Exemplo n.º 1
0
int benchmark(void)
{
   double  a1 = 1.0, b1 = -10.5, c1 = 32.0, d1 = -30.0;
   double  a2 = 1.0, b2 = -4.5, c2 = 17.0, d2 = -30.0;
   double  a3 = 1.0, b3 = -3.5, c3 = 22.0, d3 = -31.0;
   double  a4 = 1.0, b4 = -13.7, c4 = 1.0, d4 = -35.0;
   int     solutions;

   double output[48] = {0};
   double *output_pos = &(output[0]);

   /* solve some cubic functions */
   /* should get 3 solutions: 2, 6 & 2.5   */
   SolveCubic(a1, b1, c1, d1, &solutions, output);
   /* should get 1 solution: 2.5           */
   SolveCubic(a2, b2, c2, d2, &solutions, output);
   SolveCubic(a3, b3, c3, d3, &solutions, output);
   SolveCubic(a4, b4, c4, d4, &solutions, output);
   /* Now solve some random equations */
   for(a1=1;a1<3;a1++) {
      for(b1=10;b1>8;b1--) {
         for(c1=5;c1<6;c1+=0.5) {
            for(d1=-1;d1>-3;d1--) {
               SolveCubic(a1, b1, c1, d1, &solutions, output_pos);
            }
         }
      }
   }

   return 0;
}
Exemplo n.º 2
0
int main(void) {
    double  a1 = 1.0, b1 = -10.5, c1 = 32.0, d1 = -30.0;
    double  a2 = 1.0, b2 = -4.5, c2 = 17.0, d2 = -30.0;
    double  x[3];
    int     solutions;

    SolveCubic(a1, b1, c1, d1, &solutions, x);

    /* should get 3 solutions: 2, 6 & 2.5   */

    SolveCubic(a2, b2, c2, d2, &solutions, x);

    /* should get 1 solution: 2.5           */

    return 0;
}
Exemplo n.º 3
0
	bool EigenValues(const mat3& m, vec3& res)
	{
		double a = double(1);
		double b = -(m[0] + m[4] + m[8]);
		double c = (m[0]*m[4] + m[0]*m[8] + m[4]*m[8] - m[7]*m[5] - m[1]*m[3] - m[2]*m[6]);
		double d = -(m[0]*m[4]*m[8] - m[0]*m[7]*m[5] - m[1]*m[3]*m[8] + m[1]*m[6]*m[5] + m[2]*m[3]*m[7] - m[2]*m[6]*m[4]);

		double in[] = {d, c, b, a};
		double out[3];
		auto result = SolveCubic(in, out);
		if (result == RootFindResult::RESULT_NO_SOLUTION)
			return false;

		std::sort(out, out+3);

		res[0] = (float)out[2];
		res[1] = (float)out[1];
		res[2] = (float)out[0];

		return true;
	}
Exemplo n.º 4
0
int main(void)
{

__asm__ ("set	0x00000003, %o0\n\t"
	 "set	0x00000001, %o1\n\t"
	 "set	0x80000b00, %o2\n\t"
	 "st	%o0, [%o2 + 0x08]\n\t"
	 "st	%o1, [%o2 + 0x04]\n\t");

  double  a1 = 1.0, b1 = -10.5, c1 = 32.0, d1 = -30.0;
  double  a2 = 1.0, b2 = -4.5, c2 = 17.0, d2 = -30.0;
  double  a3 = 1.0, b3 = -3.5, c3 = 22.0, d3 = -31.0;
  double  a4 = 1.0, b4 = -13.7, c4 = 1.0, d4 = -35.0;
  double  x[3];
  double X,fl;
  int     solutions;
  int i,n_eq=0;
  unsigned long l = 0x3fed0169L;
  struct int_sqrt q;
  long n = 0;
  /* solve soem cubic functions */
  printf("********* CUBIC FUNCTIONS ***********\n");
  /* should get 3 solutions: 2, 6 & 2.5   */
  SolveCubic(a1, b1, c1, d1, &solutions, x);  
  printf("1st equation\n");
  for(i=0;i<solutions;i++)
    //printf(" %f",x[i]);  		////OJO
  //printf("\n");          		////OJO
  /* should get 1 solution: 2.5           */
  SolveCubic(a2, b2, c2, d2, &solutions, x);  
  printf("2nd equation\n");
  for(i=0;i<solutions;i++)
    //printf(" %f",x[i]);			////OJO
  //printf("\n");				////OJO
  SolveCubic(a3, b3, c3, d3, &solutions, x);
  printf("3rd equation\n");
  for(i=0;i<solutions;i++)
  //  printf(" %f",x[i]);			////OJO
  //printf("\n");				////OJO
  SolveCubic(a4, b4, c4, d4, &solutions, x);
  printf("4th equation\n");
  for(i=0;i<solutions;i++)
  //  printf(" %f",x[i]); 			////OJO
  //printf("\n");				////OJO
  /* Now solve some random equations */
printf("Solving many random equations\n");   		////OJO
  for(a1=1;a1<10;a1++) {
    for(b1=10;b1>0;b1--) {
      for(c1=5;c1<15;c1+=0.5) {
	for(d1=-1;d1>-11;d1--) {
	  SolveCubic(a1, b1, c1, d1, &solutions, x);  
	  n_eq = n_eq++;
	  //printf("Solutions: 5 (random)");    ////OJO
	  //for(i=0;i<solutions;i++)		////OJO
	    //printf(" %f",x[i]);		////OJO
	  //printf("\n");			////OJO
	}
      }
    }
  }
printf("Solved %d random cubic equations\n",n_eq);
  
  printf("******** 1000 INTEGER SQR ROOTS *********\n");
  /* perform some integer square roots */
  for (i = 0; i < 1001; ++i)
    {
      usqrt(i, &q);
			// remainder differs on some machines
     // printf("sqrt(%3d) = %2d, remainder = %2d\n",
     //printf("sqrt(%3d) = %2d\n",			////OJO
     //	     i, q.sqrt);				////OJO
    }
  usqrt(l, &q);
  //printf("\nsqrt(%lX) = %X, remainder = %X\n", l, q.sqrt, q.frac);
  //printf("\nsqrt(%lX) = %X\n", l, q.sqrt);		////OJO


  printf("** ANGLE CONVERSION DEG to RAD from 0 to 360 **\n");
  /* convert some rads to degrees */
  for (X = 0.0; X <= 360.0; X += 1.0)
   fl= deg2rad(X);          /////OJO
    //printf("%3.0f degrees = %.12f radians\n", X, deg2rad(X));    /////OJO
  puts("");
 printf("** ANGLE CONVERSION RAD to DEG from 0.0 to 2PI sampling 1e-6 **\n");
  for (X = 0.0; X <= (2 * PI + 1e-6); X += (PI / 180))
   fl=rad2deg(X);   ////OJO
    //printf("%.12f radians = %3.0f degrees\n", X, rad2deg(X));
  
  printf("Program exits successfully\n");

