Exemplo n.º 1
0
Exporter::Result Exporter::exportLight(NiNodeRef parent, INode *node, GenLight* light)
{
   TimeValue t = 0;
   NiLightRef niLight;
   switch (light->Type())
   {
   case OMNI_LIGHT:
      {
         if (light->GetAmbientOnly())
         {
            niLight = new NiAmbientLight();
         }
         else
         {
            NiPointLightRef pointLight = new NiPointLight();
            float atten = light->GetAtten(t, ATTEN_START);
            switch (light->GetDecayType())
            {
            case 0: pointLight->SetConstantAttenuation(1.0f); break;
            case 1: pointLight->SetLinearAttenuation( atten / 4.0f ); break;
            case 2: pointLight->SetQuadraticAttenuation( sqrt(atten / 4.0f) ); break;
            }
            niLight = StaticCast<NiLight>(pointLight);
         }
     }
      break;
   case TSPOT_LIGHT:
   case FSPOT_LIGHT:
      niLight = new NiSpotLight();
      break;
   case DIR_LIGHT:
   case TDIR_LIGHT:
      niLight = new NiDirectionalLight();
      break;
   }
   if (niLight == NULL)
      return Skip;

   niLight->SetName(node->GetName());

   Matrix3 tm = getObjectTransform(node, t, !mFlattenHierarchy);
   niLight->SetLocalTransform( TOMATRIX4(tm, false) );

   niLight->SetDimmer( light->GetIntensity(0) );
   Color3 rgbcolor = TOCOLOR3( light->GetRGBColor(0) );
   if (light->GetAmbientOnly())
   {
      niLight->SetDiffuseColor(Color3(0,0,0));
      niLight->SetSpecularColor(Color3(0,0,0));
      niLight->SetAmbientColor(rgbcolor);
   }
   else
   {
      niLight->SetDiffuseColor(rgbcolor);
      niLight->SetSpecularColor(rgbcolor);
      niLight->SetAmbientColor(Color3(0,0,0));
   }
   parent->AddChild( DynamicCast<NiAVObject>(niLight) );
   return Ok;
}
Exemplo n.º 2
0
Exporter::Result Exporter::exportMesh(NiNodeRef &ninode, INode *node, TimeValue t)
{
	ObjectState os = node->EvalWorldState(t);

	bool local = !mFlattenHierarchy;

	TriObject *tri = (TriObject *)os.obj->ConvertToType(t, Class_ID(TRIOBJ_CLASS_ID, 0));
	if (!tri)
		return Skip;

	Mesh *copymesh = NULL;
	Mesh *mesh = &tri->GetMesh();

	Matrix3 mtx(true), rtx(true);
	if (Exporter::mCollapseTransforms)
	{
		mtx = GetNodeLocalTM(node, t);
		mtx.NoTrans();
		Quat q(mtx);
		q.MakeMatrix(rtx);
		mesh = copymesh = new Mesh(*mesh);
		{
			int n = mesh->getNumVerts();
			for ( unsigned int i = 0; i < n; ++i ) {
				Point3& vert = mesh->getVert(i);
				vert = mtx * vert;
			}
			mesh->checkNormals(TRUE);
#if VERSION_3DSMAX > ((5000<<16)+(15<<8)+0) // Version 6+
			MeshNormalSpec *specNorms = mesh->GetSpecifiedNormals ();
			if (NULL != specNorms) {
				specNorms->CheckNormals();
				for ( unsigned int i = 0; i < specNorms->GetNumNormals(); ++i ) {
					Point3& norm = specNorms->Normal(i);
					norm = (rtx * norm).Normalize();
				}
			}
#endif
		}
	}
	// Note that calling setVCDisplayData will clear things like normals so we set this up first
	vector<Color4> vertColors;
	if (mVertexColors)
	{
		bool hasvc = false;
		if (mesh->mapSupport(MAP_ALPHA))
		{
			mesh->setVCDisplayData(MAP_ALPHA);         int n = mesh->getNumVertCol();
			if (n > vertColors.size())
				vertColors.assign(n, Color4(1.0f, 1.0f, 1.0f, 1.0f));
			VertColor *vertCol = mesh->vertColArray;
			if (vertCol) {
				for (int i=0; i<n; ++i) {
					VertColor c = vertCol[ i ];
					float a = (c.x + c.y + c.z) / 3.0f;
					vertColors[i].a = a;
					hasvc |= (a != 1.0f);
				}
			}
		}
		if (mesh->mapSupport(0))
		{
			mesh->setVCDisplayData(0);
			VertColor *vertCol = mesh->vertColArray;
			int n = mesh->getNumVertCol();
			if (n > vertColors.size())
				vertColors.assign(n, Color4(1.0f, 1.0f, 1.0f, 1.0f));
			if (vertCol) {
				for (int i=0; i<n; ++i) {
					VertColor col = vertCol[ i ];
					vertColors[i] = Color4(col.x, col.y, col.z, vertColors[i].a);
					hasvc |= (col.x != 1.0f || col.y != 1.0f || col.z != 1.0f);
				}
			}
		}
		if (!hasvc) vertColors.clear();
	}

