void* CkPriorityPtr(void *msg) { #if CMK_ERROR_CHECKING if (UsrToEnv(msg)->getPriobits() == 0) CkAbort("Trying to access priority bits, but none was allocated"); #endif return UsrToEnv(msg)->getPrioPtr(); }
// Function called right before an entry method void CpdBeforeEp(int ep, void *obj, void *msg) { #if CMK_CHARMDEBUG if (CpvAccess(cmiArgDebugFlag)) { DebugRecursiveEntry entry; entry.previousChareID = setMemoryChareIDFromPtr(obj); entry.alreadyUserCode = _entryTable[ep]->inCharm ? 0 : 1; entry.memoryBackup = NULL; entry.obj = obj; if (msg != NULL) { entry.msg = msg; CmiReference(UsrToEnv(msg)); } else entry.msg = NULL; _debugData.push(entry); setMemoryStatus(entry.alreadyUserCode); //if (CkpvAccess(_debugEntryTable)[ep].isBreakpoint) printf("CpdBeforeEp breakpointed %d\n",ep); memoryBackup = &_debugData.peek().memoryBackup; if (!_entryTable[ep]->inCharm) { CpdResetMemory(); CpdSystemExit(); } CkVec<DebugPersistentCheck> &preExecutes = CkpvAccess(_debugEntryTable)[ep].preProcess; for (int i=0; i<preExecutes.size(); ++i) { preExecutes[i].object->cpdCheck(preExecutes[i].msg); } } #endif }
// handle GroupTable and data void CkPupGroupData(PUP::er &p, CmiBool create) { int numGroups, i; if (!p.isUnpacking()) { numGroups = CkpvAccess(_groupIDTable)->size(); } p|numGroups; if (p.isUnpacking()) { if(CkMyPe()==0) CkpvAccess(_numGroups) = numGroups+1; else CkpvAccess(_numGroups) = 1; } DEBCHK("[%d] CkPupGroupData %s: numGroups = %d\n", CkMyPe(),p.typeString(),numGroups); GroupInfo *tmpInfo = new GroupInfo [numGroups]; if (!p.isUnpacking()) { for(i=0;i<numGroups;i++) { tmpInfo[i].gID = (*CkpvAccess(_groupIDTable))[i]; TableEntry ent = CkpvAccess(_groupTable)->find(tmpInfo[i].gID); tmpInfo[i].MigCtor = _chareTable[ent.getcIdx()]->migCtor; tmpInfo[i].DefCtor = _chareTable[ent.getcIdx()]->defCtor; strncpy(tmpInfo[i].name,_chareTable[ent.getcIdx()]->name,255); //CkPrintf("[%d] CkPupGroupData: %s group %s \n", CkMyPe(), p.typeString(), tmpInfo[i].name); if(tmpInfo[i].MigCtor==-1) { char buf[512]; sprintf(buf,"Group %s needs a migration constructor and PUP'er routine for restart.\n", tmpInfo[i].name); CkAbort(buf); } } } for (i=0; i<numGroups; i++) p|tmpInfo[i]; for(i=0;i<numGroups;i++) { CkGroupID gID = tmpInfo[i].gID; if (p.isUnpacking()) { //CkpvAccess(_groupIDTable)->push_back(gID); int eIdx = tmpInfo[i].MigCtor; // error checking if (eIdx == -1) { CkPrintf("[%d] ERROR> Group %s's migration constructor is not defined!\n", CkMyPe(), tmpInfo[i].name); CkAbort("Abort"); } void *m = CkAllocSysMsg(); envelope* env = UsrToEnv((CkMessage *)m); if(create) CkCreateLocalGroup(gID, eIdx, env); } // end of unPacking IrrGroup *gobj = CkpvAccess(_groupTable)->find(gID).getObj(); // if using migration constructor, you'd better have a pup if(!create) gobj->mlogData->teamRecoveryFlag = 1; gobj->pup(p); // CkPrintf("Group PUP'ed: gid = %d, name = %s\n",gobj->ckGetGroupID().idx, tmpInfo[i].name); } delete [] tmpInfo; }
static inline void _sendStats(void) { DEBUGF(("[%d] _sendStats\n", CkMyPe())); envelope *env = UsrToEnv(CkpvAccess(_myStats)); env->setSrcPe(CkMyPe()); CmiSetHandler(env, _exitHandlerIdx); CmiSyncSendAndFree(0, env->getTotalsize(), (char *)env); }
