basis, points, inFeature);
    serial.checkPoints(0, numFeatures);
  }

  assign_points(points, inFeature);

  notifyStatusMessage(getHumanLabel(), "Complete");
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
QString InitializeSyntheticVolume::estimateNumFeatures(IntVec3_t dims, FloatVec3_t res)
{
  float totalvol = 0.0f;
  int32_t phase = 0;

  totalvol = (dims.x * res.x) * (dims.y * res.y) * (dims.z * res.z);
  if (totalvol == 0.0)
  {
    return "-1";
  }

  DataContainerArray::Pointer dca = getDataContainerArray();

  // Get the PhaseTypes - Remember there is a Dummy PhaseType in the first slot of the array
  QVector<size_t> cDims(1, 1); // This states that we are looking for an array with a single component
  UInt32ArrayType::Pointer phaseType = dca->getPrereqArrayFromPath<UInt32ArrayType, AbstractFilter>(NULL, getInputPhaseTypesArrayPath(), cDims);
  if (phaseType.get() == NULL)
  {
    QString ss = QObject::tr("Phase types array could not be downcast using std::dynamic_pointer_cast<T> when estimating the number of grains. The path is %1").arg(getInputPhaseTypesArrayPath().serialize());
    setErrorCondition(-11002);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return "0";
  }


  QVector<size_t> statsDims(1, 1);
  StatsDataArray::Pointer statsPtr = dca->getPrereqArrayFromPath<StatsDataArray, AbstractFilter>(this, getInputStatsArrayPath(), statsDims);
  if (statsPtr.get() == NULL)
  {
    QString ss = QObject::tr("Statistics array could not be downcast using std::dynamic_pointer_cast<T> when estimating the number of grains. The path is %1").arg(getInputStatsArrayPath().serialize());
    notifyErrorMessage(getHumanLabel(), ss, -11001);
    return "0";
  }


  if (!phaseType->isAllocated())
  {
    if (getInputStatsFile().isEmpty())
    {
      QString ss = QObject::tr("Phase types array has not been allocated and the input statistics file is empty");
      setErrorCondition(-1000);
      notifyWarningMessage(getHumanLabel(), ss, getErrorCondition());
      return "-1";
    }
    QFileInfo fi(getInputStatsFile());
    if (fi.exists() == false)
    {
      QString ss = QObject::tr("Phase types array has not been allocated and the input statistics file does not exist at '%1'").arg(fi.absoluteFilePath());
      setErrorCondition(-1001);
      notifyWarningMessage(getHumanLabel(), ss, getErrorCondition());
      return "-1";
    }


    hid_t fileId = -1;
    herr_t err = 0;
    // open the file
    fileId = H5Utilities::openFile(getInputStatsFile().toLatin1().constData(), true);
    // This will make sure if we return early from this method that the HDF5 File is properly closed.
    HDF5ScopedFileSentinel scopedFileSentinel(&fileId, true);

    DataArrayPath dap = getInputPhaseTypesArrayPath();
    // Generate the path to the AttributeMatrix
    QString hPath = DREAM3D::StringConstants::DataContainerGroupName + "/" + dap.getDataContainerName() + "/" + dap.getAttributeMatrixName();
    // Open the AttributeMatrix Group
    hid_t amGid = H5Gopen(fileId, hPath.toLatin1().data(), H5P_DEFAULT );
    scopedFileSentinel.addGroupId(&amGid);
    err = phaseType->readH5Data(amGid);
    if (err < 0)
    {
      QString ss = QObject::tr("Error reading phase type data");
      setErrorCondition(-1003);
      notifyWarningMessage(getHumanLabel(), ss, getErrorCondition());
      return "-1";
    }
    if (!phaseType->isAllocated())
    {
      QString ss = QObject::tr("Phase types Array was not allocated due to an error reading the data from the statistics file %1").arg(fi.absoluteFilePath());
      setErrorCondition(-1002);
      notifyWarningMessage(getHumanLabel(), ss, getErrorCondition());
      return "-1";
    }
  }

