GLOBAL Int UMFPACK_numeric
(
    const Int Ap [ ],
    const Int Ai [ ],
    const double Ax [ ],
#ifdef COMPLEX
    const double Az [ ],
#endif
    void *SymbolicHandle,
    void **NumericHandle,
    const double Control [UMFPACK_CONTROL],
    double User_Info [UMFPACK_INFO]
)
{

    /* ---------------------------------------------------------------------- */
    /* local variables */
    /* ---------------------------------------------------------------------- */

    double Info2 [UMFPACK_INFO], alloc_init, relpt, relpt2, droptol,
	front_alloc_init, stats [2] ;
    double *Info ;
    WorkType WorkSpace, *Work ;
    NumericType *Numeric ;
    SymbolicType *Symbolic ;
    Int n_row, n_col, n_inner, newsize, i, status, *inew, npiv, ulen, scale ;
    Unit *mnew ;

    /* ---------------------------------------------------------------------- */
    /* get the amount of time used by the process so far */
    /* ---------------------------------------------------------------------- */

    umfpack_tic (stats) ;

    /* ---------------------------------------------------------------------- */
    /* initialize and check inputs */
    /* ---------------------------------------------------------------------- */

#ifndef NDEBUG
    UMF_dump_start ( ) ;
    init_count = UMF_malloc_count ;
    DEBUGm4 (("\nUMFPACK numeric: U transpose version\n")) ;
#endif

    /* If front_alloc_init negative then allocate that size of front in
     * UMF_start_front.  If alloc_init negative, then allocate that initial
     * size of Numeric->Memory. */

    relpt = GET_CONTROL (UMFPACK_PIVOT_TOLERANCE,
	UMFPACK_DEFAULT_PIVOT_TOLERANCE) ;
    relpt2 = GET_CONTROL (UMFPACK_SYM_PIVOT_TOLERANCE,
	UMFPACK_DEFAULT_SYM_PIVOT_TOLERANCE) ;
    alloc_init = GET_CONTROL (UMFPACK_ALLOC_INIT, UMFPACK_DEFAULT_ALLOC_INIT) ;
    front_alloc_init = GET_CONTROL (UMFPACK_FRONT_ALLOC_INIT,
	UMFPACK_DEFAULT_FRONT_ALLOC_INIT) ;
    scale = GET_CONTROL (UMFPACK_SCALE, UMFPACK_DEFAULT_SCALE) ;
    droptol = GET_CONTROL (UMFPACK_DROPTOL, UMFPACK_DEFAULT_DROPTOL) ;

    relpt   = MAX (0.0, MIN (relpt,  1.0)) ;
    relpt2  = MAX (0.0, MIN (relpt2, 1.0)) ;
    droptol = MAX (0.0, droptol) ;
    front_alloc_init = MIN (1.0, front_alloc_init) ;

    if (scale != UMFPACK_SCALE_NONE && scale != UMFPACK_SCALE_MAX)
    {
	scale = UMFPACK_DEFAULT_SCALE ;
    }

    if (User_Info != (double *) NULL)
    {
	/* return Info in user's array */
	Info = User_Info ;
	/* clear the parts of Info that are set by UMFPACK_numeric */
	for (i = UMFPACK_NUMERIC_SIZE ; i <= UMFPACK_MAX_FRONT_NCOLS ; i++)
	{
	    Info [i] = EMPTY ;
	}
	for (i = UMFPACK_NUMERIC_DEFRAG ; i < UMFPACK_IR_TAKEN ; i++)
	{
	    Info [i] = EMPTY ;
	}
    }
    else
    {
	/* no Info array passed - use local one instead */
	Info = Info2 ;
	for (i = 0 ; i < UMFPACK_INFO ; i++)
	{
	    Info [i] = EMPTY ;
	}
    }

