void Uart::end()
{
    UART_HAL_Init(instance);
    NVIC_DisableIRQ(irqNumber);
    SIM_HAL_DisableClock(SIM, gate_name);
    rxBuffer.clear();
}
void Uart::begin(uint32_t baudrate)
{
    SIM_HAL_EnableClock(SIM, gate_name);

    PORT_CLOCK_ENABLE(rx);
    PORT_CLOCK_ENABLE(tx);
    PORT_SET_MUX_UART(rx);
    PORT_SET_MUX_UART(tx);

#if FSL_FEATURE_SOC_UART_COUNT
    UART_HAL_Init(instance);
    UART_HAL_SetBaudRate(instance, clock, baudrate);
    UART_HAL_SetBitCountPerChar(instance, kUart8BitsPerChar);
    UART_HAL_SetParityMode(instance, kUartParityDisabled);
#if FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT
    UART_HAL_SetStopBitCount(instance, kUartOneStopBit);
#endif

    UART_HAL_SetIntMode(instance, kUartIntRxDataRegFull, true);
    NVIC_EnableIRQ(irqNumber);

    UART_HAL_EnableTransmitter(instance);
    UART_HAL_EnableReceiver(instance);
#endif
}
Exemplo n.º 3
0
/*FUNCTION**********************************************************************
 *
 * Function Name : UART_DRV_Init
 * Description   : This function initializes a UART instance for operation.
 * This function will initialize the run-time state structure to keep track of the on-going
 * transfers, ungate the clock to the UART module, initialize the module
 * to user defined settings and default settings, configure the IRQ state structure and enable
 * the module-level interrupt to the core, and enable the UART module transmitter and receiver.
 * The following is an example of how to set up the uart_state_t and the
 * uart_user_config_t parameters and how to call the UART_DRV_Init function by passing
 * in these parameters:
 *    uart_user_config_t uartConfig;
 *    uartConfig.baudRate = 9600;
 *    uartConfig.bitCountPerChar = kUart8BitsPerChar;
 *    uartConfig.parityMode = kUartParityDisabled;
 *    uartConfig.stopBitCount = kUartOneStopBit;
 *    uart_state_t uartState;
 *    UART_DRV_Init(instance, &uartState, &uartConfig);
 *
 *END**************************************************************************/
uart_status_t UART_DRV_Init(uint32_t instance, uart_state_t * uartStatePtr,
                            const uart_user_config_t * uartUserConfig)
{
    assert(uartStatePtr && uartUserConfig);
    assert(instance < HW_UART_INSTANCE_COUNT);

    uint32_t baseAddr = g_uartBaseAddr[instance];
    uint32_t uartSourceClock;

    /* Exit if current instance is already initialized. */
    if (g_uartStatePtr[instance])
    {
        return kStatus_UART_Initialized;
    }

    /* Clear the state structure for this instance. */
    memset(uartStatePtr, 0, sizeof(uart_state_t));

    /* Save runtime structure pointer.*/
    g_uartStatePtr[instance] = uartStatePtr;

    /* Un-gate UART module clock */
    CLOCK_SYS_EnableUartClock(instance);

    /* Initialize UART to a known state. */
    UART_HAL_Init(baseAddr);

    /* Create Semaphore for txIrq and rxIrq. */
    OSA_SemaCreate(&uartStatePtr->txIrqSync, 0);
    OSA_SemaCreate(&uartStatePtr->rxIrqSync, 0);

    /* UART clock source is either system clock or bus clock depending on the instance */
    uartSourceClock = CLOCK_SYS_GetUartFreq(instance);

    /* Initialize UART baud rate, bit count, parity and stop bit. */
    UART_HAL_SetBaudRate(baseAddr, uartSourceClock, uartUserConfig->baudRate);
    UART_HAL_SetBitCountPerChar(baseAddr, uartUserConfig->bitCountPerChar);
    UART_HAL_SetParityMode(baseAddr, uartUserConfig->parityMode);
#if FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT
    UART_HAL_SetStopBitCount(baseAddr, uartUserConfig->stopBitCount);
#endif