  // Create a Reference Variable so we can use the [] syntax
  StatsDataArray& statsDataArray = *(statsPtr.get());

  std::vector<int32_t> primaryphases;
  std::vector<double> primaryphasefractions;
  double totalprimaryfractions = 0.0;
  // find which phases are primary phases

  for (size_t i = 1; i < phaseType->getNumberOfTuples(); ++i)
  {
    if (phaseType->getValue(i) == DREAM3D::PhaseType::PrimaryPhase)
    {
      PrimaryStatsData* pp = PrimaryStatsData::SafePointerDownCast(statsDataArray[i].get());
      primaryphases.push_back(i);
      primaryphasefractions.push_back(pp->getPhaseFraction());
      totalprimaryfractions = totalprimaryfractions + pp->getPhaseFraction();
    }
  }

  // scale the primary phase fractions to total to 1
  for (int32_t i = 0; i < primaryphasefractions.size(); i++)
  {
    primaryphasefractions[i] = primaryphasefractions[i] / totalprimaryfractions;
  }

  SIMPL_RANDOMNG_NEW()
  // generate the Features
  int32_t gid = 1;

  float currentvol = 0.0f;
  float vol = 0.0f;
  float diam = 0.0f;
  bool volgood = false;
  for (int32_t j = 0; j < primaryphases.size(); ++j)
  {
    float curphasetotalvol = totalvol * primaryphasefractions[j];
    while (currentvol < curphasetotalvol)
    {
      volgood = false;
      phase = primaryphases[j];
      PrimaryStatsData* pp = PrimaryStatsData::SafePointerDownCast(statsDataArray[phase].get());
      if (NULL == pp)
      {
        QString ss = QObject::tr("Tried to cast a statsDataArray[%1].get() to a PrimaryStatsData* "
                                 "pointer but this resulted in a NULL pointer.\n")
                     .arg(phase).arg(phase);
        setErrorCondition(-666);
        notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
        return "-1";
      }
      while (volgood == false)
      {
        volgood = true;
        if (pp->getFeatureSize_DistType() == DREAM3D::DistributionType::LogNormal)
        {
          float avgdiam = pp->getFeatureSizeDistribution().at(0)->getValue(0);
          float sddiam = pp->getFeatureSizeDistribution().at(1)->getValue(0);
          diam = rg.genrand_norm(avgdiam, sddiam);
          diam = expf(diam);
          if (diam >= pp->getMaxFeatureDiameter()) { volgood = false; }
          if (diam < pp->getMinFeatureDiameter()) { volgood = false; }
          vol = (4.0f / 3.0f) * (M_PI) * ((diam * 0.5f) * (diam * 0.5f) * (diam * 0.5f));
        }
      }
      currentvol = currentvol + vol;
      gid++;
    }
  }
  return QString::number(gid);
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void AdaptiveAlignmentMutualInformation::form_features_sections()
{
	SIMPL_RANDOMNG_NEW()
		DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getDataContainerName());

	size_t udims[3] = { 0, 0, 0 };
	m->getGeometryAs<ImageGeom>()->getDimensions(udims);
	int64_t dims[3] =
	{
		static_cast<int64_t>(udims[0]),
		static_cast<int64_t>(udims[1]),
		static_cast<int64_t>(udims[2]),
	};

	int64_t point = 0;
	int64_t seed = 0;
	bool noseeds = false;
	int32_t featurecount = 1;
	int64_t neighbor = 0;
	QuatF q1 = QuaternionMathF::New();
	QuatF q2 = QuaternionMathF::New();
	QuatF* quats = reinterpret_cast<QuatF*>(m_Quats);
	float w = 0.0f;
	float n1 = 0.0f;
	float n2 = 0.0f;
	float n3 = 0.0f;
	int64_t randx = 0;
	int64_t randy = 0;
	bool good = false;
	int64_t x = 0, y = 0, z = 0;
	int64_t col = 0, row = 0;
	size_t size = 0;
	size_t initialVoxelsListSize = 1000;

	m_FeatureCounts->resize(dims[2]);
	featurecounts = m_FeatureCounts->getPointer(0);

	int32_t* miFeatureIds = m_MIFeaturesPtr->getPointer(0);