    Symbolic = (SymbolicType *) SymbolicHandle ;
    Numeric = (NumericType *) NULL ;
    if (!UMF_valid_symbolic (Symbolic))
    {
	Info [UMFPACK_STATUS] = UMFPACK_ERROR_invalid_Symbolic_object ;
	return (UMFPACK_ERROR_invalid_Symbolic_object) ;
    }

    /* compute alloc_init automatically for AMD or other symmetric ordering */
    if (/* Symbolic->ordering == UMFPACK_ORDERING_AMD */ alloc_init >= 0
        && Symbolic->amd_lunz > 0)
    {
	alloc_init = (Symbolic->nz + Symbolic->amd_lunz) / Symbolic->lunz_bound;
	alloc_init = MIN (1.0, alloc_init) ;
	alloc_init *= UMF_REALLOC_INCREASE ;
    }

    n_row = Symbolic->n_row ;
    n_col = Symbolic->n_col ;
    n_inner = MIN (n_row, n_col) ;

    /* check for integer overflow in Numeric->Memory minimum size */
    if (INT_OVERFLOW (Symbolic->dnum_mem_init_usage * sizeof (Unit)))
    {
	/* :: int overflow, initial Numeric->Memory size :: */
	/* There's no hope to allocate a Numeric object big enough simply to
	 * hold the initial matrix, so return an out-of-memory condition */
	DEBUGm4 (("out of memory: numeric int overflow\n")) ;
	Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ;
	return (UMFPACK_ERROR_out_of_memory) ;
    }

    Info [UMFPACK_STATUS] = UMFPACK_OK ;
    Info [UMFPACK_NROW] = n_row ;
    Info [UMFPACK_NCOL] = n_col ;
    Info [UMFPACK_SIZE_OF_UNIT] = (double) (sizeof (Unit)) ;

    if (!Ap || !Ai || !Ax || !NumericHandle)
    {
	Info [UMFPACK_STATUS] = UMFPACK_ERROR_argument_missing ;
	return (UMFPACK_ERROR_argument_missing) ;
    }

    Info [UMFPACK_NZ] = Ap [n_col] ;
    *NumericHandle = (void *) NULL ;

    /* ---------------------------------------------------------------------- */
    /* allocate the Work object */
    /* ---------------------------------------------------------------------- */

    /* (1) calls UMF_malloc 15 or 17 times, to obtain temporary workspace of
     * size c+1 Entry's and 2*(n_row+1) + 3*(n_col+1) + (n_col+n_inner+1) +
     * (nn+1) + * 3*(c+1) + 2*(r+1) + max(r,c) + (nfr+1) integers plus 2*nn
     * more integers if diagonal pivoting is to be done.  r is the maximum
     * number of rows in any frontal matrix, c is the maximum number of columns
     * in any frontal matrix, n_inner is min (n_row,n_col), nn is
     * max (n_row,n_col), and nfr is the number of frontal matrices.  For a
     * square matrix, this is c+1 Entry's and about 8n + 3c + 2r + max(r,c) +
     * nfr integers, plus 2n more for diagonal pivoting.
     */

    Work = &WorkSpace ;
    Work->n_row = n_row ;
    Work->n_col = n_col ;
    Work->nfr = Symbolic->nfr ;
    Work->nb = Symbolic->nb ;
    Work->n1 = Symbolic->n1 ;

    if (!work_alloc (Work, Symbolic))
    {
	DEBUGm4 (("out of memory: numeric work\n")) ;
	Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ;
	error (&Numeric, Work) ;
	return (UMFPACK_ERROR_out_of_memory) ;
    }
    ASSERT (UMF_malloc_count == init_count + 16 + 2*Symbolic->prefer_diagonal) ;

    /* ---------------------------------------------------------------------- */
    /* allocate Numeric object */
    /* ---------------------------------------------------------------------- */

