Exemplo n.º 1
0
void IS_Taylor(double ****OLP, double ****IOLP, int rlmax_IS)
{
  static int ct_AN,Taylor_switch;
  static int wan,tno1,i,ig,ino1,k,p,q;
  static double dum1,dum2,dum;

  Taylor_switch = rlmax_IS;
  Taylor(Taylor_switch,OLP,IOLP);

  /****************************************************
                  Averaging of IOLP
  ****************************************************/

  for (ct_AN=1; ct_AN<=atomnum; ct_AN++){
    wan = WhatSpecies[ct_AN];
    tno1 = Spe_Total_NO[wan] - 1;
    for (i=1; i<=(FNAN[ct_AN]+SNAN[ct_AN]); i++){
      ig = natn[ct_AN][i];
      ino1 = Spe_Total_NO[WhatSpecies[ig]] - 1;
      k = RMI2[ct_AN][i][0];
      for (p=0; p<=tno1; p++){
	for (q=0; q<=ino1; q++){
	  dum1 = IOLP[ct_AN][i][p][q];
	  dum2 = IOLP[ig][k][q][p];
	  dum = 0.50*(dum1 + dum2);
	  IOLP[ct_AN][i][p][q] = dum;
	  IOLP[ig][k][q][p] = dum;
	}
      }
    } 
  }
}
Exemplo n.º 2
0
    HDINLINE picongpu::float_32 operator()(const vector_64& n, const Particle & particle) const
    {
        // 1/gamma^2:

        const picongpu::float_64 gamma_inv_square(particle.get_gamma_inv_square<When::now > ());

        //picongpu::float_64 value; // storage for 1-\beta \times \vec n

        // if energy is high enough to cause numerical errors ( equals if 1/gamma^2 is close enough to zero)
        // chose a Taylor approximation to to better calculate 1-\beta \times \vec n (which is close to 1-1)
        // is energy is low, then the approximation will cause a larger error, therefor calculate
        // 1-\beta \times \vec n directly
        // with 0.18 the relative error will be below 0.001% for a Taylor series of 1-sqrt(1-x) of 5th order
        if (gamma_inv_square < picongpu::GAMMA_INV_SQUARE_RAD_THRESH)
        {
            const picongpu::float_64 cos_theta(particle.get_cos_theta<When::now > (n)); // cosine between looking vector and momentum of particle
            const picongpu::float_64 taylor_approx(cos_theta * Taylor()(gamma_inv_square) + (1.0 - cos_theta));
            return  (taylor_approx);
        }
        else
        {
            const vector_64 beta(particle.get_beta<When::now > ()); // calculate v/c=beta
            return  (1.0 - beta * n);
        }

    }
Exemplo n.º 3
0
void plot(int num){
	double i;
	gfx_color(255,0,255);
	for(i = -10; i<= 10; i+=.005){
		gfx_point((i*25)+250,(Taylor(i,num)*-25)+250);		
	}
}
Exemplo n.º 4
0
    HDINLINE numtype1 operator()(const vec2& n, const Particle & particle) const
    {
        // 1/gamma^2:

        const numtype2 gamma_inv_square(particle.get_gamma_inv_square<When::now > ());

        //numtype2 value; // storage for 1-\beta \times \vec n

        // if energy is high enough to cause numerical errors ( equals if 1/gamma^2 is closs enought to zero)
        // chose a Taylor approximation to to better calculate 1-\beta \times \vec n (which is close to 1-1)
        // is energy is low, then the Appriximation will acuse a larger error, therfor calculate
        // 1-\beta \times \vec n directly
        if (gamma_inv_square < 0.18) // with 0.18 the relativ error will be below 0.001% for Taylor series of order 5
        {

            const numtype2 cos_theta(particle.get_cos_theta<When::now > (n)); // cosinus between looking vector and momentum of particle
            const numtype2 taylor_approx(cos_theta * Taylor()(gamma_inv_square) + (1.0 - cos_theta));
            return  (taylor_approx);
        }
        else
        {
            const vec2 beta(particle.get_beta<When::now > ()); // calc v/c=beta
            return  (1.0 - beta * n);
        }

    }
Exemplo n.º 5
0
int main (void)
{
   puts ("\tTaylor\n");

   printf("%wywolanie funkcji %0.1f\n", Taylor(1));


    return 0;
}