Exemplo n.º 1
0
lword NonblockingSink::TimedFlush(unsigned long maxTime, size_t targetSize)
{
	m_blockedBySpeedLimit = false;

	size_t curBufSize = GetCurrentBufferSize();
	if (curBufSize <= targetSize && (targetSize || !EofPending()))
		return 0;

	if (!GetMaxBytesPerSecond())
		return DoFlush(maxTime, targetSize);

	bool forever = (maxTime == INFINITE_TIME);
	unsigned long timeToGo = maxTime;
	Timer timer(Timer::MILLISECONDS, forever);
	lword totalFlushed = 0;

	timer.StartTimer();

	while (true)
	{	
		size_t flushSize = UnsignedMin(curBufSize - targetSize, ComputeCurrentTransceiveLimit());
		if (flushSize || EofPending())
		{
			if (!forever) timeToGo = SaturatingSubtract(maxTime, timer.ElapsedTime());
			size_t ret = (size_t)DoFlush(timeToGo, curBufSize - flushSize);
			if (ret)
			{
				NoteTransceive(ret);
				curBufSize -= ret;
				totalFlushed += ret;
			}
		}

		if (curBufSize <= targetSize && (targetSize || !EofPending()))
			break;

		if (!forever)
		{
			timeToGo = SaturatingSubtract(maxTime, timer.ElapsedTime());
			if (!timeToGo)
				break;
		}

		double waitTime = TimeToNextTransceive();
		if (!forever && waitTime > timeToGo)
		{
			m_blockedBySpeedLimit = true;
			break;
		}

		WaitObjectContainer container;
		LimitedBandwidth::GetWaitObjects(container, CallStack("NonblockingSink::TimedFlush() - speed limit", 0));
		container.Wait((unsigned long)waitTime);
	}

	return totalFlushed;
}
Exemplo n.º 2
0
size_t MeterFilter::PutMaybeModifiable(byte *begin, size_t length, int messageEnd, bool blocking, bool modifiable)
{
	if (!m_transparent)
		return 0;

	size_t t;
	FILTER_BEGIN;

	m_begin = begin;
	m_length = length;

	while (m_length > 0 || messageEnd)
	{
		if (m_length > 0  && !m_rangesToSkip.empty() && m_rangesToSkip.front().message == m_totalMessages && m_currentMessageBytes + m_length > m_rangesToSkip.front().position)
		{
			FILTER_OUTPUT_MAYBE_MODIFIABLE(1, m_begin, t = (size_t)SaturatingSubtract(m_rangesToSkip.front().position, m_currentMessageBytes), false, modifiable);

			assert(t < m_length);
			m_begin += t;
			m_length -= t;
			m_currentMessageBytes += t;
			m_totalBytes += t;

			if (m_currentMessageBytes + m_length < m_rangesToSkip.front().position + m_rangesToSkip.front().size)
				t = m_length;
			else
			{
				t = (size_t)SaturatingSubtract(m_rangesToSkip.front().position + m_rangesToSkip.front().size, m_currentMessageBytes);
				assert(t <= m_length);
				m_rangesToSkip.pop_front();
			}

			m_begin += t;
			m_length -= t;
			m_currentMessageBytes += t;
			m_totalBytes += t;
		}
		else
		{
			FILTER_OUTPUT_MAYBE_MODIFIABLE(2, m_begin, m_length, messageEnd, modifiable);

			m_currentMessageBytes += m_length;
			m_totalBytes += m_length;
			m_length = 0;

			if (messageEnd)
			{
				m_currentMessageBytes = 0;
				m_currentSeriesMessages++;
				m_totalMessages++;
				messageEnd = false;
			}
		}
	}

	FILTER_END_NO_MESSAGE_END;
}
Exemplo n.º 3
0
size_t ArraySink::Put2(const byte *begin, size_t length, int messageEnd, bool blocking)
{
	if (m_buf+m_total != begin)
		memcpy(m_buf+m_total, begin, STDMIN(length, SaturatingSubtract(m_size, m_total)));
	m_total += length;
	return 0;
}
Exemplo n.º 4
0
word32 RSA_BlockType1::UnPad(const byte* pkcsBlock, word32 pkcsBlockLen,
                             byte* output) const
{
    bool invalid = false;
    unsigned int maxOutputLen = SaturatingSubtract(pkcsBlockLen / 8, 10U);