    /* (2) calls UMF_malloc 10 or 11 times, for a total space of
     * sizeof (NumericType) bytes, 4*(n_row+1) + 4*(n_row+1) integers, and
     * (n_inner+1) Entry's, plus n_row Entry's if row scaling is to be done.
     * sizeof (NumericType) is a small constant.  Next, it calls UMF_malloc
     * once, for the variable-sized part of the Numeric object
     * (Numeric->Memory).  The size of this object is the larger of
     * (Control [UMFPACK_ALLOC_INIT]) *  (the approximate upper bound computed
     * by UMFPACK_symbolic), and the minimum required to start the numerical
     * factorization.  * This request is reduced if it fails.
     */

    if (!numeric_alloc (&Numeric, Symbolic, alloc_init, scale))
    {
	DEBUGm4 (("out of memory: initial numeric\n")) ;
	Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ;
	error (&Numeric, Work) ;
	return (UMFPACK_ERROR_out_of_memory) ;
    }
    DEBUG0 (("malloc: init_count "ID" UMF_malloc_count "ID"\n",
	init_count, UMF_malloc_count)) ;
    ASSERT (UMF_malloc_count == init_count
	+ (16 + 2*Symbolic->prefer_diagonal)
	+ (11 + (scale != UMFPACK_SCALE_NONE))) ;

    /* set control parameters */
    Numeric->relpt = relpt ;
    Numeric->relpt2 = relpt2 ;
    Numeric->droptol = droptol ;
    Numeric->alloc_init = alloc_init ;
    Numeric->front_alloc_init = front_alloc_init ;
    Numeric->scale = scale ;

    DEBUG0 (("umf relpt %g %g init %g %g inc %g red %g\n",
	relpt, relpt2, alloc_init, front_alloc_init,
	UMF_REALLOC_INCREASE, UMF_REALLOC_REDUCTION)) ;

    /* ---------------------------------------------------------------------- */
    /* scale and factorize */
    /* ---------------------------------------------------------------------- */

    /* (3) During numerical factorization (inside UMF_kernel), the variable-size
     * block of memory is increased in size via a call to UMF_realloc if it is
     * found to be too small.  During factorization, this block holds the
     * pattern and values of L and U at the top end, and the elements
     * (contibution blocks) and the current frontal matrix (Work->F*) at the
     * bottom end.  The peak size of the variable-sized object is estimated in
     * UMFPACK_*symbolic (Info [UMFPACK_VARIABLE_PEAK_ESTIMATE]), although this
     * upper bound can be very loose.  The size of the Symbolic object
     * (which is currently allocated) is in Info [UMFPACK_SYMBOLIC_SIZE], and
     * is between 2*n and 13*n integers.
     */

    DEBUG0 (("Calling umf_kernel\n")) ;
    status = UMF_kernel (Ap, Ai, Ax,
#ifdef COMPLEX
	Az,
#endif
	Numeric, Work, Symbolic) ;

    Info [UMFPACK_STATUS] = status ;
    if (status < UMFPACK_OK)
    {
	/* out of memory, or pattern has changed */
	error (&Numeric, Work) ;
	return (status) ;
    }

    Info [UMFPACK_FORCED_UPDATES] = Work->nforced ;
    Info [UMFPACK_VARIABLE_INIT] = Numeric->init_usage ;
    if (Symbolic->prefer_diagonal)
    {
	Info [UMFPACK_NOFF_DIAG] = Work->noff_diagonal ;
    }

    DEBUG0 (("malloc: init_count "ID" UMF_malloc_count "ID"\n",
	init_count, UMF_malloc_count)) ;

    npiv = Numeric->npiv ;	/* = n_inner for nonsingular matrices */
    ulen = Numeric->ulen ;	/* = 0 for square nonsingular matrices */

    /* ---------------------------------------------------------------------- */
    /* free Work object */
    /* ---------------------------------------------------------------------- */