void* CkCopyMsg(void **pMsg) {// cannot simply memcpy, because srcMsg could be varsize msg register void *srcMsg = *pMsg; register envelope *env = UsrToEnv(srcMsg); register unsigned char msgidx = env->getMsgIdx(); if(!env->isPacked() && _msgTable[msgidx]->pack) { srcMsg = _msgTable[msgidx]->pack(srcMsg); UsrToEnv(srcMsg)->setPacked(1); } register int size = UsrToEnv(srcMsg)->getTotalsize(); register envelope *newenv = (envelope *) CmiAlloc(size); CmiMemcpy(newenv, UsrToEnv(srcMsg), size); //memcpy(newenv, UsrToEnv(srcMsg), size); if(UsrToEnv(srcMsg)->isPacked() && _msgTable[msgidx]->unpack) { srcMsg = _msgTable[msgidx]->unpack(srcMsg); UsrToEnv(srcMsg)->setPacked(0); } *pMsg = srcMsg; if(newenv->isPacked() && _msgTable[msgidx]->unpack) { srcMsg = _msgTable[msgidx]->unpack(EnvToUsr(newenv)); UsrToEnv(srcMsg)->setPacked(0); } else srcMsg = EnvToUsr(newenv); setMemoryTypeMessage(newenv); return srcMsg; }
void alignmentTest(std::vector<TestMessage*> &allMsgs, const std::string &identifier) { int alignHdr = std::numeric_limits<int>::max(); int alignEnv = std::numeric_limits<int>::max(); int alignUsr = std::numeric_limits<int>::max(); int alignVar1 = std::numeric_limits<int>::max(); int alignVar2 = std::numeric_limits<int>::max(); int alignPrio = std::numeric_limits<int>::max(); for (int i = 0; i < allMsgs.size(); i++) { TestMessage *msg = allMsgs[i]; envelope *env = UsrToEnv(msg); #if CMK_USE_IBVERBS | CMK_USE_IBUD intptr_t startHdr = (intptr_t) &(((infiCmiChunkHeader *) env)[-1]); #else intptr_t startHdr = (intptr_t) BLKSTART(env); #endif intptr_t startEnv = (intptr_t) env; intptr_t startUsr = (intptr_t) msg; intptr_t startVar1 = (intptr_t) msg->varArray1; intptr_t startVar2 = (intptr_t) msg->varArray2; intptr_t startPrio = (intptr_t) env->getPrioPtr(); if (! (startHdr < startEnv && startEnv < startUsr && startUsr <= startVar1 && startVar1 < startVar2 && startVar2 < startPrio)) { CkAbort("Charm++ fatal error. Pointers to component fields " "of a message do not follow an increasing order.\n"); } alignHdr = std::min(alignCheck(startHdr), alignHdr); alignEnv = std::min(alignCheck(startEnv), alignEnv); alignUsr = std::min(alignCheck(startUsr), alignUsr); alignVar1 = std::min(alignCheck(startVar1), alignVar1); alignVar2 = std::min(alignCheck(startVar2), alignVar2); alignPrio = std::min(alignCheck(startPrio), alignPrio); } CkPrintf("Alignment information at the %s:\n", identifier.c_str()); CkPrintf("Chunk header aligned to %d bytes\n", alignHdr); CkPrintf("Envelope aligned to %d bytes\n", alignEnv); CkPrintf("Start of user data aligned to %d bytes\n", alignUsr); CkPrintf("First varsize array aligned to %d bytes\n", alignVar1); CkPrintf("Second varsize array aligned to %d bytes\n", alignVar2); CkPrintf("Priority field aligned to %d bytes\n", alignPrio); if (alignEnv >= ALIGN_BYTES && alignUsr >= ALIGN_BYTES && alignVar1 >= ALIGN_BYTES && alignVar2 >= ALIGN_BYTES && alignHdr >= ALIGN_BYTES && alignPrio >= ALIGN_BYTES) { CkPrintf("All passed.\n"); } else { CkAbort("Alignment requirements failed.\n"); } }
CkMarshallMsg *CkAllocateMarshallMsgNoninline(int size,const CkEntryOptions *opts) { //Allocate the message CkMarshallMsg *m=new (size,opts->getPriorityBits())CkMarshallMsg; //Copy the user's priority data into the message envelope *env=UsrToEnv(m); setMemoryTypeMessage(env); if (opts->getPriorityPtr() != NULL) CmiMemcpy(env->getPrioPtr(),opts->getPriorityPtr(),env->getPrioBytes()); //Set the message's queueing type env->setQueueing((unsigned char)opts->getQueueing()); env->setGroupDep(opts->getGroupDepID()); return m; }