__asm__ ("set	0x00000000, %o1\n\t"
	 "set	0x80000b00, %o2\n\t"
	 "st	%o1, [%o2 + 0x04]\n\t");

  return 0;
}
Exemplo n.º 5
0
int SolveQuartic( double c[5], double s[4] )
{
    double  coeffs[ 4 ];
    double  z, u, v, sub;
    double  A, B, C, D;
    double  sq_A, p, q, r;
    int     i, num;

    /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */

    A = c[ 3 ] / c[ 4 ];
    B = c[ 2 ] / c[ 4 ];
    C = c[ 1 ] / c[ 4 ];
    D = c[ 0 ] / c[ 4 ];

    /*  substitute x = y - A/4 to eliminate cubic term:
	x^4 + px^2 + qx + r = 0 */

    sq_A = A * A;
    p = - 3.0/8 * sq_A + B;
    q = 1.0/8 * sq_A * A - 1.0/2 * A * B + C;
    r = - 3.0/256*sq_A*sq_A + 1.0/16*sq_A*B - 1.0/4*A*C + D;

    if (IsZero(r))
    {
	/* no absolute term: y(y^3 + py + q) = 0 */

	coeffs[ 0 ] = q;
	coeffs[ 1 ] = p;
	coeffs[ 2 ] = 0;
	coeffs[ 3 ] = 1;

	num = SolveCubic(coeffs, s);

	s[ num++ ] = 0;
    }
    else
    {
	/* solve the resolvent cubic ... */

	coeffs[ 0 ] = 1.0/2 * r * p - 1.0/8 * q * q;
	coeffs[ 1 ] = - r;
	coeffs[ 2 ] = - 1.0/2 * p;
	coeffs[ 3 ] = 1;

	(void) SolveCubic(coeffs, s);

	/* ... and take the one real solution ... */

	z = s[ 0 ];

	/* ... to build two quadric equations */

	u = z * z - r;
	v = 2 * z - p;

	if (IsZero(u))
	    u = 0;
	else if (u > 0)
	    u = sqrt(u);
	else
	    return 0;

	if (IsZero(v))
	    v = 0;
	else if (v > 0)
	    v = sqrt(v);
	else
	    return 0;

	coeffs[ 0 ] = z - u;
	coeffs[ 1 ] = q < 0 ? -v : v;
	coeffs[ 2 ] = 1;

	num = SolveQuadric(coeffs, s);

	coeffs[ 0 ]= z + u;
	coeffs[ 1 ] = q < 0 ? v : -v;
	coeffs[ 2 ] = 1;

	num += SolveQuadric(coeffs, s + num);
    }

    /* resubstitute */

    sub = 1.0/4 * A;

    for (i = 0; i < num; ++i)
	s[ i ] -= sub;

    return num;
}
Exemplo n.º 6
0
/* Both ellipses are assumed to have non-zero radii */
int Int2Elip(Point *IntPts,Ellipse *E1,Ellipse *E2)
   {
   TMat ElpCirMat1,ElpCirMat2,InvMat,TempMat;
   Conic Conic1,Conic2,Conic3,TempConic;
   double Roots[3],qRoots[2];
   static Circle TestCir = {{0.0,0.0},1.0};
   Line TestLine[2];
   Point TestPoint;
   double PolyCoef[4];		/* coefficients of the polynomial */
   double D;			/* discriminant: B^2 - AC */
   double Phi;			/* ellipse rotation */
   double m,n;			/* ellipse translation */
   double Scl;			/* scaling factor */
   int NumRoots,NumLines;
   int CircleInts;		/* intersections between line and circle */
   int IntCount = 0;		/* number of intersections found */
   int i,j,k;

   /* compute the transformations which turn E1 and E2 into circles */
   Elp2Cir(E1,&ElpCirMat1);
   Elp2Cir(E2,&ElpCirMat2);

   /* compute the inverse transformation of ElpCirMat1 */
   InvElp2Cir(E1,&InvMat);

   /* Compute the characteristic matrices */
   GenEllipseCoefs(E1,&Conic1);
   GenEllipseCoefs(E2,&Conic2);

   /* Find x such that Det(Conic1 + x Conic2) = 0 */
   PolyCoef[0] = -Conic1.C*Conic1.D*Conic1.D + 2.0*Conic1.B*Conic1.D*Conic1.E -
      Conic1.A*Conic1.E*Conic1.E - Conic1.B*Conic1.B*Conic1.F +
      Conic1.A*Conic1.C*Conic1.F;
   PolyCoef[1] = -(Conic2.C*Conic1.D*Conic1.D) -
      2.0*Conic1.C*Conic1.D*Conic2.D + 2.0*Conic2.B*Conic1.D*Conic1.E +
      2.0*Conic1.B*Conic2.D*Conic1.E - Conic2.A*Conic1.E*Conic1.E +
      2.0*Conic1.B*Conic1.D*Conic2.E - 2.0*Conic1.A*Conic1.E*Conic2.E -
      2.0*Conic1.B*Conic2.B*Conic1.F + Conic2.A*Conic1.C*Conic1.F +
      Conic1.A*Conic2.C*Conic1.F - Conic1.B*Conic1.B*Conic2.F +
      Conic1.A*Conic1.C*Conic2.F;
   PolyCoef[2] = -2.0*Conic2.C*Conic1.D*Conic2.D - Conic1.C*Conic2.D*Conic2.D +
      2.0*Conic2.B*Conic2.D*Conic1.E + 2.0*Conic2.B*Conic1.D*Conic2.E +
      2.0*Conic1.B*Conic2.D*Conic2.E - 2.0*Conic2.A*Conic1.E*Conic2.E -
      Conic1.A*Conic2.E*Conic2.E - Conic2.B*Conic2.B*Conic1.F +
      Conic2.A*Conic2.C*Conic1.F - 2.0*Conic1.B*Conic2.B*Conic2.F +
      Conic2.A*Conic1.C*Conic2.F + Conic1.A*Conic2.C*Conic2.F;
   PolyCoef[3] = -Conic2.C*Conic2.D*Conic2.D + 2.0*Conic2.B*Conic2.D*Conic2.E -
      Conic2.A*Conic2.E*Conic2.E - Conic2.B*Conic2.B*Conic2.F +
      Conic2.A*Conic2.C*Conic2.F;
   NumRoots = SolveCubic(PolyCoef,Roots);

   if (NumRoots == 0)
      return 0;