    /* (4) After numerical factorization all of the objects allocated in step
     * (1) are freed via UMF_free, except that one object of size n_col+1 is
     * kept if there are off-diagonal nonzeros in the last pivot row (can only
     * occur for singular or rectangular matrices).  This is Work->Upattern,
     * which is transfered to Numeric->Upattern if ulen > 0.
     */

    DEBUG0 (("malloc: init_count "ID" UMF_malloc_count "ID"\n",
	init_count, UMF_malloc_count)) ;

    free_work (Work) ;

    DEBUG0 (("malloc: init_count "ID" UMF_malloc_count "ID"\n",
	init_count, UMF_malloc_count)) ;
    DEBUG0 (("Numeric->ulen: "ID" scale: "ID"\n", ulen, scale)) ;
    ASSERT (UMF_malloc_count == init_count + (ulen > 0) +
	(11 + (scale != UMFPACK_SCALE_NONE))) ;

    /* ---------------------------------------------------------------------- */
    /* reduce Lpos, Lilen, Lip, Upos, Uilen and Uip to size npiv+1 */
    /* ---------------------------------------------------------------------- */

    /* (5) Six components of the Numeric object are reduced in size if the
     * matrix is singular or rectangular.   The original size is 3*(n_row+1) +
     * 3*(n_col+1) integers.  The new size is 6*(npiv+1) integers.  For
     * square non-singular matrices, these two sizes are the same.
     */

    if (npiv < n_row)
    {
	/* reduce Lpos, Uilen, and Uip from size n_row+1 to size npiv */
	inew = (Int *) UMF_realloc (Numeric->Lpos, npiv+1, sizeof (Int)) ;
	if (inew)
	{
	    Numeric->Lpos = inew ;
	}
	inew = (Int *) UMF_realloc (Numeric->Uilen, npiv+1, sizeof (Int)) ;
	if (inew)
	{
	    Numeric->Uilen = inew ;
	}
	inew = (Int *) UMF_realloc (Numeric->Uip, npiv+1, sizeof (Int)) ;
	if (inew)
	{
	    Numeric->Uip = inew ;
	}
    }

    if (npiv < n_col)
    {
	/* reduce Upos, Lilen, and Lip from size n_col+1 to size npiv */
	inew = (Int *) UMF_realloc (Numeric->Upos, npiv+1, sizeof (Int)) ;
	if (inew)
	{
	    Numeric->Upos = inew ;
	}
	inew = (Int *) UMF_realloc (Numeric->Lilen, npiv+1, sizeof (Int)) ;
	if (inew)
	{
	    Numeric->Lilen = inew ;
	}
	inew = (Int *) UMF_realloc (Numeric->Lip, npiv+1, sizeof (Int)) ;
	if (inew)
	{
	    Numeric->Lip = inew ;
	}
    }

    /* ---------------------------------------------------------------------- */
    /* reduce Numeric->Upattern from size n_col+1 to size ulen+1 */
    /* ---------------------------------------------------------------------- */

    /* (6) The size of Numeric->Upattern (formerly Work->Upattern) is reduced
     * from size n_col+1 to size ulen + 1.  If ulen is zero, the object does
     * not exist. */

    DEBUG4 (("ulen: "ID" Upattern "ID"\n", ulen, (Int) Numeric->Upattern)) ;
    ASSERT (IMPLIES (ulen == 0, Numeric->Upattern == (Int *) NULL)) ;
    if (ulen > 0 && ulen < n_col)
    {
	inew = (Int *) UMF_realloc (Numeric->Upattern, ulen+1, sizeof (Int)) ;
	if (inew)
	{
	    Numeric->Upattern = inew ;
	}
    }

    /* ---------------------------------------------------------------------- */
    /* reduce Numeric->Memory to hold just the LU factors at the head */
    /* ---------------------------------------------------------------------- */