    // convert from bit length to byte length
    if (pkcsBlockLen % 8 != 0)
    {
        invalid = (pkcsBlock[0] != 0) || invalid;
        pkcsBlock++;
    }
    pkcsBlockLen /= 8;

    // Require block type 1 for SSL.
    invalid = (pkcsBlock[0] != 1) || invalid;

    // skip past the padding until we find the separator
    unsigned i=1;
    while (i<pkcsBlockLen && pkcsBlock[i++]) { // null body
        }
    if (!(i==pkcsBlockLen || pkcsBlock[i-1]==0))
        return 0;

    unsigned int outputLen = pkcsBlockLen - i;
    invalid = (outputLen > maxOutputLen) || invalid;

    if (invalid)
        return 0;

    memcpy(output, pkcsBlock+i, outputLen);
    return outputLen;
}
Exemplo n.º 5
0
double LimitedBandwidth::TimeToNextTransceive()
{
	if (!m_maxBytesPerSecond)
		return 0;

	if (!m_nextTransceiveTime)
		ComputeNextTransceiveTime();

	return SaturatingSubtract(m_nextTransceiveTime, m_timer.ElapsedTimeAsDouble());
}
Exemplo n.º 6
0
lword LimitedBandwidth::ComputeCurrentTransceiveLimit()
{
	if (!m_maxBytesPerSecond)
		return ULONG_MAX;

	double curTime = GetCurTimeAndCleanUp();
	CRYPTOPP_UNUSED(curTime);

	lword total = 0;
	for (OpQueue::size_type i=0; i!=m_ops.size(); ++i)
		total += m_ops[i].second;
	return SaturatingSubtract(m_maxBytesPerSecond, total);
}
Exemplo n.º 7
0
size_t ArrayXorSink::Put2(const byte *begin, size_t length, int messageEnd, bool blocking)
{
	CRYPTOPP_UNUSED(messageEnd); CRYPTOPP_UNUSED(blocking);

	// Avoid passing NULL pointer to xorbuf
	size_t copied = 0;
	if (m_buf && begin)
	{
		copied = STDMIN(length, SaturatingSubtract(m_size, m_total));
		xorbuf(m_buf+m_total, begin, copied);
	}
	m_total += copied;
	return length - copied;
}
Exemplo n.º 8
0
size_t ArraySink::Put2(const byte *begin, size_t length, int messageEnd, bool blocking)
{
	CRYPTOPP_UNUSED(messageEnd); CRYPTOPP_UNUSED(blocking);

	// Avoid passing NULL pointer to memcpy. Using memmove due to
	//  Valgrind finding on overlapping buffers.
	size_t copied = 0;
	if (m_buf && begin)
	{
		copied = STDMIN(length, SaturatingSubtract(m_size, m_total));
		memmove(m_buf+m_total, begin, copied);
	}
	m_total += copied;
	return length - copied;
}
void DL_SignatureMessageEncodingMethod_DSA::ComputeMessageRepresentative(RandomNumberGenerator &rng, 
	const byte *recoverableMessage, size_t recoverableMessageLength,
	HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
	byte *representative, size_t representativeBitLength) const
{
	assert(recoverableMessageLength == 0);
	assert(hashIdentifier.second == 0);
	const size_t representativeByteLength = BitsToBytes(representativeBitLength);
	const size_t digestSize = hash.DigestSize();
	const size_t paddingLength = SaturatingSubtract(representativeByteLength, digestSize);

	memset(representative, 0, paddingLength);
	hash.TruncatedFinal(representative+paddingLength, STDMIN(representativeByteLength, digestSize));

	if (digestSize*8 > representativeBitLength)
	{
		Integer h(representative, representativeByteLength);
		h >>= representativeByteLength*8 - representativeBitLength;
		h.Encode(representative, representativeByteLength);
	}
Exemplo n.º 10
0
bool WaitObjectContainer::Wait(unsigned long milliseconds)
{
	if (m_noWait || (!m_maxFd && !m_firstEventTime))
		return true;