// handle NodeGroupTable and data void CkPupNodeGroupData(PUP::er &p, CmiBool create) { int numNodeGroups, i; if (!p.isUnpacking()) { numNodeGroups = CksvAccess(_nodeGroupIDTable).size(); } p|numNodeGroups; if (p.isUnpacking()) { if(CkMyPe()==0){ CksvAccess(_numNodeGroups) = numNodeGroups+1; } else { CksvAccess(_numNodeGroups) = 1; } } if(CkMyPe() == 3) CkPrintf("[%d] CkPupNodeGroupData %s: numNodeGroups = %d\n",CkMyPe(),p.typeString(),numNodeGroups); GroupInfo *tmpInfo = new GroupInfo [numNodeGroups]; if (!p.isUnpacking()) { for(i=0;i<numNodeGroups;i++) { tmpInfo[i].gID = CksvAccess(_nodeGroupIDTable)[i]; TableEntry ent2 = CksvAccess(_nodeGroupTable)->find(tmpInfo[i].gID); tmpInfo[i].MigCtor = _chareTable[ent2.getcIdx()]->migCtor; if(tmpInfo[i].MigCtor==-1) { char buf[512]; sprintf(buf,"NodeGroup %s either need a migration constructor and\n\ declared as [migratable] in .ci to be able to checkpoint.",\ _chareTable[ent2.getcIdx()]->name); CkAbort(buf); } } } for (i=0; i<numNodeGroups; i++) p|tmpInfo[i]; for (i=0;i<numNodeGroups;i++) { CkGroupID gID = tmpInfo[i].gID; if (p.isUnpacking()) { //CksvAccess(_nodeGroupIDTable).push_back(gID); int eIdx = tmpInfo[i].MigCtor; void *m = CkAllocSysMsg(); envelope* env = UsrToEnv((CkMessage *)m); if(create){ CkCreateLocalNodeGroup(gID, eIdx, env); } } TableEntry ent2 = CksvAccess(_nodeGroupTable)->find(gID); IrrGroup *obj = ent2.getObj(); obj->pup(p); if(CkMyPe() == 3) CkPrintf("Nodegroup PUP'ed: gid = %d, name = %s\n", obj->ckGetGroupID().idx, _chareTable[ent2.getcIdx()]->name); } delete [] tmpInfo; }
void* CkAllocBuffer(void *msg, int bufsize) { bufsize = CkMsgAlignLength(bufsize); register envelope *env = UsrToEnv(msg); register envelope *packbuf; packbuf = _allocEnv(env->getMsgtype(), bufsize, env->getPriobits()); register int size = packbuf->getTotalsize(); CmiMemcpy(packbuf, env, sizeof(envelope)); packbuf->setTotalsize(size); packbuf->setPacked(!env->isPacked()); CmiMemcpy(packbuf->getPrioPtr(), env->getPrioPtr(), packbuf->getPrioBytes()); return EnvToUsr(packbuf);; }
virtual void ArraySend(CkDelegateData *pd,int ep,void *m,const CkArrayIndex &idx,CkArrayID a) { CkArray *arrMgr=CProxy_CkArray(a).ckLocalBranch(); int onPE=arrMgr->lastKnown(idx); if (onPE==CkMyPe()) { //Send to local element arrMgr->deliver((CkMessage *)m, CkDeliver_queue); } else { //Forward to remote element ckout<<"DelegateMgr> Sending message for "<<idx.data()[0]<<" to "<<onPE<<endl; envelope *env=UsrToEnv(m); CkPackMessage(&env); forwardMsg(ep,idx,a,env->getTotalsize(),(char *)env); CkFreeMsg(m); } }
// default load balancing strategy LBMigrateMsg* CentralLB::Strategy(LDStats* stats) { #if CMK_LBDB_ON double strat_start_time = CkWallTimer(); if (_lb_args.debug()) CkPrintf("CharmLB> %s: PE [%d] strategy starting at %f\n", lbname, cur_ld_balancer, strat_start_time); work(stats); if (_lb_args.debug()>2) { CkPrintf("CharmLB> Obj Map:\n"); for (int i=0; i<stats->n_objs; i++) CkPrintf("%d ", stats->to_proc[i]); CkPrintf("\n"); } LBMigrateMsg *msg = createMigrateMsg(stats); /* Extra feature for