    /* (7) The variable-sized block (Numeric->Memory) is reduced to hold just L
     * and U, via a call to UMF_realloc, since the frontal matrices are no
     * longer needed.
     */

    newsize = Numeric->ihead ;
    if (newsize < Numeric->size)
    {
	mnew = (Unit *) UMF_realloc (Numeric->Memory, newsize, sizeof (Unit)) ;
	if (mnew)
	{
	    /* realloc succeeded (how can it fail since the size is reduced?) */
	    Numeric->Memory = mnew ;
	    Numeric->size = newsize ;
	}
    }
    Numeric->ihead = Numeric->size ;
    Numeric->itail = Numeric->ihead ;
    Numeric->tail_usage = 0 ;
    Numeric->ibig = EMPTY ;
    /* UMF_mem_alloc_tail_block can no longer be called (no tail marker) */

    /* ---------------------------------------------------------------------- */
    /* report the results and return the Numeric object */
    /* ---------------------------------------------------------------------- */

    UMF_set_stats (
	Info,
	Symbolic,
	(double) Numeric->max_usage,	/* actual peak Numeric->Memory */
	(double) Numeric->size,		/* actual final Numeric->Memory */
	Numeric->flops,			/* actual "true flops" */
	(double) Numeric->lnz + n_inner,		/* actual nz in L */
	(double) Numeric->unz + Numeric->nnzpiv,	/* actual nz in U */
	(double) Numeric->maxfrsize,	/* actual largest front size */
	(double) ulen,			/* actual Numeric->Upattern size */
	(double) npiv,			/* actual # pivots found */
	(double) Numeric->maxnrows,	/* actual largest #rows in front */
	(double) Numeric->maxncols,	/* actual largest #cols in front */
	scale != UMFPACK_SCALE_NONE,
	Symbolic->prefer_diagonal,
	ACTUAL) ;

    Info [UMFPACK_ALLOC_INIT_USED] = Numeric->alloc_init ;
    Info [UMFPACK_NUMERIC_DEFRAG] = Numeric->ngarbage ;
    Info [UMFPACK_NUMERIC_REALLOC] = Numeric->nrealloc ;
    Info [UMFPACK_NUMERIC_COSTLY_REALLOC] = Numeric->ncostly ;
    Info [UMFPACK_COMPRESSED_PATTERN] = Numeric->isize ;
    Info [UMFPACK_LU_ENTRIES] = Numeric->nLentries + Numeric->nUentries +
	    Numeric->npiv ;
    Info [UMFPACK_UDIAG_NZ] = Numeric->nnzpiv ;
    Info [UMFPACK_RSMIN] = Numeric->rsmin ;
    Info [UMFPACK_RSMAX] = Numeric->rsmax ;
    Info [UMFPACK_WAS_SCALED] = Numeric->scale ;

    /* nz in L and U with no dropping of small entries */
    Info [UMFPACK_ALL_LNZ] = Numeric->all_lnz + n_inner ;
    Info [UMFPACK_ALL_UNZ] = Numeric->all_unz + Numeric->nnzpiv ;
    Info [UMFPACK_NZDROPPED] =
	  (Numeric->all_lnz - Numeric->lnz)
	+ (Numeric->all_unz - Numeric->unz) ;

    /* estimate of the reciprocal of the condition number. */
    if (SCALAR_IS_ZERO (Numeric->min_udiag)
     || SCALAR_IS_ZERO (Numeric->max_udiag)
     ||	SCALAR_IS_NAN (Numeric->min_udiag)
     ||	SCALAR_IS_NAN (Numeric->max_udiag))
    {
	/* rcond is zero if there is any zero or NaN on the diagonal */
	Numeric->rcond = 0.0 ;
    }
    else
    {
	/* estimate of the recipricol of the condition number. */
	/* This is NaN if diagonal is zero-free, but has one or more NaN's. */
	Numeric->rcond = Numeric->min_udiag / Numeric->max_udiag ;
    }
    Info [UMFPACK_UMIN]  = Numeric->min_udiag ;
    Info [UMFPACK_UMAX]  = Numeric->max_udiag ;
    Info [UMFPACK_RCOND] = Numeric->rcond ;