   /* we try all the roots, even though it's redundant, so that we
      avoid some pathological situations */
   for (i=0;i<NumRoots;i++)
      {
      NumLines = 0;

      /* Conic3 = Conic1 + mu Conic2 */
      Conic3.A = Conic1.A + Roots[i]*Conic2.A;
      Conic3.B = Conic1.B + Roots[i]*Conic2.B;
      Conic3.C = Conic1.C + Roots[i]*Conic2.C;
      Conic3.D = Conic1.D + Roots[i]*Conic2.D;
      Conic3.E = Conic1.E + Roots[i]*Conic2.E;
      Conic3.F = Conic1.F + Roots[i]*Conic2.F;

      D = Conic3.B*Conic3.B - Conic3.A*Conic3.C;
      if (IsZero(Conic3.A) && IsZero(Conic3.B) && IsZero(Conic3.C))
	 {
	 /* Case 1 - Single line */
	 NumLines = 1;
	 /* compute endpoints of the line, avoiding division by zero */
	 if (fabs(Conic3.D) > fabs(Conic3.E))
	    {
	    TestLine[0].P1.Y = 0.0;
	    TestLine[0].P1.X = -Conic3.F/(Conic3.D + Conic3.D);
	    TestLine[0].P2.Y = 1.0;
	    TestLine[0].P2.X = -(Conic3.E + Conic3.E + Conic3.F)/
	       (Conic3.D + Conic3.D);
	    }
	 else
	    {
	    TestLine[0].P1.X = 0.0;
	    TestLine[0].P1.Y = -Conic3.F/(Conic3.E + Conic3.E);
	    TestLine[0].P2.X = 1.0;
	    TestLine[0].P2.Y = -(Conic3.D + Conic3.D + Conic3.F)/
	       (Conic3.E + Conic3.E);
	    }
	 }
      else
	 {
	 /* use the espresion for Phi that takes atan of the
	    smallest argument */
	 Phi = (fabs(Conic3.B + Conic3.B) < fabs(Conic3.A-Conic3.C)?
	    atan((Conic3.B + Conic3.B)/(Conic3.A - Conic3.C)):
	    M_PI_2 - atan((Conic3.A - Conic3.C)/(Conic3.B + Conic3.B)))/2.0;
	 if (IsZero(D))
	    {
	    /* Case 2 - Parallel lines */
	    TempConic = Conic3;
	    TempMat = IdentMat;
	    RotateMat(&TempMat,-Phi);
	    TransformConic(&TempConic,&TempMat);
	    if (IsZero(TempConic.C))   /* vertical */
	       {
	       PolyCoef[0] = TempConic.F;
	       PolyCoef[1] = 2*TempConic.D;
	       PolyCoef[2] = TempConic.A;
	       if ((NumLines=SolveQuadic(PolyCoef,qRoots))!=0)
		  {
		  TestLine[0].P1.X = qRoots[0];
		  TestLine[0].P1.Y = -1.0;
		  TestLine[0].P2.X = qRoots[0];
		  TestLine[0].P2.Y = 1.0;
		  if (NumLines==2)
		     {
		     TestLine[1].P1.X = qRoots[1];
		     TestLine[1].P1.Y = -1.0;
		     TestLine[1].P2.X = qRoots[1];
		     TestLine[1].P2.Y = 1.0;
		     }
		  }
	       }
	    else		    /* horizontal */
	       {
	       PolyCoef[0] = TempConic.F;
	       PolyCoef[1] = 2*TempConic.E;
	       PolyCoef[2] = TempConic.C;
	       if ((NumLines=SolveQuadic(PolyCoef,qRoots))!=0)
		  {
		  TestLine[0].P1.X = -1.0;
		  TestLine[0].P1.Y = qRoots[0];
		  TestLine[0].P2.X = 1.0;
		  TestLine[0].P2.Y = qRoots[0];
		  if (NumLines==2)
		     {
		     TestLine[1].P1.X = -1.0;
		     TestLine[1].P1.Y = qRoots[1];
		     TestLine[1].P2.X = 1.0;
		     TestLine[1].P2.Y = qRoots[1];
		     }
		  }
	       }
	    TempMat = IdentMat;
	    RotateMat(&TempMat,Phi);
	    TransformPoint(&TestLine[0].P1,&TempMat);
	    TransformPoint(&TestLine[0].P2,&TempMat);
	    if (NumLines==2)
	       {
	       TransformPoint(&TestLine[1].P1,&TempMat);
	       TransformPoint(&TestLine[1].P2,&TempMat);
	       }
	    }
	 else
	    {
	    /* Case 3 - Crossing lines */
	    NumLines = 2;

	    /* translate the system so that the intersection of the lines
	       is at the origin */
	    TempConic = Conic3;
	    m = (Conic3.C*Conic3.D - Conic3.B*Conic3.E)/D;
	    n = (Conic3.A*Conic3.E - Conic3.B*Conic3.D)/D;
	    TempMat = IdentMat;
	    TranslateMat(&TempMat,-m,-n);
	    RotateMat(&TempMat,-Phi);
	    TransformConic(&TempConic,&TempMat);

	    /* Compute the line endpoints */
	    TestLine[0].P1.X = sqrt(fabs(1.0/TempConic.A));
	    TestLine[0].P1.Y = sqrt(fabs(1.0/TempConic.C));
	    Scl = max(TestLine[0].P1.X,TestLine[0].P1.Y);  /* adjust range */
	    TestLine[0].P1.X /= Scl;
	    TestLine[0].P1.Y /= Scl;
	    TestLine[0].P2.X = - TestLine[0].P1.X;
	    TestLine[0].P2.Y = - TestLine[0].P1.Y;
	    TestLine[1].P1.X = TestLine[0].P1.X;
	    TestLine[1].P1.Y = - TestLine[0].P1.Y;
	    TestLine[1].P2.X = - TestLine[1].P1.X;
	    TestLine[1].P2.Y = - TestLine[1].P1.Y;