	bool timeoutIsScheduledEvent = false;

	if (m_firstEventTime)
	{
		double timeToFirstEvent = SaturatingSubtract(m_firstEventTime, m_eventTimer.ElapsedTimeAsDouble());
		if (timeToFirstEvent <= milliseconds)
		{
			milliseconds = (unsigned long)timeToFirstEvent;
			timeoutIsScheduledEvent = true;
		}
	}

	timeval tv, *timeout;

	if (milliseconds == INFINITE_TIME)
		timeout = NULL;
	else
	{
		tv.tv_sec = milliseconds / 1000;
		tv.tv_usec = (milliseconds % 1000) * 1000;
		timeout = &tv;
	}

	int result = select(m_maxFd+1, &m_readfds, &m_writefds, NULL, timeout);

	if (result > 0)
		return true;
	else if (result == 0)
		return timeoutIsScheduledEvent;
	else
		throw Err("WaitObjectContainer: select failed with error " + errno);
}
Exemplo n.º 11
0
unsigned int PKCS_EncryptionPaddingScheme::MaxUnpaddedLength(unsigned int paddedLength) const
{
	return SaturatingSubtract(paddedLength/8, 10U);
}
Exemplo n.º 12
0
size_t NetworkSource::DoPump(lword &byteCount, bool blockingOutput, unsigned long maxTime, bool checkDelimiter, byte delimiter)
{
	NetworkReceiver &receiver = AccessReceiver();

	lword maxSize = byteCount;
	byteCount = 0;
	bool forever = maxTime == INFINITE_TIME;
	Timer timer(Timer::MILLISECONDS, forever);
	BufferedTransformation *t = AttachedTransformation();

	if (m_outputBlocked)
		goto DoOutput;

	while (true)
	{
		if (m_dataBegin == m_dataEnd)
		{
			if (receiver.EofReceived())
				break;

			if (m_waitingForResult)
			{
				if (receiver.MustWaitForResult() &&
					!receiver.Wait(SaturatingSubtract(maxTime, timer.ElapsedTime()),
						CallStack("NetworkSource::DoPump() - wait receive result", 0)))
					break;

				unsigned int recvResult = receiver.GetReceiveResult();
#if CRYPTOPP_TRACE_NETWORK
				OutputDebugString((IntToString((unsigned int)this) + ": Received " + IntToString(recvResult) + " bytes\n").c_str());
#endif
				m_dataEnd += recvResult;
				m_waitingForResult = false;

				if (!receiver.MustWaitToReceive() && !receiver.EofReceived() && m_dataEnd != m_buf.size())
					goto ReceiveNoWait;
			}
			else
			{
				m_dataEnd = m_dataBegin = 0;

				if (receiver.MustWaitToReceive())
				{
					if (!receiver.Wait(SaturatingSubtract(maxTime, timer.ElapsedTime()),
							CallStack("NetworkSource::DoPump() - wait receive", 0)))
						break;

					receiver.Receive(m_buf+m_dataEnd, m_buf.size()-m_dataEnd);
					m_waitingForResult = true;
				}
				else
				{
ReceiveNoWait:
					m_waitingForResult = true;
					// call Receive repeatedly as long as data is immediately available,
					// because some receivers tend to return data in small pieces
#if CRYPTOPP_TRACE_NETWORK
					OutputDebugString((IntToString((unsigned int)this) + ": Receiving " + IntToString(m_buf.size()-m_dataEnd) + " bytes\n").c_str());
#endif
					while (receiver.Receive(m_buf+m_dataEnd, m_buf.size()-m_dataEnd))
					{
						unsigned int recvResult = receiver.GetReceiveResult();
#if CRYPTOPP_TRACE_NETWORK
						OutputDebugString((IntToString((unsigned int)this) + ": Received " + IntToString(recvResult) + " bytes\n").c_str());
#endif
						m_dataEnd += recvResult;
						if (receiver.EofReceived() || m_dataEnd > m_buf.size() /2)
						{
							m_waitingForResult = false;
							break;
						}
					}
				}
			}
		}
		else
		{
			m_putSize = UnsignedMin(m_dataEnd - m_dataBegin, maxSize - byteCount);

			if (checkDelimiter)
				m_putSize = std::find(m_buf+m_dataBegin, m_buf+m_dataBegin+m_putSize, delimiter) - (m_buf+m_dataBegin);