#if VERSION_3DSMAX <= ((5000<<16)+(15<<8)+0) // Version 5
	mesh->checkNormals(TRUE);
#else
	MeshNormalSpec *specNorms = mesh->GetSpecifiedNormals ();
	if (NULL != specNorms) {
		specNorms->CheckNormals();
		if (specNorms->GetNumNormals() == 0)
			mesh->checkNormals(TRUE);
	} else {
		mesh->checkNormals(TRUE);
	}
#endif

	Result result = Ok;

	Modifier* geomMorpherMod = GetMorpherModifier(node);
	bool noSplit = FALSE;
//	bool noSplit = (NULL != geomMorpherMod);

	while (1)
	{
		FaceGroups grps;
		if (!splitMesh(node, *mesh, grps, t, vertColors, noSplit))
		{
			result = Error;
			break;
		}
		bool exportStrips = mTriStrips && (Exporter::mNifVersionInt > VER_4_2_2_0);

		Matrix44 tm = Matrix44::IDENTITY;
		if ( mExportExtraNodes || (mExportType != NIF_WO_ANIM && isNodeKeyed(node) ) ) {
			tm = TOMATRIX4(getObjectTransform(node, t, false) * Inverse(getNodeTransform(node, t, false)));
		} else {
			Matrix33 rot; Vector3 trans;
			objectTransform(rot, trans, node, t, local);
			tm = Matrix44(trans, rot, 1.0f);
		}
		tm = TOMATRIX4(Inverse(mtx)) * tm;

		TSTR basename = node->NodeName();
		TSTR format = (!basename.isNull() && grps.size() > 1) ? "%s:%d" : "%s";

		int i=1;
		FaceGroups::iterator grp;
		for (grp=grps.begin(); grp!=grps.end(); ++grp, ++i)
		{
			string name = FormatString(format, basename.data(), i);
			NiTriBasedGeomRef shape = makeMesh(ninode, getMaterial(node, grp->first), grp->second, exportStrips);
			if (shape == NULL)
			{
				result = Error;
				break;
			}

			if (node->IsHidden())
				shape->SetVisibility(false);

			shape->SetName(name);
			shape->SetLocalTransform(tm);

			if (Exporter::mZeroTransforms) {
				shape->ApplyTransforms();
			}

			makeSkin(shape, node, grp->second, t);

			if (geomMorpherMod) {
				vector<Vector3> verts = shape->GetData()->GetVertices();
				exportGeomMorpherControl(geomMorpherMod, verts, shape->GetData()->GetVertexIndices(), shape);
				shape->GetData()->SetConsistencyFlags(CT_VOLATILE);
			}

		}

		break;
	}

	if (tri != os.obj)
		tri->DeleteMe();

	if (copymesh)
		delete copymesh;

	return result;
}