	    /* translate the lines back */
	    TempMat = IdentMat;
	    RotateMat(&TempMat,Phi);
	    TranslateMat(&TempMat,m,n);
	    TransformPoint(&TestLine[0].P1,&TempMat);
	    TransformPoint(&TestLine[0].P2,&TempMat);
	    TransformPoint(&TestLine[1].P1,&TempMat);
	    TransformPoint(&TestLine[1].P2,&TempMat);
	    }
	 }

      /* find the ellipse line intersections */
      for (j = 0;j < NumLines;j++)
	 {
	 /* transform the line endpts into the circle space of the ellipse */
	 TransformPoint(&TestLine[j].P1,&ElpCirMat1);
	 TransformPoint(&TestLine[j].P2,&ElpCirMat1);

	 /* compute the number of intersections of the transformed line
	    and test circle */
	 CircleInts = IntCirLine(&IntPts[IntCount],&TestCir,&TestLine[j]);
	 if (CircleInts>0)
	    {
	    /* transform the intersection points back into ellipse space */
	    for (k = 0;k < CircleInts;k++)
	       TransformPoint(&IntPts[IntCount+k],&InvMat);
	    /* update the number of intersections found */
	    IntCount += CircleInts;
	    }
	 }
      }
   /* validate the points */
   j = IntCount;
   IntCount = 0;
   for (i = 0;i < j;i++)
      {
      TestPoint = IntPts[i];
      TransformPoint(&TestPoint,&ElpCirMat2);
      if (TestPoint.X < 2.0 && TestPoint.Y < 2.0 &&
	 IsZero(1.0 - sqrt(TestPoint.X*TestPoint.X +
	 TestPoint.Y*TestPoint.Y)))
	 IntPts[IntCount++]=IntPts[i];
      }
   return IntCount;
   }
int startup(void)
{
  double  a1 = 1.0, b1 = -10.5, c1 = 32.0, d1 = -30.0;
  double  a2 = 1.0, b2 = -4.5, c2 = 17.0, d2 = -30.0;
  double  a3 = 1.0, b3 = -3.5, c3 = 22.0, d3 = -31.0;
  double  a4 = 1.0, b4 = -13.7, c4 = 1.0, d4 = -35.0;
  double  x[3];
  double X;
  int     solutions;
  int i;
  unsigned long l = 0x3fed0169L;
  struct int_sqrt q;
  long n = 0;

  /* solve soem cubic functions */
  printf("********* CUBIC FUNCTIONS ***********\n");
  /* should get 3 solutions: 2, 6 & 2.5   */
  SolveCubic(a1, b1, c1, d1, &solutions, x);  
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[i]);
  printf("\n");
  /* should get 1 solution: 2.5           */
  SolveCubic(a2, b2, c2, d2, &solutions, x);  
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[i]);
  printf("\n");
  SolveCubic(a3, b3, c3, d3, &solutions, x);
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[i]);
  printf("\n");
  SolveCubic(a4, b4, c4, d4, &solutions, x);
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[i]);
  printf("\n");
  /* Now solve some random equations */
  for(a1=1;a1<10;a1++) {
    for(b1=10;b1>0;b1--) {
      for(c1=5;c1<15;c1+=0.5) {
	for(d1=-1;d1>-11;d1--) {
	  SolveCubic(a1, b1, c1, d1, &solutions, x);  
	  printf("Solutions:");
	  for(i=0;i<solutions;i++)
	    printf(" %f",x[i]);
	  printf("\n");
	}
      }
    }
  }
  
  printf("********* INTEGER SQR ROOTS ***********\n");
  /* perform some integer square roots */
  for (i = 0; i < 1001; ++i)
    {
      usqrt(i, &q);
			// remainder differs on some machines
     // printf("sqrt(%3d) = %2d, remainder = %2d\n",
     printf("sqrt(%3d) = %2d\n",
	     i, q.sqrt);
    }
  usqrt(l, &q);
  //printf("\nsqrt(%lX) = %X, remainder = %X\n", l, q.sqrt, q.frac);
  printf("\nsqrt(%lX) = %X\n", l, q.sqrt);


  printf("********* ANGLE CONVERSION ***********\n");
  /* convert some rads to degrees */
  for (X = 0.0; X <= 360.0; X += 1.0)
    printf("%3.0f degrees = %.12f radians\n", X, deg2rad(X));
  puts("");
  for (X = 0.0; X <= (2 * PI + 1e-6); X += (PI / 180))
    printf("%.12f radians = %3.0f degrees\n", X, rad2deg(X));
  