DoOutput:
			size_t result = t->PutModifiable2(m_buf+m_dataBegin, m_putSize, 0, forever || blockingOutput);
			if (result)
			{
				if (t->Wait(SaturatingSubtract(maxTime, timer.ElapsedTime()),
						CallStack("NetworkSource::DoPump() - wait attachment", 0)))
					goto DoOutput;
				else
				{
					m_outputBlocked = true;
					return result;
				}
			}
			m_outputBlocked = false;

			byteCount += m_putSize;
			m_dataBegin += m_putSize;
			if (checkDelimiter && m_dataBegin < m_dataEnd && m_buf[m_dataBegin] == delimiter)
				break;
			if (maxSize != ULONG_MAX && byteCount == maxSize)
				break;
			// once time limit is reached, return even if there is more data waiting
			// but make 0 a special case so caller can request a large amount of data to be
			// pumped as long as it is immediately available
			if (maxTime > 0 && timer.ElapsedTime() > maxTime)
				break;
		}
	}

	return 0;
}
Exemplo n.º 13
0
bool WaitObjectContainer::Wait(unsigned long milliseconds)
{
	if (m_noWait || (m_handles.empty() && !m_firstEventTime))
	{
		SetLastResult(LASTRESULT_NOWAIT);
		return true;
	}

	bool timeoutIsScheduledEvent = false;

	if (m_firstEventTime)
	{
		double timeToFirstEvent = SaturatingSubtract(m_firstEventTime, m_eventTimer.ElapsedTimeAsDouble());

		if (timeToFirstEvent <= milliseconds)
		{
			milliseconds = (unsigned long)timeToFirstEvent;
			timeoutIsScheduledEvent = true;
		}

		if (m_handles.empty() || !milliseconds)
		{
			if (milliseconds)
				Sleep(milliseconds);
			SetLastResult(timeoutIsScheduledEvent ? LASTRESULT_SCHEDULED : LASTRESULT_TIMEOUT);
			return timeoutIsScheduledEvent;
		}
	}

	if (m_handles.size() > MAXIMUM_WAIT_OBJECTS)
	{
		// too many wait objects for a single WaitForMultipleObjects call, so use multiple threads
		static const unsigned int WAIT_OBJECTS_PER_THREAD = MAXIMUM_WAIT_OBJECTS-1;
		unsigned int nThreads = (unsigned int)((m_handles.size() + WAIT_OBJECTS_PER_THREAD - 1) / WAIT_OBJECTS_PER_THREAD);
		if (nThreads > MAXIMUM_WAIT_OBJECTS)	// still too many wait objects, maybe implement recursive threading later?
			throw Err("WaitObjectContainer: number of wait objects exceeds limit");
		CreateThreads(nThreads);
		DWORD error = S_OK;
		
		for (unsigned int i=0; i<m_threads.size(); i++)
		{
			WaitingThreadData &thread = *m_threads[i];
			while (!thread.waitingToWait)	// spin until thread is in the initial "waiting to wait" state
				Sleep(0);
			if (i<nThreads)
			{
				thread.waitHandles = &m_handles[i*WAIT_OBJECTS_PER_THREAD];
				thread.count = UnsignedMin(WAIT_OBJECTS_PER_THREAD, m_handles.size() - i*WAIT_OBJECTS_PER_THREAD);
				thread.error = &error;
			}
			else
				thread.count = 0;
		}

		ResetEvent(m_stopWaiting);
		PulseEvent(m_startWaiting);