	std::vector<int64_t> voxelslist(initialVoxelsListSize, -1);
	int64_t neighpoints[4] = { 0, 0, 0, 0 };
	neighpoints[0] = -dims[0];
	neighpoints[1] = -1;
	neighpoints[2] = 1;
	neighpoints[3] = dims[0];

	uint32_t phase1 = 0, phase2 = 0;

	for (int64_t slice = 0; slice < dims[2]; slice++)
	{
		float prog = ((float)slice / dims[2]) * 100;
		QString ss = QObject::tr("Aligning Sections || Identifying Features on Sections || %1% Complete").arg(QString::number(prog, 'f', 0));
		notifyStatusMessage(getMessagePrefix(), getHumanLabel(), ss);
		featurecount = 1;
		noseeds = false;
		while (noseeds == false)
		{
			seed = -1;
			randx = int64_t(float(rg.genrand_res53()) * float(dims[0]));
			randy = int64_t(float(rg.genrand_res53()) * float(dims[1]));
			for (int64_t j = 0; j < dims[1]; ++j)
			{
				for (int64_t i = 0; i < dims[0]; ++i)
				{
					x = randx + i;
					y = randy + j;
					z = slice;
					if (x > dims[0] - 1) { x = x - dims[0]; }
					if (y > dims[1] - 1) { y = y - dims[1]; }
					point = (z * dims[0] * dims[1]) + (y * dims[0]) + x;
					if ((m_UseGoodVoxels == false || m_GoodVoxels[point] == true) && miFeatureIds[point] == 0 && m_CellPhases[point] > 0)
					{
						seed = point;
					}
					if (seed > -1) { break; }
				}
				if (seed > -1) { break; }
			}
			if (seed == -1) { noseeds = true; }
			if (seed >= 0)
			{
				size = 0;
				miFeatureIds[seed] = featurecount;
				voxelslist[size] = seed;
				size++;
				for (size_t j = 0; j < size; ++j)
				{
					int64_t currentpoint = voxelslist[j];
					col = currentpoint % dims[0];
					row = (currentpoint / dims[0]) % dims[1];
					QuaternionMathF::Copy(quats[currentpoint], q1);
					phase1 = m_CrystalStructures[m_CellPhases[currentpoint]];
					for (int32_t i = 0; i < 4; i++)
					{
						good = true;
						neighbor = currentpoint + neighpoints[i];
						if ((i == 0) && row == 0) { good = false; }
						if ((i == 3) && row == (dims[1] - 1)) { good = false; }
						if ((i == 1) && col == 0) { good = false; }
						if ((i == 2) && col == (dims[0] - 1)) { good = false; }
						if (good == true && miFeatureIds[neighbor] <= 0 && m_CellPhases[neighbor] > 0)
						{
							w = std::numeric_limits<float>::max();
							QuaternionMathF::Copy(quats[neighbor], q2);
							phase2 = m_CrystalStructures[m_CellPhases[neighbor]];
							if (phase1 == phase2)
							{
								w = m_OrientationOps[phase1]->getMisoQuat(q1, q2, n1, n2, n3);
							}
							if (w < m_MisorientationTolerance)
							{
								miFeatureIds[neighbor] = featurecount;
								voxelslist[size] = neighbor;
								size++;
								if (std::vector<int64_t>::size_type(size) >= voxelslist.size())
								{
									size = voxelslist.size();
									voxelslist.resize(size + initialVoxelsListSize);
									for (std::vector<int64_t>::size_type v = size; v < voxelslist.size(); ++v) { voxelslist[v] = -1; }
								}
							}
						}
					}
				}
				voxelslist.erase(std::remove(voxelslist.begin(), voxelslist.end(), -1), voxelslist.end());
				featurecount++;
				voxelslist.assign(initialVoxelsListSize, -1);
			}
		}
		featurecounts[slice] = featurecount;
	}
}
Exemplo n.º 11
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void  EstablishMatrixPhase::establish_matrix()
{
  notifyStatusMessage(getHumanLabel(), "Establishing Matrix");
  SIMPL_RANDOMNG_NEW()

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getOutputCellAttributeMatrixPath().getDataContainerName());