    if (Numeric->nnzpiv < n_inner
    || SCALAR_IS_ZERO (Numeric->rcond) || SCALAR_IS_NAN (Numeric->rcond))
    {
	/* there are zeros and/or NaN's on the diagonal of U */
	DEBUG0 (("Warning, matrix is singular in umfpack_numeric\n")) ;
	DEBUG0 (("nnzpiv "ID" n_inner "ID" rcond %g\n", Numeric->nnzpiv,
	    n_inner, Numeric->rcond)) ;
	status = UMFPACK_WARNING_singular_matrix ;
	Info [UMFPACK_STATUS] = status ;
    }

    Numeric->valid = NUMERIC_VALID ;
    *NumericHandle = (void *) Numeric ;

    /* Numeric has 11 to 13 objects */
    ASSERT (UMF_malloc_count == init_count + 11 +
	+ (ulen > 0)			    /* Numeric->Upattern */
	+ (scale != UMFPACK_SCALE_NONE)) ;  /* Numeric->Rs */

    /* ---------------------------------------------------------------------- */
    /* get the time used by UMFPACK_numeric */
    /* ---------------------------------------------------------------------- */

    umfpack_toc (stats) ;
    Info [UMFPACK_NUMERIC_WALLTIME] = stats [0] ;
    Info [UMFPACK_NUMERIC_TIME] = stats [1] ;

    /* return UMFPACK_OK or UMFPACK_WARNING_singular_matrix */
    return (status) ;

}
GLOBAL Int UMF_singletons
(

    /* input, not modified: */
    Int n_row,
    Int n_col,
    const Int Ap [ ],	    /* size n_col+1 */
    const Int Ai [ ],	    /* size nz = Ap [n_col] */
    const Int Quser [ ],    /* size n_col if present */
    Int strategy,	    /* strategy requested by user */
    Int do_singletons,      /* if false, then do not look for singletons */

    /* output, not defined on input: */
    Int Cdeg [ ],	/* size n_col */
    Int Cperm [ ],	/* size n_col */
    Int Rdeg [ ],	/* size n_row */
    Int Rperm [ ],	/* size n_row */
    Int InvRperm [ ],	/* size n_row, the inverse of Rperm */
    Int *p_n1,		/* # of col and row singletons */
    Int *p_n1c,		/* # of col singletons */
    Int *p_n1r,		/* # of row singletons */
    Int *p_nempty_col,	/* # of empty columns in pruned submatrix */
    Int *p_nempty_row,	/* # of empty columns in pruned submatrix */
    Int *p_is_sym,	/* TRUE if pruned submatrix is square and has been
			 * symmetrically permuted by Cperm and Rperm */
    Int *p_max_rdeg,	/* maximum Rdeg in pruned submatrix */

    /* workspace, not defined on input or output */
    Int Rp [ ],		/* size n_row+1 */
    Int Ri [ ],		/* size nz */
    Int W [ ],		/* size n_row */
    Int Next [ ]	/* size MAX (n_row, n_col) */
)
{
    Int n1, s, col, row, p, p1, p2, cdeg, last_row, is_sym, k,
	nempty_row, nempty_col, max_cdeg, max_rdeg, n1c, n1r ;

    /* ---------------------------------------------------------------------- */
    /* initializations */
    /* ---------------------------------------------------------------------- */

#ifndef NDEBUG
    UMF_dump_start ( ) ;
    DEBUGm4 (("Starting umf_singletons\n")) ;
#endif