MetaBalancer if (_lb_args.metaLbOn()) { int clients = CkNumPes(); LBInfo info(clients); getPredictedLoadWithMsg(stats, clients, msg, info, 0); LBRealType mLoad, mCpuLoad, totalLoad, totalLoadWComm; info.getSummary(mLoad, mCpuLoad, totalLoad); theLbdb->UpdateDataAfterLB(mLoad, mCpuLoad, totalLoad/clients); } */ if (_lb_args.debug()) { double strat_end_time = CkWallTimer(); envelope *env = UsrToEnv(msg); double lbdbMemsize = LBDatabase::Object()->useMem()/1000; CkPrintf("CharmLB> %s: PE [%d] Memory: LBManager: %d KB CentralLB: %d KB\n", lbname, cur_ld_balancer, (int)lbdbMemsize, (int)(useMem()/1000)); CkPrintf("CharmLB> %s: PE [%d] #Objects migrating: %d, LBMigrateMsg size: %.2f MB\n", lbname, cur_ld_balancer, msg->n_moves, env->getTotalsize()/1024.0/1024.0); CkPrintf("CharmLB> %s: PE [%d] strategy finished at %f duration %f s\n", lbname, cur_ld_balancer, strat_end_time, strat_end_time-strat_start_time); theLbdb->SetStrategyCost(strat_end_time - strat_start_time); } return msg; #else return NULL; #endif }
void CkArrayReductionMgr::startNodeGroupReduction(int number,CkGroupID groupID){ #if (defined(_FAULT_MLOG_) || defined(_FAULT_CAUSAL_)) Chare *oldObj =CpvAccess(_currentObj); CpvAccess(_currentObj) = this; #endif ARPRINT("[%d] startNodeGroupReductions for red No %d my group %d attached group %d on %p \n",CkMyNode(),number,thisgroup.idx, attachedGroup.idx,this); if(attachedGroup.isZero()){ setAttachedGroup(groupID); } startLocalGroupReductions(number); CkReductionNumberMsg *msg = new CkReductionNumberMsg(number); envelope::setSrcPe((char *)UsrToEnv(msg),CkMyNode()); ((CkNodeReductionMgr *)this)->ReductionStarting(msg); #if (defined(_FAULT_MLOG_) || defined(_FAULT_CAUSAL_)) CpvAccess(_currentObj) = oldObj; #endif }
//Send the multicast message the local array elements. The message is //copied and sent if elements exist. void RectMulticastStrategy::localMulticast(envelope *env, ComlibRectSectionHashObject *obj) { int nIndices = obj->indices.size(); if(obj->msg != NULL) { CmiFree(obj->msg); obj->msg = NULL; } if(nIndices > 0) { void *msg = EnvToUsr(env); void *msg1 = msg; msg1 = CkCopyMsg(&msg); ComlibArrayInfo::localMulticast(&(obj->indices), UsrToEnv(msg1)); } }
// Function called right after an entry method void CpdAfterEp(int ep) { #if CMK_CHARMDEBUG if (CpvAccess(cmiArgDebugFlag)) { DebugRecursiveEntry entry = _debugData.peek(); CkVec<DebugPersistentCheck> &postExecutes = CkpvAccess(_debugEntryTable)[ep].postProcess; for (int i=0; i<postExecutes.size(); ++i) { postExecutes[i].object->cpdCheck(postExecutes[i].msg); } memoryBackup = &entry.memoryBackup; if (!_entryTable[ep]->inCharm) { CpdSystemEnter(); CpdCheckMemory(); } if (entry.msg != NULL) CmiFree(UsrToEnv(entry.msg)); setMemoryChareID(entry.previousChareID); setMemoryStatus(entry.alreadyUserCode); _debugData.deq(); } #endif }
void main::recv(testMsg *msg) { CkPrintf("message as received\n"); // get pointer to envelope header unsigned char *env= (unsigned char*) UsrToEnv(msg); unsigned char *hdr= (unsigned char*) msg; hdr-=sizeof(envelope); hdr-=CmiReservedHeaderSize; // output converse header field by field // output converse header byte by byte CkPrintf("CmiHeader\n"); for(int i=0;i<CmiReservedHeaderSize;i++) CkPrintf("%03u|",hdr[i]); CkPrintf("\n"); CkPrintf("Envelope\n"); for(int i=0;i<sizeof(envelope);i++) CkPrintf("%03u|",env[i]); CkPrintf("\n"); CkExit(); }