  StatsDataArray& statsDataArray = *(m_StatsDataArray.lock());

  size_t udims[3] =
  { 0, 0, 0 };
  m->getGeometryAs<ImageGeom>()->getDimensions(udims);
#if (CMP_SIZEOF_SIZE_T == 4)
  typedef int32_t DimType;
#else
  typedef int64_t DimType;
#endif
  DimType dims[3] =
  {
    static_cast<DimType>(udims[0]),
    static_cast<DimType>(udims[1]),
    static_cast<DimType>(udims[2]),
  };

  sizex = dims[0] * m->getGeometryAs<ImageGeom>()->getXRes();
  sizey = dims[1] * m->getGeometryAs<ImageGeom>()->getYRes();
  sizez = dims[2] * m->getGeometryAs<ImageGeom>()->getZRes();
  totalvol = sizex * sizey * sizez;

  size_t totalPoints = m_FeatureIdsPtr.lock()->getNumberOfTuples();
  size_t currentnumfeatures = m_FeaturePhasesPtr.lock()->getNumberOfTuples();
  size_t numensembles = m_PhaseTypesPtr.lock()->getNumberOfTuples();
  QVector<size_t> tDims(1, 1);
  if (currentnumfeatures == 0)
  {
    m->getAttributeMatrix(m_OutputCellFeatureAttributeMatrixName)->resizeAttributeArrays(tDims);
    updateFeatureInstancePointers();
    currentnumfeatures = 1;
  }
  firstMatrixFeature = currentnumfeatures;
  float random = 0.0f;
  float totalmatrixfractions = 0.0f;

  for (size_t i = 1; i < numensembles; ++i)
  {
    if (m_PhaseTypes[i] == DREAM3D::PhaseType::MatrixPhase)
    {
      MatrixStatsData* mp = MatrixStatsData::SafePointerDownCast(statsDataArray[i].get());
      if (NULL == mp)
      {
        QString ss = QObject::tr("Tried to cast a statsDataArray[%1].get() to a MatrixStatsData* "
                                 "pointer but this resulted in a NULL pointer. The value at m_PhaseTypes[%2] = %3 does not match up "
                                 "with the type of pointer stored in the StatsDataArray (MatrixStatsData)\n")
                     .arg(i).arg(i).arg(m_PhaseTypes[i]);
        notifyErrorMessage(getHumanLabel(), ss, -666);
        setErrorCondition(-666);
        return;
      }
      matrixphases.push_back(i);
      matrixphasefractions.push_back(mp->getPhaseFraction());
      totalmatrixfractions = totalmatrixfractions + mp->getPhaseFraction();
    }
  }
  for (int32_t i = 0; i < matrixphases.size(); i++)
  {
    matrixphasefractions[i] = matrixphasefractions[i] / totalmatrixfractions;
    if (i > 0) { matrixphasefractions[i] = matrixphasefractions[i] + matrixphasefractions[i - 1]; }
  }
  size_t j = 0;
  for (size_t i = 0; i < totalPoints; ++i)
  {
    if ((m_UseMask == false && m_FeatureIds[i] <= 0) || (m_UseMask == true && m_Mask[i] == true && m_FeatureIds[i] <= 0))
    {
      random = static_cast<float>( rg.genrand_res53() );
      j = 0;
      while (random > matrixphasefractions[j])
      {
        j++;
      }
      if (m->getAttributeMatrix(m_OutputCellFeatureAttributeMatrixName)->getNumTuples() <= (firstMatrixFeature + j))
      {
        tDims[0] = (firstMatrixFeature + j) + 1;
        m->getAttributeMatrix(m_OutputCellFeatureAttributeMatrixName)->resizeAttributeArrays(tDims);
        updateFeatureInstancePointers();
        m_NumFeatures[j] = 1;
      }
      m_FeatureIds[i] = (firstMatrixFeature + j);
      m_CellPhases[i] = matrixphases[j];
      m_FeaturePhases[(firstMatrixFeature + j)] = matrixphases[j];
    }
    else if (m_UseMask == true && m_Mask[i] == false)
    {
      m_FeatureIds[i] = 0;
      m_CellPhases[i] = 0;
    }
  }
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
std::vector<float> RadialDistributionFunction::GenerateRandomDistribution(float minDistance, float maxDistance, int numBins, std::vector<float> boxdims, std::vector<float> boxres)
{
  std::vector<float> freq(numBins, 0);
  std::vector<float> randomCentroids;
  std::vector<std::vector<float> > distancelist;
  int32_t largeNumber = 1000;
  int32_t numDistances = largeNumber * (largeNumber - 1);