  
  return 0;
}
Exemplo n.º 8
0
void SolveKEps(short kimp, int tinc, double sh, double bu, double tr,
   double Km, double *tke, double *eps)
{
  int it, nit = 0;
  double pr, a, b, c, d, ets;
  const double c1 = 1.44, c2 = 1.92, tol = 0.00000001, mu = 0.09;
  const double tkemin = 0.001, epsmin = 0.000001;
  double c3, sb, Ea, epsa;
  double t1, t4, t5, t6, t7, t8, t9, t11, t20;
  c3 = c2 - 1.;
  if (!kimp)  {
/*   Analytical Version:  Explicit K */
/*    if (sh + bu > 0. && Km < 1.)  Km = 1.;
    sh *= Km; bu *= Km; */
    pr = sh + bu/* + PP(tr)*/;
    ets = *tke + tinc*(sh + bu);
    a = tinc*c3;
    b = ets + tinc*(*eps - c1*pr);
    c = -*eps * ets;
    d = b*b - 4.*a*c;
    if (d < 0.)  {
      *eps = epsmin;
      *tke = tkemin;
    }
    else  {
      *eps = (-b + sqrt(d)) / (2.*a);
      *tke = ets - tinc * *eps;
      if (*eps < epsmin)  *eps = epsmin;
      if (*tke < tkemin)  *tke = tkemin;
    }
  }
  else  {
/*
  Analytical Version: Implicit K:  
  The following formulae have been obtained with MapleV:
*/
    pr = sh + PP(bu);
    tr = PP(tr);
    sb = sh + bu;
    if (!*tke || !*eps)  {
      *tke = tkemin;
      *eps = epsmin;
    }
    Ea = *tke; epsa = *eps;
    t1 = c1*pr;
    t5 = c1*c1;
    t6 = pr*pr;
    t8 = t1*sb;
    t9 = sb*sb;
    t11 = mu*mu;
    t20 = tinc*tinc;
    a = ((sb-t1)*mu*c3+((t5*t6-2.*t8+t9)*t11+(2.*(t9-t8)*t11+
	t11*t9*c3)*c3)*t20)*tinc;
    b = -c3*epsa+(-2.*c2*mu*sb*epsa+((2.-c2)*tr*mu*sb+pr*mu*(2.*epsa-
	tr*c1))*c1)*t20+(-mu*sb*c2+(2.0*pr*c2-pr)*mu*c1)*tinc*Ea;
    t1 = epsa*epsa;
    t4 = c1*c1;
    t5 = tr*tr;
    t7 = sb*mu;
    t8 = tinc*tinc;
    c = (t1-epsa*tr*c1-t4*t5*t7*t8)*tinc+((2.*c2-1.)*epsa+
	(tr*c2*t7+pr*mu*tr*c1)*c1*t8-tinc*c1*pr*mu*c2*Ea)*Ea;
    d = (epsa*tinc*c1*tr-Ea*c2*epsa)*Ea;
    if (a == 0.)  {
      fprintf(stderr, "a is equal to zero in SolveKEps. Leaving\n");
      exit (0);
    }
    *tke = SolveCubic(b/a, c/a, d/a);
    *eps = *tke *(*tke *mu * tinc *(c1*pr - c2*sb) + epsa) /
        	 (-*tke * c3 + c2*Ea - tinc * c1 * tr);
    if (*tke <= tkemin)  *tke = tkemin;
    if (*eps < epsmin)  *eps = epsmin;
  }
}
Exemplo n.º 9
0
int main(void)
{
   double  a1 = 1.0, b1 = -10.5, c1 = 32.0, d1 = -30.0;
   double  a2 = 1.0, b2 = -4.5, c2 = 17.0, d2 = -30.0;
   double  a3 = 1.0, b3 = -3.5, c3 = 22.0, d3 = -31.0;
   double  a4 = 1.0, b4 = -13.7, c4 = 1.0, d4 = -35.0;
   int     solutions;
   int i;
   long n = 0;

   double output[48] = {0};
   double *output_pos = &(output[0]);
   int output_count = 0;
   int check_output[48] = {-9, 0, -0, -9,
      0, -0, -9, 0,
      -0, -9, 0, -0,
      -8, 0, -0, -8,
      0, -0, -8, 0,
      -0, -8, 0, -0,
      -4, 0, -0, -4,
      0, -0, -4, 0,
      -0, -4, 0, -0,
      -3, 0, -0, -3,
      0, -1, -3, 0,
      -0, -3, 0, -1};

   initialise_board();
   start_trigger();

   for(n = 0; n < SCALE_FACTOR; ++n)
   {
      /* solve some cubic functions */
      /* should get 3 solutions: 2, 6 & 2.5   */
      SolveCubic(a1, b1, c1, d1, &solutions, output);
      /* should get 1 solution: 2.5           */
      SolveCubic(a2, b2, c2, d2, &solutions, output);
      SolveCubic(a3, b3, c3, d3, &solutions, output);
      SolveCubic(a4, b4, c4, d4, &solutions, output);
      /* Now solve some random equations */
      for(a1=1;a1<3;a1++) {
         for(b1=10;b1>8;b1--) {
            for(c1=5;c1<6;c1+=0.5) {
               for(d1=-1;d1>-3;d1--) {
                  SolveCubic(a1, b1, c1, d1, &solutions, output_pos);
                  output_pos += solutions;
                  output_count += solutions;
               }
            }
         }
      }
   }

   stop_trigger();

   /* Verify that we have the correct result. */
   int to_return = 0;
   for (i = 0; i < output_count; i++) {
      if ((int) output[i] != check_output[i]) {
         to_return = -1;
         break;
      }
   }

   return to_return;
}
Exemplo n.º 10
0
int main(void)
{
  double  a1 = 1.0, b1 = -10.5, c1 = 32.0, d1 = -30.0;
  double  x[3];
  double X;
  int     solutions;
  int i;
  unsigned long l = 0x3fed0169L;
  struct int_sqrt q;
  long n = 0;

  /* solve soem cubic functions */
  printf("********* CUBIC FUNCTIONS ***********\n");
  /* should get 3 solutions: 2, 6 & 2.5   */
  SolveCubic(a1, b1, c1, d1, &solutions, x);  
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[i]);
  printf("\n");

  a1 = 1.0; b1 = -4.5; c1 = 17.0; d1 = -30.0;
  /* should get 1 solution: 2.5           */
  SolveCubic(a1, b1, c1, d1, &solutions, x);  
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[i]);
  printf("\n");

  a1 = 1.0; b1 = -3.5; c1 = 22.0; d1 = -31.0;
  SolveCubic(a1, b1, c1, d1, &solutions, x);
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[i]);
  printf("\n");

  a1 = 1.0; b1 = -13.7; c1 = 1.0; d1 = -35.0;
  SolveCubic(a1, b1, c1, d1, &solutions, x);
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[i]);
  printf("\n");

  a1 = 3.0; b1 = 12.34; c1 = 5.0; d1 = 12.0;
  SolveCubic(a1, b1, c1, d1, &solutions, x);
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[i]);
  printf("\n");

  a1 = -8.0; b1 = -67.89; c1 = 6.0; d1 = -23.6;
  SolveCubic(a1, b1, c1, d1, &solutions, x);
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[i]);
  printf("\n");

  a1 = 45.0; b1 = 8.67; c1 = 7.5; d1 = 34.0;
  SolveCubic(a1, b1, c1, d1, &solutions, x);
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[i]);
  printf("\n");

  a1 = -12.0; b1 = -1.7; c1 = 5.3; d1 = 16.0;
  SolveCubic(a1, b1, c1, d1, &solutions, x);
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[i]);
  printf("\n");