		DWORD result = ::WaitForSingleObject(m_stopWaiting, milliseconds);
		if (result == WAIT_OBJECT_0)
		{
			if (error == S_OK)
				return true;
			else
				throw Err("WaitObjectContainer: WaitForMultipleObjects in thread failed with error " + IntToString(error));
		}
		SetEvent(m_stopWaiting);
		if (result == WAIT_TIMEOUT)
		{
			SetLastResult(timeoutIsScheduledEvent ? LASTRESULT_SCHEDULED : LASTRESULT_TIMEOUT);
			return timeoutIsScheduledEvent;
		}
		else
			throw Err("WaitObjectContainer: WaitForSingleObject failed with error " + IntToString(::GetLastError()));
	}
	else
	{
#if TRACE_WAIT
		static Timer t(Timer::MICROSECONDS);
		static unsigned long lastTime = 0;
		unsigned long timeBeforeWait = t.ElapsedTime();
#endif
		DWORD result = ::WaitForMultipleObjects((DWORD)m_handles.size(), &m_handles[0], FALSE, milliseconds);
#if TRACE_WAIT
		if (milliseconds > 0)
		{
			unsigned long timeAfterWait = t.ElapsedTime();
			OutputDebugString(("Handles " + IntToString(m_handles.size()) + ", Woke up by " + IntToString(result-WAIT_OBJECT_0) + ", Busied for " + IntToString(timeBeforeWait-lastTime) + " us, Waited for " + IntToString(timeAfterWait-timeBeforeWait) + " us, max " + IntToString(milliseconds) + "ms\n").c_str());
			lastTime = timeAfterWait;
		}
#endif
		if (result >= WAIT_OBJECT_0 && result < WAIT_OBJECT_0 + m_handles.size())
		{
			if (result == m_lastResult)
				m_sameResultCount++;
			else
			{
				m_lastResult = result;
				m_sameResultCount = 0;
			}
			return true;
		}
		else if (result == WAIT_TIMEOUT)
		{
			SetLastResult(timeoutIsScheduledEvent ? LASTRESULT_SCHEDULED : LASTRESULT_TIMEOUT);
			return timeoutIsScheduledEvent;
		}
		else
			throw Err("WaitObjectContainer: WaitForMultipleObjects failed with error " + IntToString(::GetLastError()));
	}
}
Exemplo n.º 14
0
byte * ArraySink::CreatePutSpace(size_t &size)
{
	size = SaturatingSubtract(m_size, m_total);
	return m_buf + m_total;
}
Exemplo n.º 15
0
 word32 FixedMaxPlaintextLength() const 
             {return SaturatingSubtract(PaddedBlockBitLength() / 8, 10U); }
Exemplo n.º 16
0
lword NetworkSink::DoFlush(unsigned long maxTime, size_t targetSize)
{
	NetworkSender &sender = AccessSender();

	bool forever = maxTime == INFINITE_TIME;
	Timer timer(Timer::MILLISECONDS, forever);
	unsigned int totalFlushSize = 0;

	while (true)
	{
		if (m_buffer.CurrentSize() <= targetSize)
			break;
		
		if (m_needSendResult)
		{
			if (sender.MustWaitForResult() &&
				!sender.Wait(SaturatingSubtract(maxTime, timer.ElapsedTime()),
					CallStack("NetworkSink::DoFlush() - wait send result", 0)))
				break;

			unsigned int sendResult = sender.GetSendResult();
#if CRYPTOPP_TRACE_NETWORK
			OutputDebugString((IntToString((unsigned int)this) + ": Sent " + IntToString(sendResult) + " bytes\n").c_str());
#endif
			m_buffer.Skip(sendResult);
			totalFlushSize += sendResult;
			m_needSendResult = false;

			if (!m_buffer.AnyRetrievable())
				break;
		}

		unsigned long timeOut = maxTime ? SaturatingSubtract(maxTime, timer.ElapsedTime()) : 0;
		if (sender.MustWaitToSend() && !sender.Wait(timeOut, CallStack("NetworkSink::DoFlush() - wait send", 0)))
			break;

		size_t contiguousSize = 0;
		const byte *block = m_buffer.Spy(contiguousSize);