#if FSL_FEATURE_UART_HAS_FIFO
    uint8_t fifoSize;
    /* Obtain raw TX FIFO size bit setting */
    fifoSize = UART_HAL_GetTxFifoSize(baseAddr);
    /* Now calculate the number of data words per given FIFO size */
    uartStatePtr->txFifoEntryCount = (fifoSize == 0 ? 1 : 0x1 << (fifoSize + 1));

    /* Configure the TX FIFO watermark to be 1/2 of the total entry or 0 if entry count = 1
     * A watermark setting of 0 for TX FIFO entry count of 1 means that TDRE will only interrupt
     * when the TX buffer (the one entry in the TX FIFO) is empty. Otherwise, if we set the
     * watermark to 1, the TDRE will always be set regardless if the TX buffer was empty or not
     * as the spec says TDRE will set when the FIFO is at or below the configured watermark. */
    if (uartStatePtr->txFifoEntryCount > 1)
    {
        UART_HAL_SetTxFifoWatermark(baseAddr, (uartStatePtr->txFifoEntryCount >> 1U));
    }
Exemplo n.º 4
0
void serial_init(serial_t *obj, PinName tx, PinName rx) {
    uint32_t uart_tx = pinmap_peripheral(tx, PinMap_UART_TX);
    uint32_t uart_rx = pinmap_peripheral(rx, PinMap_UART_RX);
    obj->index = pinmap_merge(uart_tx, uart_rx);
    MBED_ASSERT((int)obj->index != NC);

    uint32_t uartSourceClock = CLOCK_SYS_GetUartFreq(obj->index);

    CLOCK_SYS_EnableUartClock(obj->index);
    uint32_t uart_addrs[] = UART_BASE_ADDRS;
    UART_HAL_Init(uart_addrs[obj->index]);
    UART_HAL_SetBaudRate(uart_addrs[obj->index], uartSourceClock, 9600);
    UART_HAL_SetParityMode(uart_addrs[obj->index], kUartParityDisabled);
    #if FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT
    UART_HAL_SetStopBitCount(uart_addrs[obj->index], kUartOneStopBit);
    #endif
    UART_HAL_SetBitCountPerChar(uart_addrs[obj->index], kUart8BitsPerChar);
    UART_HAL_DisableTransmitter(uart_addrs[obj->index]);
    UART_HAL_DisableReceiver(uart_addrs[obj->index]);

    pinmap_pinout(tx, PinMap_UART_TX);
    pinmap_pinout(rx, PinMap_UART_RX);

    if (tx != NC) {
        UART_HAL_FlushTxFifo(uart_addrs[obj->index]);
        UART_HAL_EnableTransmitter(uart_addrs[obj->index]);

        pin_mode(tx, PullUp);
    }
    if (rx != NC) {
        UART_HAL_EnableReceiver(uart_addrs[obj->index]);
        pin_mode(rx, PullUp);
    }

    if (obj->index == STDIO_UART) {
        stdio_uart_inited = 1;
        memcpy(&stdio_uart, obj, sizeof(serial_t));
    }
}
Exemplo n.º 5
0
/*FUNCTION**********************************************************************
 *
 * Function Name : UART_DRV_DmaInit
 * Description   : This function initializes a UART instance for operation.
 * This function will initialize the run-time state structure to keep track of
 * the on-going transfers, ungate the clock to the UART module, initialize the
 * module to user defined settings and default settings, configure UART DMA
 * and enable the UART module transmitter and receiver.
 * The following is an example of how to set up the uart_dma_state_t and the
 * uart_user_config_t parameters and how to call the UART_DRV_DmaInit function
 * by passing in these parameters:
 *    uart_user_config_t uartConfig;
 *    uartConfig.baudRate = 9600;
 *    uartConfig.bitCountPerChar = kUart8BitsPerChar;
 *    uartConfig.parityMode = kUartParityDisabled;
 *    uartConfig.stopBitCount = kUartOneStopBit;
 *    uart_dma_state_t uartDmaState;
 *    UART_DRV_DmaInit(instance, &uartDmaState, &uartConfig);
 *
 *END**************************************************************************/
uart_status_t UART_DRV_DmaInit(uint32_t instance,
                               uart_dma_state_t * uartDmaStatePtr,
                               const uart_dma_user_config_t * uartUserConfig)
{
    assert(uartDmaStatePtr && uartUserConfig);
    assert(g_uartBase[instance]);
    assert(instance < UART_INSTANCE_COUNT);
    /* This driver only support UART instances with separate DMA channels for
     * both Tx and Rx.*/
    assert(FSL_FEATURE_UART_HAS_SEPARATE_DMA_RX_TX_REQn(instance) == 1);