  /* Now solve some random equations */
  for(a1=1;a1<10;a1+=1) {
    for(b1=10;b1>0;b1-=.25) {
      for(c1=5;c1<15;c1+=0.61) {
	   for(d1=-1;d1>-5;d1-=.451) {
		SolveCubic(a1, b1, c1, d1, &solutions, x);  
		printf("Solutions:");
		for(i=0;i<solutions;i++)
		  printf(" %f",x[i]);
		printf("\n");
	   }
      }
    }
  }


  printf("********* INTEGER SQR ROOTS ***********\n");
  /* perform some integer square roots */
  for (i = 0; i < 100000; i+=2)
    {
      usqrt(i, &q);
			// remainder differs on some machines
     // printf("sqrt(%3d) = %2d, remainder = %2d\n",
     printf("sqrt(%3d) = %2d\n",
	     i, q.sqrt);
    }
  printf("\n");
  for (l = 0x3fed0169L; l < 0x3fed4169L; l++)
    {
	 usqrt(l, &q);
	 //printf("\nsqrt(%lX) = %X, remainder = %X\n", l, q.sqrt, q.frac);
	 printf("sqrt(%lX) = %X\n", l, q.sqrt);
    }


  printf("********* ANGLE CONVERSION ***********\n");
  /* convert some rads to degrees */
/*   for (X = 0.0; X <= 360.0; X += 1.0) */
  for (X = 0.0; X <= 360.0; X += .001)
    printf("%3.0f degrees = %.12f radians\n", X, deg2rad(X));
  puts("");
/*   for (X = 0.0; X <= (2 * PI + 1e-6); X += (PI / 180)) */
  for (X = 0.0; X <= (2 * PI + 1e-6); X += (PI / 5760))
    printf("%.12f radians = %3.0f degrees\n", X, rad2deg(X));
  
  
  return 0;
}
Exemplo n.º 11
0
int main_basicmath_cubic(void)
{
  double  a1 = 1.0, b1 = -10.5, c1 = 32.0, d1 = -30.0;
  double  a2 = 1.0, b2 = -4.5, c2 = 17.0, d2 = -30.0;
  double  a3 = 1.0, b3 = -3.5, c3 = 22.0, d3 = -31.0;
  double  a4 = 1.0, b4 = -13.7, c4 = 1.0, d4 = -35.0;
  double  x[3];
  double X;
  int     solutions;
  int i;
  unsigned long l = 0x3fed0169L;
  struct int_sqrt q;
  long n = 0;

  /* solve soem cubic functions */
  pthread_mutex_lock(&mutex_print);
  fprintf(fileout_basicmath_cubic,"********* CUBIC FUNCTIONS ***********\n");
  /* should get 3 solutions: 2, 6 & 2.5   */
  pthread_mutex_unlock(&mutex_print);

  SolveCubic(a1, b1, c1, d1, &solutions, x);  

  pthread_mutex_lock(&mutex_print);
  for(i=0;i<solutions;i++)
    fprintf(fileout_basicmath_cubic," %f",x[i]);
  fprintf(fileout_basicmath_cubic,"\n");
  pthread_mutex_unlock(&mutex_print);

  /* should get 1 solution: 2.5           */
  SolveCubic(a2, b2, c2, d2, &solutions, x);  

  pthread_mutex_lock(&mutex_print);
  for(i=0;i<solutions;i++)
    fprintf(fileout_basicmath_cubic," %f",x[i]);
  fprintf(fileout_basicmath_cubic,"\n");
  pthread_mutex_unlock(&mutex_print);

  SolveCubic(a3, b3, c3, d3, &solutions, x);

  pthread_mutex_lock(&mutex_print);
  for(i=0;i<solutions;i++)
    fprintf(fileout_basicmath_cubic," %f",x[i]);
  fprintf(fileout_basicmath_cubic,"\n");
  pthread_mutex_unlock(&mutex_print);

  SolveCubic(a4, b4, c4, d4, &solutions, x);

  pthread_mutex_lock(&mutex_print);
  for(i=0;i<solutions;i++)
    fprintf(fileout_basicmath_cubic," %f",x[i]);
  fprintf(fileout_basicmath_cubic,"\n");
  pthread_mutex_unlock(&mutex_print);

/*

  if(SMALL)
  { 
  for(a1=1;a1<5;a1+=1) {
    for(b1=10;b1>0;b1-=1.0) {
      for(c1=10;c1<15;c1+=1.0) {
	for(d1=-1;d1>-4;d1=d1-0.25) {
	  SolveCubic(a1, b1, c1, d1, &solutions, x);  
          pthread_mutex_lock(&mutex_print);
	  for(i=0;i<solutions;i++)
	    fprintf(fileout_basicmath_cubic," %f",x[i]);
	  fprintf(fileout_basicmath_cubic,"\n");
          pthread_mutex_unlock(&mutex_print); 
	}
      }
    }
   }
  }
  else
  { 
  for(a1=1;a1<5;a1+=0.1) {
    for(b1=10;b1>0;b1-=0.1) {
      for(c1=10;c1<15;c1+=0.1) {
	for(d1=-1;d1>-4;d1=d1-0.25) {
	  SolveCubic(a1, b1, c1, d1, &solutions, x);  
          pthread_mutex_lock(&mutex_print);
	  for(i=0;i<solutions;i++)
	    fprintf(fileout_basicmath_cubic," %f",x[i]);
	  fprintf(fileout_basicmath_cubic,"\n");
          pthread_mutex_unlock(&mutex_print); 
	}
      }
    }
   }
  }

  
  pthread_mutex_lock(&mutex_print);
  fprintf(fileout_basicmath_cubic,"********* INTEGER SQR ROOTS ***********\n");
  
  for (i = 0; i < 501; ++i)
    {
      usqrt(i, &q);
			
     
     fprintf(fileout_basicmath_cubic,"sqrt(%3d) = %2d\n",
	     i, q.sqrt);
    }
  pthread_mutex_unlock(&mutex_print);
  usqrt(l, &q);
  

 
  pthread_mutex_lock(&mutex_print);
  fprintf(fileout_basicmath_cubic,"\nsqrt(%lX) = %X\n", l, q.sqrt);
  pthread_mutex_unlock(&mutex_print);