  // boxdims are the dimensions of the box in microns
  // boxres is the resoultion of the box in microns
  int32_t xpoints = boxdims[0] / boxres[0];
  int32_t ypoints = boxdims[1] / boxres[1];
  int32_t zpoints = boxdims[2] / boxres[2];
  int32_t bin;
  int32_t totalpoints = xpoints * ypoints * zpoints;

  float x, y, z;
  float xn, yn, zn;
  float xc, yc, zc;
  float r;

  size_t featureOwnerIdx = 0;
  size_t column, row, plane;


  float stepsize = (maxDistance - minDistance) / numBins;
  float maxBoxDistance = sqrtf((boxdims[0] * boxdims[0]) + (boxdims[1] * boxdims[1]) + (boxdims[2] * boxdims[2]));
  int32_t current_num_bins = ceil((maxBoxDistance - minDistance) / (stepsize));

  freq.resize(current_num_bins + 1);


  SIMPL_RANDOMNG_NEW();

  randomCentroids.resize(largeNumber * 3);

  //Generating all of the random points and storing their coordinates in randomCentroids
  for (int32_t i = 0; i < largeNumber; i++)
  {
    featureOwnerIdx = static_cast<size_t>(rg.genrand_res53() * totalpoints);

    column = featureOwnerIdx % xpoints;
    row = int(featureOwnerIdx / xpoints) % ypoints;
    plane = featureOwnerIdx / (xpoints * ypoints);

    xc = static_cast<float>(column * boxres[0]) ;
    yc = static_cast<float>(row * boxres[1]);
    zc = static_cast<float>(plane * boxres[2]);

    randomCentroids[3 * i] = xc;
    randomCentroids[3 * i + 1] = yc;
    randomCentroids[3 * i + 2] = zc;

  }

  distancelist.resize(largeNumber);


//Calculating all of the distances and storing them in the distnace list
  for (int32_t i = 1; i < largeNumber; i++)
  {

    x = randomCentroids[3 * i];
    y = randomCentroids[3 * i + 1];
    z = randomCentroids[3 * i + 2];

    for (int32_t j = i + 1; j < largeNumber; j++)
    {

      xn = randomCentroids[3 * j];
      yn = randomCentroids[3 * j + 1];
      zn = randomCentroids[3 * j + 2];

      r = sqrtf((x - xn) * (x - xn) + (y - yn) * (y - yn) + (z - zn) * (z - zn));

      distancelist[i].push_back(r);
      distancelist[j].push_back(r);

    }

  }

  //bin up the distance list
  for (int32_t i = 0; i < largeNumber; i++)
  {
    for (size_t j = 0; j < distancelist[i].size(); j++)
    {
      bin = (distancelist[i][j] - minDistance) / stepsize;

      if (distancelist[i][j] < minDistance)
      {
        bin = -1;
      }
      freq[bin + 1]++;

    }
  }

  for (int32_t i = 0; i < current_num_bins + 1; i++)
  {
    freq[i] = freq[i] / (numDistances);
  }


  return freq;