    UART_Type * base = g_uartBase[instance];
    uint32_t uartSourceClock = 0;
    dma_request_source_t uartTxDmaRequest = kDmaRequestMux0Disable;
    dma_request_source_t uartRxDmaRequest = kDmaRequestMux0Disable;

    /* Exit if current instance is already initialized. */
    if (g_uartStatePtr[instance])
    {
        return kStatus_UART_Initialized;
    }

    /* Clear the state structure for this instance. */
    memset(uartDmaStatePtr, 0, sizeof(uart_dma_state_t));

    /* Save runtime structure pointer.*/
    g_uartStatePtr[instance] = uartDmaStatePtr;

    /* Un-gate UART module clock */
    CLOCK_SYS_EnableUartClock(instance);

    /* Initialize UART to a known state. */
    UART_HAL_Init(base);

    /* Create Semaphore for txIrq and rxIrq. */
    OSA_SemaCreate(&uartDmaStatePtr->txIrqSync, 0);
    OSA_SemaCreate(&uartDmaStatePtr->rxIrqSync, 0);

    /* UART clock source is either system or bus clock depending on instance */
    uartSourceClock = CLOCK_SYS_GetUartFreq(instance);

    /* Initialize UART baud rate, bit count, parity and stop bit. */
    UART_HAL_SetBaudRate(base, uartSourceClock, uartUserConfig->baudRate);
    UART_HAL_SetBitCountPerChar(base, uartUserConfig->bitCountPerChar);
    UART_HAL_SetParityMode(base, uartUserConfig->parityMode);
#if FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT
    UART_HAL_SetStopBitCount(base, uartUserConfig->stopBitCount);
#endif

    /* Enable DMA trigger when transmit data register empty,
     * and receive data register full. */
    UART_HAL_SetTxDmaCmd(base, true);
    UART_HAL_SetRxDmaCmd(base, true);

    switch (instance)
    {
#if (FSL_FEATURE_UART_HAS_SEPARATE_DMA_RX_TX_REQn(0) == 1)
        case 0:
            uartRxDmaRequest = kDmaRequestMux0UART0Rx;
            uartTxDmaRequest = kDmaRequestMux0UART0Tx;
            break;
#endif
#if (FSL_FEATURE_UART_HAS_SEPARATE_DMA_RX_TX_REQn(1) == 1)
        case 1:
            uartRxDmaRequest = kDmaRequestMux0UART1Rx;
            uartTxDmaRequest = kDmaRequestMux0UART1Tx;
            break;
#endif
#if (FSL_FEATURE_UART_HAS_SEPARATE_DMA_RX_TX_REQn(2) == 1)
        case 2:
            uartRxDmaRequest = kDmaRequestMux0UART2Rx;
            uartTxDmaRequest = kDmaRequestMux0UART2Tx;
            break;
#endif
        default :
            break;
    }

    /* Request DMA channels for RX FIFO. */
    DMA_DRV_RequestChannel(kDmaAnyChannel, uartRxDmaRequest,
                            &uartDmaStatePtr->dmaUartRx);
    DMA_DRV_RegisterCallback(&uartDmaStatePtr->dmaUartRx,
                    UART_DRV_DmaRxCallback, (void *)instance);

    /* Request DMA channels for TX FIFO. */
    DMA_DRV_RequestChannel(kDmaAnyChannel, uartTxDmaRequest,
                            &uartDmaStatePtr->dmaUartTx);
    DMA_DRV_RegisterCallback(&uartDmaStatePtr->dmaUartTx,
                    UART_DRV_DmaTxCallback, (void *)instance);

    /* Finally, enable the UART transmitter and receiver*/
    UART_HAL_EnableTransmitter(base);
    UART_HAL_EnableReceiver(base);

    return kStatus_UART_Success;
}