*/
  pthread_mutex_lock(&mutex_print);
  fprintf(fileout_basicmath_cubic,"********* ANGLE CONVERSION ***********\n");
  pthread_mutex_unlock(&mutex_print);

  double res;
  
  for (X = 0.0; X <= 360.0; X += 1.0)
  {
       res = deg2rad(X);
       pthread_mutex_lock(&mutex_print);
       fprintf(fileout_basicmath_cubic,"%3.0f degrees = %.12f radians\n", X, res);
       pthread_mutex_unlock(&mutex_print);
  }
  
  for (X = 0.0; X <= (2 * PI + 1e-6); X += (PI / 180))
  {
       res = rad2deg(X);
       pthread_mutex_lock(&mutex_print);
       fprintf(fileout_basicmath_cubic,"%.12f radians = %3.0f degrees\n", X, res);
       pthread_mutex_unlock(&mutex_print);
  }
   
  
  return 0;
}
Exemplo n.º 12
0
int main(void)
{
  double  a1 = 1.0f, b1 = -10.5f, c1 = 32.0f, d1 = -30.0f;
  double  a2 = 1.0f, b2 = -4.5f, c2 = 17.0f, d2 = -30.0f;
  double  a3 = 1.0f, b3 = -3.5f, c3 = 22.0f, d3 = -31.0f;
  double  a4 = 1.0f, b4 = -13.7f, c4 = 1.0f, d4 = -35.0f;
  double  x[3];
  double X;
  int     solutions;
  int i;
  unsigned long l = 0x3fed0169L;
  struct int_sqrt q;
  long n = 0;

  /* solve soem cubic functions */
  /* should get 3 solutions: 2, 6 & 2.5   */
  SolveCubic(a1, b1, c1, d1, &solutions, x);

  SolveCubic(a2, b2, c2, d2, &solutions, x);

  SolveCubic(a3, b3, c3, d3, &solutions, x);

  SolveCubic(a4, b4, c4, d4, &solutions, x);

  /* Now solve some random equations */
  _Pragma( "loopbound min 5 max 5" )
  for(a1=1;a1<10;a1+=2) {
    _Pragma( "loopbound min 5 max 5" )
    for(b1=10;b1>0;b1-=2) {
      _Pragma( "loopbound min 7 max 7" )
      for(c1=5;c1<15;c1+=1.5f) {
        _Pragma( "loopbound min 5 max 5" )
        for(d1=-1;d1>-11;d1-=2) {
          SolveCubic(a1, b1, c1, d1, &solutions, x);
        }
      }
    }
  }

  /* perform some integer square roots */
  _Pragma( "loopbound min 1000 max 1000" )
  for (i = 1; i < 1001; i+=1) {
    usqrt(i, &q);
    // remainder differs on some machines
  }

  usqrt(l, &q);

  /* convert some rads to degrees */
  _Pragma( "loopbound min 361 max 361" )
  for (X = 0.0f; X <= 360.0f; X += 1.0f) {
    deg2rad(X);
  }

  _Pragma( "loopbound min 360 max 360" )
  for (X = 0.0f; X <= (2 * PI + 1e-6f); X += (PI / 180)) {
    rad2deg(X);
  }

  return 0;
}
Exemplo n.º 13
0
Result SolveQuartic(double c[5], double out[4])
{
	double A = c[3] / c[4];
	double B = c[2] / c[4];
	double C = c[1] / c[4];
	double D = c[0] / c[4];

	double p = B - 3.0/8.0*A*A;
	double q = A*A*A / 8.0 - A*B/2.0 + C;
	double r = -3.0/256.0*A*A*A*A + A*A*B/16.0 - A*C/4.0 + D;

	double c0[] = {r*p/2.0 - q*q/8.0, -r, -p/2.0, 1.0};
	double out0[4];
	Result res = SolveCubic(c0, out0);

	if (res == RESULT_NO_SOLUTION)
		return RESULT_NO_SOLUTION;

	double z = out0[0];

	double out1[4];
	double out2[4];
	Result res1, res2;
	if (q >= 0)
	{
		double c1[] = {z - sqrt(z*z-r), sqrt(2.0*z-p), 1};
		double c2[] = {z + sqrt(z*z-r),-sqrt(2.0*z-p), 1};	
		res1 = SolveQuadric(c1, out1);	
		res2 = SolveQuadric(c2, out2);	
	}
	else
	{
		double c1[] = {z + sqrt(z*z-r), sqrt(2.0*z-p), 1};
		double c2[] = {z - sqrt(z*z-r),-sqrt(2.0*z-p), 1};	
		res1 = SolveQuadric(c1, out1);	
		res2 = SolveQuadric(c2, out2);	
	}

	if (res1 == RESULT_NO_SOLUTION && res2 == RESULT_NO_SOLUTION)
		return RESULT_NO_SOLUTION;

	if (res1 == RESULT_ONE_SOLUTION && res2 == RESULT_NO_SOLUTION)
	{
		out[0] = out1[0] - A / 4.0;
		return RESULT_ONE_SOLUTION;
	}
	if (res1 == RESULT_NO_SOLUTION && res2 == RESULT_ONE_SOLUTION)
	{
		out[0] = out2[0] - A / 4.0;
		return RESULT_ONE_SOLUTION;
	}
	if (res1 == RESULT_ONE_SOLUTION && res2 == RESULT_ONE_SOLUTION)
	{
		out[0] = out1[0] - A / 4.0;
		out[1] = out2[0] - A / 4.0;
		return RESULT_TWO_SOLUTIONS;
	}
	if (res1 == RESULT_TWO_SOLUTIONS && res2 == RESULT_NO_SOLUTION)
	{
		out[0] = out1[0] - A / 4.0;
		out[1] = out1[1] - A / 4.0;
		return RESULT_TWO_SOLUTIONS;
	}
	if (res1 == RESULT_NO_SOLUTION && res2 == RESULT_TWO_SOLUTIONS)
	{
		out[0] = out2[0] - A / 4.0;
		out[1] = out2[1] - A / 4.0;
		return RESULT_TWO_SOLUTIONS;
	}
	if (res1 == RESULT_ONE_SOLUTION && res2 == RESULT_TWO_SOLUTIONS)
	{
		out[0] = out1[0] - A / 4.0;
		out[1] = out2[0] - A / 4.0;
		out[2] = out2[1] - A / 4.0;
		return RESULT_THREE_SOLUTIONS;
	}
	if (res1 == RESULT_TWO_SOLUTIONS && res2 == RESULT_ONE_SOLUTION)
	{
		out[0] = out1[0] - A / 4.0;
		out[1] = out1[1] - A / 4.0;
		out[2] = out2[0] - A / 4.0;
		return  RESULT_THREE_SOLUTIONS;
	}
	if (res1 == RESULT_TWO_SOLUTIONS && res2 == RESULT_TWO_SOLUTIONS)
	{
		out[0] = out1[0] - A / 4.0;
		out[1] = out1[1] - A / 4.0;
		out[2] = out2[0] - A / 4.0;
		out[3] = out2[1] - A / 4.0;
		return  RESULT_FOUR_SOLUTIONS;
	}
	std::cout << "Something wrong in "__FUNCSIG__ << std::endl;
	return RESULT_NO_SOLUTION;
}
Exemplo n.º 14
0
int main(void)
{
  double  a1 = 1.0;
__boundcheck_metadata_store((void *)(&a1),(void *)((size_t)(&a1)+sizeof(a1)*8-1));
double  b1 = -10.5;
__boundcheck_metadata_store((void *)(&b1),(void *)((size_t)(&b1)+sizeof(b1)*8-1));
double  c1 = 32.0;
__boundcheck_metadata_store((void *)(&c1),(void *)((size_t)(&c1)+sizeof(c1)*8-1));
double  d1 = -30.0;
__boundcheck_metadata_store((void *)(&d1),(void *)((size_t)(&d1)+sizeof(d1)*8-1));