}
Exemplo n.º 13
0
    static void CalculateCubicODFData(T* e1s, T* e2s, T* e3s,
                                      T* weights, T* sigmas,
                                      bool normalize, T* odf, size_t numEntries)
    {
      SIMPL_RANDOMNG_NEW()
      CubicOps ops;
      Int32ArrayType::Pointer textureBins = Int32ArrayType::CreateArray(numEntries, "TextureBins");
      int32_t* TextureBins = textureBins->getPointer(0);

      float addweight = 0;
      float totaladdweight = 0;
      float totalweight = float(ops.getODFSize());
      int bin, addbin;
      int bin1, bin2, bin3;
      int addbin1, addbin2, addbin3;
      float dist, fraction;

      for (size_t i = 0; i < numEntries; i++)
      {
        FOrientArrayType eu(e1s[i], e2s[i], e3s[i]);
        FOrientArrayType rod(4);
        OrientationTransforms<FOrientArrayType, float>::eu2ro(eu, rod);

        rod = ops.getODFFZRod(rod);
        bin = ops.getOdfBin(rod);
        TextureBins[i] = static_cast<int>(bin);
      }

      for (int i = 0; i < ops.getODFSize(); i++)
      {
        odf[i] = 0;
      }
      for (size_t i = 0; i < numEntries; i++)
      {
        bin = TextureBins[i];
        bin1 = bin % 18;
        bin2 = (bin / 18) % 18;
        bin3 = bin / (18 * 18);
        for (int j = -sigmas[i]; j <= sigmas[i]; j++)
        {
          int jsqrd = j * j;
          for (int k = -sigmas[i]; k <= sigmas[i]; k++)
          {
            int ksqrd = k * k;
            for (int l = -sigmas[i]; l <= sigmas[i]; l++)
            {
              int lsqrd = l * l;
              addbin1 = bin1 + int(j);
              addbin2 = bin2 + int(k);
              addbin3 = bin3 + int(l);
              //if(addbin1 < 0) addbin1 = addbin1 + 18;
              //if(addbin1 >= 18) addbin1 = addbin1 - 18;
              //if(addbin2 < 0) addbin2 = addbin2 + 18;
              //if(addbin2 >= 18) addbin2 = addbin2 - 18;
              //if(addbin3 < 0) addbin3 = addbin3 + 18;
              //if(addbin3 >= 18) addbin3 = addbin3 - 18;
              int good = 1;
              if(addbin1 < 0) { good = 0; }
              if(addbin1 >= 18) { good = 0; }
              if(addbin2 < 0) { good = 0; }
              if(addbin2 >= 18) { good = 0; }
              if(addbin3 < 0) { good = 0; }
              if(addbin3 >= 18) { good = 0; }
              addbin = (addbin3 * 18 * 18) + (addbin2 * 18) + (addbin1);
              dist = powf((jsqrd + ksqrd + lsqrd), 0.5);
              fraction = 1.0 - (double(dist / int(sigmas[i])) * double(dist / int(sigmas[i])));
              if(dist <= int(sigmas[i]) && good == 1)
              {
                addweight = (weights[i] * fraction);
                if(sigmas[i] == 0.0) { addweight = weights[i]; }
                odf[addbin] = odf[addbin] + addweight;
                totaladdweight = totaladdweight + addweight;
              }
            }
          }
        }
      }
      if(totaladdweight > totalweight)
      {
        float scale = (totaladdweight / totalweight);
        for (int i = 0; i < ops.getODFSize(); i++)
        {
          odf[i] = odf[i] / scale;
        }
      }
      else
      {
        float remainingweight = totalweight - totaladdweight;
        float background = remainingweight / static_cast<float>(ops.getODFSize());
        for (int i = 0; i < ops.getODFSize(); i++)
        {
          odf[i] += background;
        }
      }
      if (normalize == true)
      {
        // Normalize the odf
        for (int i = 0; i < ops.getODFSize(); i++)
        {
          odf[i] = odf[i] / totalweight;
        }
      }
    }
Exemplo n.º 14
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void SampleSurfaceMesh::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  DataContainer::Pointer sm = getDataContainerArray()->getDataContainer(m_SurfaceMeshFaceLabelsArrayPath.getDataContainerName());
  SIMPL_RANDOMNG_NEW()

#ifdef SIMPLib_USE_PARALLEL_ALGORITHMS
  tbb::task_scheduler_init init;
  bool doParallel = true;
#endif

  TriangleGeom::Pointer triangleGeom = sm->getGeometryAs<TriangleGeom>();

  // pull down faces
  int64_t numFaces = m_SurfaceMeshFaceLabelsPtr.lock()->getNumberOfTuples();