#if CRYPTOPP_TRACE_NETWORK
		OutputDebugString((IntToString((unsigned int)this) + ": Sending " + IntToString(contiguousSize) + " bytes\n").c_str());
#endif
		sender.Send(block, contiguousSize);
		m_needSendResult = true;

		if (maxTime > 0 && timeOut == 0)
			break;	// once time limit is reached, return even if there is more data waiting
	}

	m_byteCountSinceLastTimerReset += totalFlushSize;
	ComputeCurrentSpeed();
	
	if (m_buffer.IsEmpty() && !m_needSendResult)
	{
		if (m_eofState == EOF_PENDING_SEND)
		{
			sender.SendEof();
			m_eofState = sender.MustWaitForEof() ? EOF_PENDING_DELIVERY : EOF_DONE;
		}

		while (m_eofState == EOF_PENDING_DELIVERY)
		{
			unsigned long timeOut = maxTime ? SaturatingSubtract(maxTime, timer.ElapsedTime()) : 0;
			if (!sender.Wait(timeOut, CallStack("NetworkSink::DoFlush() - wait EOF", 0)))
				break;

			if (sender.EofSent())
				m_eofState = EOF_DONE;
		}
	}

	return totalFlushSize;
}
size_t PSSR_MEM_Base::MaxRecoverableLength(size_t representativeBitLength, size_t hashIdentifierLength, size_t digestLength) const
{
	if (AllowRecovery())
		return SaturatingSubtract(representativeBitLength, MinRepresentativeBitLength(hashIdentifierLength, digestLength)) / 8;
	return 0;
}
Exemplo n.º 18
0
size_t OAEP_Base::MaxUnpaddedLength(size_t paddedLength) const
{
	return SaturatingSubtract(paddedLength/8, 1+2*DigestSize());
}
Exemplo n.º 19
0
size_t NonblockingSource::GeneralPump2(
	lword& byteCount, bool blockingOutput,
	unsigned long maxTime, bool checkDelimiter, byte delimiter)
{
	m_blockedBySpeedLimit = false;

	if (!GetMaxBytesPerSecond())
	{
		size_t ret = DoPump(byteCount, blockingOutput, maxTime, checkDelimiter, delimiter);
		m_doPumpBlocked = (ret != 0);
		return ret;
	}

	bool forever = (maxTime == INFINITE_TIME);
	unsigned long timeToGo = maxTime;
	Timer timer(Timer::MILLISECONDS, forever);
	lword maxSize = byteCount;
	byteCount = 0;

	timer.StartTimer();

	while (true)
	{
		lword curMaxSize = UnsignedMin(ComputeCurrentTransceiveLimit(), maxSize - byteCount);

		if (curMaxSize || m_doPumpBlocked)
		{
			if (!forever) timeToGo = SaturatingSubtract(maxTime, timer.ElapsedTime());
			size_t ret = DoPump(curMaxSize, blockingOutput, timeToGo, checkDelimiter, delimiter);
			m_doPumpBlocked = (ret != 0);
			if (curMaxSize)
			{
				NoteTransceive(curMaxSize);
				byteCount += curMaxSize;
			}
			if (ret)
				return ret;
		}

		if (maxSize != ULONG_MAX && byteCount >= maxSize)
			break;

		if (!forever)
		{
			timeToGo = SaturatingSubtract(maxTime, timer.ElapsedTime());
			if (!timeToGo)
				break;
		}

		double waitTime = TimeToNextTransceive();
		if (!forever && waitTime > timeToGo)
		{
			m_blockedBySpeedLimit = true;
			break;
		}

		WaitObjectContainer container;
		LimitedBandwidth::GetWaitObjects(container, CallStack("NonblockingSource::GeneralPump2() - speed limit", 0));
		container.Wait((unsigned long)waitTime);
	}

	return 0;
}
Exemplo n.º 20
0
unsigned int ArrayXorSink::Put2(const byte *begin, unsigned int length, int messageEnd, bool blocking)
{
	xorbuf(m_buf+m_total, begin, STDMIN(length, SaturatingSubtract(m_size, m_total)));
	m_total += length;
	return 0;
}