  double  x[3];__boundcheck_metadata_store(&x[0],&x[3-1]);

  double X;
__boundcheck_metadata_store((void *)(&X),(void *)((size_t)(&X)+sizeof(X)*8-1));

  int     solutions;
__boundcheck_metadata_store((void *)(&solutions),(void *)((size_t)(&solutions)+sizeof(solutions)*8-1));

  int i;
__boundcheck_metadata_store((void *)(&i),(void *)((size_t)(&i)+sizeof(i)*8-1));

  unsigned long l = 0x3fed0169L;
__boundcheck_metadata_store((void *)(&l),(void *)((size_t)(&l)+sizeof(l)*8-1));

  struct int_sqrt q;
__boundcheck_metadata_store((void *)(&q),(void *)((size_t)(&q)+sizeof(q)*8-1));

  long n = 0;
__boundcheck_metadata_store((void *)(&n),(void *)((size_t)(&n)+sizeof(n)*8-1));


  /* solve soem cubic functions */
  printf("********* CUBIC FUNCTIONS ***********\n");
  /* should get 3 solutions: 2, 6 & 2.5   */
  SolveCubic(a1, b1, c1, d1, &solutions, x);  
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[_RV_insert_check(0,3,23,18,"main",i)]);
  printf("\n");

  a1 = 1.0; b1 = -4.5; c1 = 17.0; d1 = -30.0;
  /* should get 1 solution: 2.5           */
  SolveCubic(a1, b1, c1, d1, &solutions, x);  
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[_RV_insert_check(0,3,31,18,"main",i)]);
  printf("\n");

  a1 = 1.0; b1 = -3.5; c1 = 22.0; d1 = -31.0;
  SolveCubic(a1, b1, c1, d1, &solutions, x);
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[_RV_insert_check(0,3,38,18,"main",i)]);
  printf("\n");

  a1 = 1.0; b1 = -13.7; c1 = 1.0; d1 = -35.0;
  SolveCubic(a1, b1, c1, d1, &solutions, x);
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[_RV_insert_check(0,3,45,18,"main",i)]);
  printf("\n");

  a1 = 3.0; b1 = 12.34; c1 = 5.0; d1 = 12.0;
  SolveCubic(a1, b1, c1, d1, &solutions, x);
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[_RV_insert_check(0,3,52,18,"main",i)]);
  printf("\n");

  a1 = -8.0; b1 = -67.89; c1 = 6.0; d1 = -23.6;
  SolveCubic(a1, b1, c1, d1, &solutions, x);
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[_RV_insert_check(0,3,59,18,"main",i)]);
  printf("\n");

  a1 = 45.0; b1 = 8.67; c1 = 7.5; d1 = 34.0;
  SolveCubic(a1, b1, c1, d1, &solutions, x);
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[_RV_insert_check(0,3,66,18,"main",i)]);
  printf("\n");

  a1 = -12.0; b1 = -1.7; c1 = 5.3; d1 = 16.0;
  SolveCubic(a1, b1, c1, d1, &solutions, x);
  printf("Solutions:");
  for(i=0;i<solutions;i++)
    printf(" %f",x[_RV_insert_check(0,3,73,18,"main",i)]);
  printf("\n");

  /* Now solve some random equations */
  for(a1=1;a1<10;a1+=1) {
    for(b1=10;b1>0;b1-=.25) {
      for(c1=5;c1<15;c1+=0.61) {
	   for(d1=-1;d1>-5;d1-=.451) {
		SolveCubic(a1, b1, c1, d1, &solutions, x);  
		printf("Solutions:");
		for(i=0;i<solutions;i++)
		  printf(" %f",x[_RV_insert_check(0,3,84,18,"main",i)]);
		printf("\n");
	   }
      }
    }
  }


  printf("********* INTEGER SQR ROOTS ***********\n");
  /* perform some integer square roots */
  for (i = 0; i < 100000; i+=2)
    {
      usqrt(i, &q);
			// remainder differs on some machines
     // printf("sqrt(%3d) = %2d, remainder = %2d\n",
     printf("sqrt(%3d) = %2d\n",
	     i, q.sqrt);
    }
  printf("\n");
  for (l = 0x3fed0169L; l < 0x3fed4169L; l++)
    {
	 usqrt(l, &q);
	 //printf("\nsqrt(%lX) = %X, remainder = %X\n", l, q.sqrt, q.frac);
	 printf("sqrt(%lX) = %X\n", l, q.sqrt);
    }


  printf("********* ANGLE CONVERSION ***********\n");
  /* convert some rads to degrees */
/*   for (X = 0.0; X <= 360.0; X += 1.0) */
  for (X = 0.0; X <= 360.0; X += .001)
    printf("%3.0f degrees = %.12f radians\n", X, deg2rad(X));
  puts("");
/*   for (X = 0.0; X <= (2 * PI + 1e-6); X += (PI / 180)) */
  for (X = 0.0; X <= (2 * PI + 1e-6); X += (PI / 5760))
    printf("%.12f radians = %3.0f degrees\n", X, rad2deg(X));
  
  
  return 0;
}