  // create array to hold bounding vertices for each face
  FloatArrayType::Pointer llPtr = FloatArrayType::CreateArray(3, "_INTERNAL_USE_ONLY_Lower_Left");
  FloatArrayType::Pointer urPtr = FloatArrayType::CreateArray(3, "_INTERNAL_USE_ONLY_Upper_Right");
  float* ll = llPtr->getPointer(0);
  float* ur = urPtr->getPointer(0);
  VertexGeom::Pointer faceBBs = VertexGeom::CreateGeometry(2 * numFaces, "_INTERNAL_USE_ONLY_faceBBs");

  // walk through faces to see how many features there are
  int32_t g1 = 0, g2 = 0;
  int32_t maxFeatureId = 0;
  for (int64_t i = 0; i < numFaces; i++)
  {
    g1 = m_SurfaceMeshFaceLabels[2 * i];
    g2 = m_SurfaceMeshFaceLabels[2 * i + 1];
    if (g1 > maxFeatureId) { maxFeatureId = g1; }
    if (g2 > maxFeatureId) { maxFeatureId = g2; }
  }
  // add one to account for feature 0
  int32_t numFeatures = maxFeatureId + 1;

  // create a dynamic list array to hold face lists
  Int32Int32DynamicListArray::Pointer faceLists = Int32Int32DynamicListArray::New();
  std::vector<int32_t> linkCount(numFeatures, 0);

  // fill out lists with number of references to cells
  typedef boost::shared_array<int32_t> SharedInt32Array_t;
  SharedInt32Array_t linkLocPtr(new int32_t[numFaces]);
  int32_t* linkLoc = linkLocPtr.get();

  ::memset(linkLoc, 0, numFaces * sizeof(int32_t));

  // traverse data to determine number of faces belonging to each feature
  for (int64_t i = 0; i < numFaces; i++)
  {
    g1 = m_SurfaceMeshFaceLabels[2 * i];
    g2 = m_SurfaceMeshFaceLabels[2 * i + 1];
    if (g1 > 0) { linkCount[g1]++; }
    if (g2 > 0) { linkCount[g2]++; }
  }

  // now allocate storage for the faces
  faceLists->allocateLists(linkCount);

  // traverse data again to get the faces belonging to each feature
  for (int64_t i = 0; i < numFaces; i++)
  {
    g1 = m_SurfaceMeshFaceLabels[2 * i];
    g2 = m_SurfaceMeshFaceLabels[2 * i + 1];
    if (g1 > 0) { faceLists->insertCellReference(g1, (linkLoc[g1])++, i); }
    if (g2 > 0) { faceLists->insertCellReference(g2, (linkLoc[g2])++, i); }
    // find bounding box for each face
    GeometryMath::FindBoundingBoxOfFace(triangleGeom, i, ll, ur);
    faceBBs->setCoords(2 * i, ll);
    faceBBs->setCoords(2 * i + 1, ur);
  }

  // generate the list of sampling points from subclass
  VertexGeom::Pointer points = generate_points();
  if(getErrorCondition() < 0 || NULL == points.get()) { return; }
  int64_t numPoints = points->getNumberOfVertices();

  // create array to hold which polyhedron (feature) each point falls in
  Int32ArrayType::Pointer iArray = Int32ArrayType::NullPointer();
  iArray = Int32ArrayType::CreateArray(numPoints, "_INTERNAL_USE_ONLY_polyhedronIds");
  iArray->initializeWithZeros();
  int32_t* polyIds = iArray->getPointer(0);

#ifdef SIMPLib_USE_PARALLEL_ALGORITHMS
  if (doParallel == true)
  {
    tbb::parallel_for(tbb::blocked_range<size_t>(0, numFeatures),
                      SampleSurfaceMeshImpl(triangleGeom, faceLists, faceBBs, points, polyIds), tbb::auto_partitioner());
  }
  else
#endif
  {
    SampleSurfaceMeshImpl serial(triangleGeom, faceLists, faceBBs, points, polyIds);
    serial.checkPoints(0, numFeatures);
  }

  assign_points(iArray);

  notifyStatusMessage(getHumanLabel(), "Complete");
}