virtual void pup(PUP::er &p, CpdListItemsRequest &req) { int length; void ** messages; int curObj=0; void *msg; length = CdsFifo_Length((CdsFifo)(CpvAccess(conditionalQueue))); messages = CdsFifo_Enumerate(CpvAccess(conditionalQueue)); for (curObj=-length; curObj<0; curObj++) { void *msg = messages[length+curObj]; pupSingleMessage(p, curObj-1, msg); } delete[] messages; curObj = 0; length = CdsFifo_Length((CdsFifo)(CkpvAccess(debugQueue))); messages = CdsFifo_Enumerate(CkpvAccess(debugQueue)); if (CkpvAccess(lastBreakPointMsg) != NULL) { beginItem(p, -1); envelope *env=(envelope *)UsrToEnv(CkpvAccess(lastBreakPointMsg)); p.comment("name"); char *type=(char*)"Breakpoint"; p(type,strlen(type)); p.comment("charmMsg"); p.synchronize(PUP::sync_begin_object); CkUnpackMessage(&env); CpdPupMessage(p, EnvToUsr(env)); p.synchronize(PUP::sync_end_object); } for(curObj=req.lo; curObj<req.hi; curObj++) if ((curObj>=0) && (curObj<length)) { void *msg=messages[curObj]; /* converse message */ pupSingleMessage(p, curObj, msg); } delete[] messages; }
// handle plain non-migratable chare void CkPupChareData(PUP::er &p) { int i, n; if (!p.isUnpacking()) n = CkpvAccess(chare_objs).size(); p|n; for (i=0; i<n; i++) { int chare_type; if (!p.isUnpacking()) { chare_type = CkpvAccess(chare_types)[i]; } p | chare_type; if (p.isUnpacking()) { int migCtor = _chareTable[chare_type]->migCtor; if(migCtor==-1) { char buf[512]; sprintf(buf,"Chare %s needs a migration constructor and PUP'er routine for restart.\n", _chareTable[chare_type]->name); CkAbort(buf); } void *m = CkAllocSysMsg(); envelope* env = UsrToEnv((CkMessage *)m); CkCreateLocalChare(migCtor, env); CkFreeSysMsg(m); } Chare *obj = (Chare*)CkpvAccess(chare_objs)[i]; obj->pup(p); } if (!p.isUnpacking()) n = CkpvAccess(vidblocks).size(); p|n; for (i=0; i<n; i++) { VidBlock *v; if (p.isUnpacking()) { v = new VidBlock(); CkpvAccess(vidblocks).push_back(v); } else v = CkpvAccess(vidblocks)[i]; v->pup(p); } }
void CpdDeliverSingleMessage () { if (!CpdIsFrozen()) return; /* Do something only if we are in freeze mode */ if ( (CkpvAccess(lastBreakPointMsg) != NULL) && (CkpvAccess(lastBreakPointObject) != NULL) ) { EntryInfo * breakPointEntryInfo = CpvAccess(breakPointEntryTable)->get(CkpvAccess(lastBreakPointIndex)); if (breakPointEntryInfo != NULL) { if (_conditionalDelivery) { if (_conditionalDelivery==1) conditionalShm->msgs[conditionalShm->count++] = -1; void *env = UsrToEnv(CkpvAccess(lastBreakPointMsg)); CmiReference(env); CdsFifo_Enqueue(CpvAccess(conditionalQueue),env); } breakPointEntryInfo->call(CkpvAccess(lastBreakPointMsg), CkpvAccess(lastBreakPointObject)); } CkpvAccess(lastBreakPointMsg) = NULL; CkpvAccess(lastBreakPointObject) = NULL; #if CMK_BIGSIM_CHARM ((workThreadInfo*)cta(threadinfo))->stopScheduler(); #endif } else { // we were not stopped at a breakpoint, then deliver the first message in the debug queue if (!CdsFifo_Empty(CkpvAccess(debugQueue))) { CkpvAccess(skipBreakpoint) = 1; char *queuedMsg = (char *)CdsFifo_Dequeue(CkpvAccess(debugQueue)); if (_conditionalDelivery) { if (_conditionalDelivery==1) conditionalShm->msgs[conditionalShm->count++] = 0; CmiReference(queuedMsg); CdsFifo_Enqueue(CpvAccess(conditionalQueue),queuedMsg); } #if CMK_BIGSIM_CHARM stopVTimer(); BgProcessMessageDefault(cta(threadinfo), queuedMsg); startVTimer(); #else CmiHandleMessage(queuedMsg); #endif CkpvAccess(skipBreakpoint) = 0; } } }
