SimulatorReport
    NonlinearSolver<PhysicalModel>::
    step(const SimulatorTimerInterface& timer,
         const ReservoirState& initial_reservoir_state,
         const WellState& initial_well_state,
         ReservoirState& reservoir_state,
         WellState& well_state)
    {
        SimulatorReport iterReport;
        SimulatorReport report;
        failureReport_ = SimulatorReport();

        // Do model-specific once-per-step calculations.
        model_->prepareStep(timer, initial_reservoir_state, initial_well_state);

        int iteration = 0;

        // Let the model do one nonlinear iteration.

        // Set up for main solver loop.
        bool converged = false;

        // ----------  Main nonlinear solver loop  ----------
        do {
            try {
                // Do the nonlinear step. If we are in a converged state, the
                // model will usually do an early return without an expensive
                // solve, unless the minIter() count has not been reached yet.
                iterReport = model_->nonlinearIteration(iteration, timer, *this, reservoir_state, well_state);

                report += iterReport;
                report.converged = iterReport.converged;

                converged = report.converged;
                iteration += 1;
            }
            catch (...) {
                // if an iteration fails during a time step, all previous iterations
                // count as a failure as well
                failureReport_ += report;
                failureReport_ += model_->failureReport();
                throw;
            }
        } while ( (!converged && (iteration <= maxIter())) || (iteration <= minIter()));

        if (!converged) {
            failureReport_ += report;

            std::string msg = "Solver convergence failure - Failed to complete a time step within " + std::to_string(maxIter()) + " iterations.";
            OPM_THROW_NOLOG(Opm::TooManyIterations, msg);
        }

        // Do model-specific post-step actions.
        model_->afterStep(timer, reservoir_state, well_state);
        report.converged = true;

        return report;
    }
Exemplo n.º 2
0
        SimulatorReport nonlinearIteration(const int iteration,
                                           const SimulatorTimerInterface& timer,
                                           NonlinearSolverType& nonlinear_solver)
        {
            SimulatorReport report;
            failureReport_ = SimulatorReport();
            Dune::Timer perfTimer;

            perfTimer.start();
            if (iteration == 0) {
                // For each iteration we store in a vector the norms of the residual of
                // the mass balance for each active phase, the well flux and the well equations.
                residual_norms_history_.clear();
                current_relaxation_ = 1.0;
                dx_old_ = 0.0;
                convergence_reports_.push_back({timer.reportStepNum(), timer.currentStepNum(), {}});
                convergence_reports_.back().report.reserve(11);
            }

            report.total_linearizations = 1;

            try {
                report += assembleReservoir(timer, iteration);
                report.assemble_time += perfTimer.stop();
            }
            catch (...) {
                report.assemble_time += perfTimer.stop();
                failureReport_ += report;
                // todo (?): make the report an attribute of the class
                throw; // continue throwing the stick
            }

            std::vector<double> residual_norms;
            perfTimer.reset();
            perfTimer.start();
            // the step is not considered converged until at least minIter iterations is done
            {
                auto convrep = getConvergence(timer, iteration,residual_norms);
                report.converged = convrep.converged()  && iteration > nonlinear_solver.minIter();;
                ConvergenceReport::Severity severity = convrep.severityOfWorstFailure();
                convergence_reports_.back().report.push_back(std::move(convrep));

                // Throw if any NaN or too large residual found.
                if (severity == ConvergenceReport::Severity::NotANumber) {
                    OPM_THROW(Opm::NumericalIssue, "NaN residual found!");
                } else if (severity == ConvergenceReport::Severity::TooLarge) {
                    OPM_THROW(Opm::NumericalIssue, "Too large residual found!");
                }
            }

             // checking whether the group targets are converged
             if (wellModel().wellCollection().groupControlActive()) {
                  report.converged = report.converged && wellModel().wellCollection().groupTargetConverged(wellModel().wellState().wellRates());
             }

            report.update_time += perfTimer.stop();
            residual_norms_history_.push_back(residual_norms);
            if (!report.converged) {
                perfTimer.reset();
                perfTimer.start();
                report.total_newton_iterations = 1;

                // enable single precision for solvers when dt is smaller then 20 days
                //residual_.singlePrecision = (unit::convert::to(dt, unit::day) < 20.) ;

                // Compute the nonlinear update.
                const int nc = UgGridHelpers::numCells(grid_);
                BVector x(nc);

                // apply the Schur compliment of the well model to the reservoir linearized
                // equations
                wellModel().linearize(ebosSimulator().model().linearizer().jacobian(),
                                      ebosSimulator().model().linearizer().residual());

                // Solve the linear system.
                linear_solve_setup_time_ = 0.0;
                try {
                    solveJacobianSystem(x);
                    report.linear_solve_setup_time += linear_solve_setup_time_;
                    report.linear_solve_time += perfTimer.stop();
                    report.total_linear_iterations += linearIterationsLastSolve();
                }
                catch (...) {
                    report.linear_solve_setup_time += linear_solve_setup_time_;
                    report.linear_solve_time += perfTimer.stop();
                    report.total_linear_iterations += linearIterationsLastSolve();

                    failureReport_ += report;
                    throw; // re-throw up
                }

                perfTimer.reset();
                perfTimer.start();

                // handling well state update before oscillation treatment is a decision based
                // on observation to avoid some big performance degeneration under some circumstances.
                // there is no theorectical explanation which way is better for sure.
                wellModel().postSolve(x);

                if (param_.use_update_stabilization_) {
                    // Stabilize the nonlinear update.
                    bool isOscillate = false;
                    bool isStagnate = false;
                    nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate);
                    if (isOscillate) {
                        current_relaxation_ -= nonlinear_solver.relaxIncrement();
                        current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
                        if (terminalOutputEnabled()) {
                            std::string msg = "    Oscillating behavior detected: Relaxation set to "
                                    + std::to_string(current_relaxation_);
                            OpmLog::info(msg);
                        }
                    }
                    nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_);
                }

                // Apply the update, with considering model-dependent limitations and
                // chopping of the update.
                updateSolution(x);

                report.update_time += perfTimer.stop();
            }

            return report;
        }