    /* ---------------------------------------------------------------------- */
    /* scan the columns, check for errors and count row degrees */
    /* ---------------------------------------------------------------------- */

    if (Ap [0] != 0 || Ap [n_col] < 0)
    {
	return (UMFPACK_ERROR_invalid_matrix) ;
    }
    for (row = 0 ; row < n_row ; row++)
    {
	Rdeg [row] = 0 ;
    }
    for (col = 0 ; col < n_col ; col++)
    {
	p1 = Ap [col] ;
	p2 = Ap [col+1] ;
	cdeg = p2 - p1 ;
	if (cdeg < 0)
	{
	    return (UMFPACK_ERROR_invalid_matrix) ;
	}
	last_row = EMPTY ;
	for (p = p1 ; p < p2 ; p++)
	{
	    row = Ai [p] ;
	    if (row <= last_row || row >= n_row)
	    {
		return (UMFPACK_ERROR_invalid_matrix) ;
	    }
	    Rdeg [row]++ ;
	    last_row = row ;
	}
	Cdeg [col] = cdeg ;
    }

    /* ---------------------------------------------------------------------- */
    /* find singletons */
    /* ---------------------------------------------------------------------- */

    if (!do_singletons)
    {
        /* do not look for singletons at all */
        n1 = 0 ;
        n1r = 0 ;
        n1c = 0 ;
    }
    else if (Quser != (Int *) NULL)
    {
	/* user has provided an input column ordering */
	if (strategy == UMFPACK_STRATEGY_UNSYMMETRIC)
	{
	    /* look for singletons, but respect the user's input permutation */
	    n1 = find_user_singletons (n_row, n_col, Ap, Ai, Quser,
		    Cdeg, Rdeg, Cperm, Rperm, &n1r, &n1c, Rp, Ri, W) ;
	}
	else
	{
	    /* do not look for singletons if Quser given and strategy is
	     * not unsymmetric */
	    n1 = 0 ;
	    n1r = 0 ;
	    n1c = 0 ;
	}
    }
    else
    {
	/* look for singletons anywhere */
	n1 = find_any_singletons (n_row, n_col, Ap, Ai,
		Cdeg, Rdeg, Cperm, Rperm, &n1r, &n1c, Rp, Ri, W, Next) ;
    }

    /* ---------------------------------------------------------------------- */
    /* eliminate empty columns and complete the column permutation */
    /* ---------------------------------------------------------------------- */

    nempty_col = finish_permutation (n1, n_col, Cdeg, Quser, Cperm, &max_cdeg) ;

    /* ---------------------------------------------------------------------- */
    /* eliminate empty rows and complete the row permutation */
    /* ---------------------------------------------------------------------- */

    if (Quser != (Int *) NULL && strategy == UMFPACK_STRATEGY_SYMMETRIC)
    {
	/* rows should be symmetrically permuted according to Quser */
	ASSERT (n_row == n_col) ;
	nempty_row = finish_permutation (n1, n_row, Rdeg, Quser, Rperm,
	    &max_rdeg) ;
    }
    else
    {
	/* rows should not be symmetrically permuted according to Quser */
	nempty_row = finish_permutation (n1, n_row, Rdeg, (Int *) NULL, Rperm,
	    &max_rdeg) ;
    }

    /* ---------------------------------------------------------------------- */
    /* compute the inverse of Rperm */
    /* ---------------------------------------------------------------------- */

    for (k = 0 ; k < n_row ; k++)
    {
	ASSERT (Rperm [k] >= 0 && Rperm [k] < n_row) ;
	InvRperm [Rperm [k]] = k ;
    }

    /* ---------------------------------------------------------------------- */
    /* see if pruned submatrix is square and has been symmetrically permuted */
    /* ---------------------------------------------------------------------- */

    /* The prior version of this code (with a "break" statement; UMFPACK 5.2)
     * causes UMFPACK to fail when optimization is enabled with gcc version
     * 4.2.4 in a 64-bit Linux environment.  The bug is a compiler bug, not a
     * an UMFPACK bug.  It is fixed in gcc version 4.3.2.  However, as a
     * workaround for the compiler, the code below has been "fixed". */

    if (n_row == n_col && nempty_row == nempty_col)
    {
	/* is_sym is true if the submatrix is square, and
	 * Rperm [n1..n_row-nempty_row-1] = Cperm [n1..n_col-nempty_col-1] */
	is_sym = TRUE ;
	for (s = n1 ; /* replaced the break with this test: */ is_sym &&
            /* the remainder of this test is unchanged from v5.2.0: */
            s < n_col - nempty_col ; s++)
	{
	    if (Cperm [s] != Rperm [s])
	    {
		is_sym = FALSE ;
		/* removed a break statement here, which is OK but it tickles
                 * the gcc 4.2.{3,4} compiler bug */
	    }
	}
    }
    else
    {
	is_sym = FALSE ;
    }

    DEBUGm4 (("Submatrix square and symmetrically permuted? "ID"\n", is_sym)) ;
    DEBUGm4 (("singletons "ID" row "ID" col "ID"\n", n1, n1r, n1c)) ;
    DEBUGm4 (("Empty cols "ID" rows "ID"\n", nempty_col, nempty_row)) ;
    *p_n1 = n1 ;
    *p_n1r = n1r ;
    *p_n1c = n1c ;
    *p_is_sym = is_sym ;
    *p_nempty_col = nempty_col ;
    *p_nempty_row = nempty_row ;
    *p_max_rdeg = max_rdeg ;
    return (UMFPACK_OK) ;
}
GLOBAL Int UMFPACK_transpose
(
    Int n_row,
    Int n_col,
    const Int Ap [ ],	/* size n_col+1 */
    const Int Ai [ ],	/* size nz = Ap [n_col] */
    const double Ax [ ], /* size nz, if present */
#ifdef COMPLEX
    const double Az [ ], /* size nz, if present */
#endif

    const Int P [ ],	/* P [k] = i means original row i is kth row in A(P,Q)*/
			/* P is identity if not present */
			/* size n_row, if present */

    const Int Q [ ],	/* Q [k] = j means original col j is kth col in A(P,Q)*/
			/* Q is identity if not present */
			/* size n_col, if present */

    Int Rp [ ],		/* size n_row+1 */
    Int Ri [ ],		/* size nz */
    double Rx [ ]	/* size nz, if present */
#ifdef COMPLEX
    , double Rz [ ]	/* size nz, if present */
    , Int do_conjugate	/* if true, then to conjugate transpose */
			/* otherwise, do array transpose */
#endif
)
{

    /* ---------------------------------------------------------------------- */
    /* local variables */
    /* ---------------------------------------------------------------------- */

    Int status, *W, nn ;

#ifndef NDEBUG
    init_count = UMF_malloc_count ;
    UMF_dump_start ( ) ;
#endif

    /* ---------------------------------------------------------------------- */
    /* allocate workspace */
    /* ---------------------------------------------------------------------- */

    nn = MAX (n_row, n_col) ;
    nn = MAX (nn, 1) ;
    W = (Int *) UMF_malloc (nn, sizeof (Int)) ;
    if (!W)
    {
	DEBUGm4 (("out of memory: transpose work\n")) ;
	ASSERT (UMF_malloc_count == init_count) ;
	return (UMFPACK_ERROR_out_of_memory) ;
    }
    ASSERT (UMF_malloc_count == init_count + 1) ;

    /* ---------------------------------------------------------------------- */
    /* C = (A (P,Q))' or (A (P,Q)).' */
    /* ---------------------------------------------------------------------- */

    status = UMF_transpose (n_row, n_col, Ap, Ai, Ax, P, Q, n_col, Rp, Ri, Rx,
	W, TRUE
#ifdef COMPLEX
	, Az, Rz, do_conjugate
#endif
	) ;

    /* ---------------------------------------------------------------------- */
    /* free the workspace */
    /* ---------------------------------------------------------------------- */

    (void) UMF_free ((void *) W) ;
    ASSERT (UMF_malloc_count == init_count) ;

    return (status) ;
}