void NullLB::AtSync() { // tried to reset the database so it doesn't waste memory // if nobody else is here, the stat collection is not even turned on // so I should not have to clear loads. // theLbdb->ClearLoads(); // disable the batsyncer if no balancer exists // theLbdb->SetLBPeriod(1e10); #if ! NULLLB_CONVERSE // prevent this charm message from being seen by QD // so that the QD detection works CpvAccess(_qd)->create(-1); thisProxy[CkMyPe()].migrationsDone(); #else // send converse message to escape the QD detection envelope *env = UsrToEnv(CkAllocSysMsg()); CmiSetHandler(env, _migDoneHandle); CmiSyncSendAndFree(CkMyPe(), env->getTotalsize(), (char *)env); #endif }
main::main(CkArgMsg *m) { delete m; mainProxy=thishandle; CmiPrintf("Info: converse header: %d envelope: %d\n", CmiReservedHeaderSize, sizeof(envelope)); // make a message with 1 payload testMsg *msg = new testMsg; // get pointer to envelope header unsigned char *env= (unsigned char*) UsrToEnv(msg); unsigned char *hdr= (unsigned char*) msg; hdr-=sizeof(envelope); hdr-=CmiReservedHeaderSize; // output converse header field by field // output converse header byte by byte CkPrintf("CmiHeader\n"); for(int i=0;i<CmiReservedHeaderSize;i++) CkPrintf("%03u|",hdr[i]); CkPrintf("\n"); CkPrintf("Envelope\n"); for(int i=0;i<sizeof(envelope);i++) CkPrintf("%03u|",env[i]); CkPrintf("\n"); mainProxy.recv(msg); }
void RectMulticastStrategy::insertMessage(CharmMessageHolder *cmsg){ cmsg->checkme(); // ComlibPrintf("[%d] Comlib Rect Section Multicast: insertMessage \n", if(cmsg->dest_proc == IS_SECTION_MULTICAST && cmsg->sec_id != NULL) { CkSectionID *sid = cmsg->sec_id; int cur_sec_id = sid->getSectionID(); ComlibPrintf("[%d] Comlib Rect Section Multicast: insertMessage section id %d\n", CkMyPe(), cur_sec_id); if(cur_sec_id > 0) { sinfo.processOldSectionMessage(cmsg); // ComlibPrintf("[%d] insertMessage old sectionid %d \n",CkMyPe(),cur_sec_id); ComlibPrintf("[%d] insertMessage old sectionid %d \n",CkMyPe(),cur_sec_id); ComlibSectionHashKey key(CkMyPe(), sid->_cookie.sInfo.cInfo.id); ComlibRectSectionHashObject *obj = sec_ht.get(key); if(obj == NULL) CkAbort("Cannot Find Section\n"); envelope *env = UsrToEnv(cmsg->getCharmMessage()); #ifndef LOCAL_MULTI_OFF localMulticast(env, obj); #endif if(obj->sourceInRectangle) { remoteMulticast(env, obj); } else // forward { forwardMulticast(env, obj); } } else { ComlibPrintf("[%d] insertMessage new section id %d\n", CkMyPe(), cur_sec_id); //New sec id, so send it along with the message void *newmsg = sinfo.getNewMulticastMessage(cmsg, needSorting()); insertSectionID(sid); ComlibSectionHashKey key(CkMyPe(), sid->_cookie.sInfo.cInfo.id); ComlibPrintf("[%d] insertMessage new sectionid %d \n",CkMyPe(),sid->_cookie.sInfo.cInfo.id); ComlibRectSectionHashObject *obj = sec_ht.get(key); if(obj == NULL) CkAbort("Cannot Find Section\n"); /* ComlibPrintf("%u: Src = %d dest:", key.hash(), CkMyPe()); for (int i=0; i<obj->npes; ++i) ComlibPrintf(" %d",obj->pelist[i]); ComlibPrintf(", map:"); ComlibMulticastMsg *lll = (ComlibMulticastMsg*)newmsg; envelope *ppp = UsrToEnv(newmsg); CkUnpackMessage(&ppp); int ttt=0; for (int i=0; i<lll->nPes; ++i) { ComlibPrintf(" %d (",lll->indicesCount[i].pe); for (int j=0; j<lll->indicesCount[i].count; ++j) { ComlibPrintf(" %d",((int*)&(lll->indices[ttt]))[1]); ttt++; } ComlibPrintf(" )"); } CkPackMessage(&ppp); ComlibPrintf("\n"); */ // our object needs indices, npes, pelist sinfo.getRemotePelist(sid->_nElems, sid->_elems, obj->npes, obj->pelist); sinfo.getLocalIndices(sid->_nElems, sid->_elems, obj->indices); char *msg = cmsg->getCharmMessage(); /* ComlibMulticastMsg *lll = (ComlibMulticastMsg*)newmsg; envelope *ppp = UsrToEnv(newmsg); CkUnpackMessage(&ppp); int ttt=0; int uuu=0; for (int i=0; i<lll->nPes; ++i) { // ComlibPrintf(" %d (",lll->indicesCount[i].pe); uuu++; for (int j=0; j<lll->indicesCount[i].count; ++j) { // ComlibPrintf(" %d",((int*)&(lll->indices[ttt]))[1]); ttt++; } // ComlibPrintf(" )"); } ComlibPrintf("[%d] newmsg for sendRectDest has %d indices %d pes\n",CkMyPe(),ttt, uuu); CkAssert(uuu>0); CkAssert(ttt>0); */ envelope *ppp = UsrToEnv(newmsg); CkPackMessage(&ppp); #ifndef LOCAL_MULTI_OFF localMulticast(UsrToEnv(msg), obj); #endif sendRectDest(obj ,CkMyPe(), UsrToEnv(newmsg)); // CkFreeMsg(msg); // need this? } } else CkAbort("Section multicast cannot be used without a section proxy"); delete cmsg; }
/** Create a new multicast message based upon the section info stored inside cmsg. */ ComlibMulticastMsg * ComlibSectionInfo::getNewMulticastMessage(CharmMessageHolder *cmsg, int needSort, int instanceID){ // cmsg->checkme(); if(cmsg->sec_id == NULL || cmsg->sec_id->_nElems == 0) return NULL; void *m = cmsg->getCharmMessage(); envelope *env = UsrToEnv(m); // Crate a unique identifier for section id in cmsg->sec_id initSectionID(cmsg->sec_id); CkPackMessage(&env); const CkArrayID destArrayID(env->getArrayMgr()); int nRemotePes=-1, nRemoteIndices=-1; ComlibMulticastIndexCount *indicesCount; int *belongingList; // Determine the last known locations of all the destination objects. getPeCount(cmsg->sec_id->_nElems, cmsg->sec_id->_elems, destArrayID, nRemotePes, nRemoteIndices, indicesCount, belongingList); // if (nRemotePes == 0) return NULL; #if 0 CkPrintf("nRemotePes=%d\n", nRemotePes); CkPrintf("nRemoteIndices=%d\n",nRemoteIndices); CkPrintf("env->getTotalsize()=%d\n", env->getTotalsize()); CkPrintf("cmsg->sec_id->_nElems=%d\n", cmsg->sec_id->_nElems); #endif int sizes[3]; sizes[0] = nRemotePes; sizes[1] = nRemoteIndices; // only those remote ///cmsg->sec_id->_nElems; sizes[2] = env->getTotalsize(); ComlibPrintf("Creating new comlib multicast message %d, %d %d\n", sizes[0], sizes[1], sizes[2]); ComlibMulticastMsg *msg = new(sizes, 0) ComlibMulticastMsg; msg->nPes = nRemotePes; msg->_cookie.info.sInfo.cInfo.instId = instanceID; msg->_cookie.info.sInfo.cInfo.id = MaxSectionID - 1; msg->_cookie.info.sInfo.cInfo.status = COMLIB_MULTICAST_NEW_SECTION; msg->_cookie.get_type() = COMLIB_MULTICAST_MESSAGE; msg->_cookie.get_pe() = CkMyPe(); // fill in the three pointers of the ComlibMulticastMsg memcpy(msg->indicesCount, indicesCount, sizes[0] * sizeof(ComlibMulticastIndexCount)); //memcpy(msg->indices, cmsg->sec_id->_elems, sizes[1] * sizeof(CkArrayIndex)); CkArrayIndex **indicesPe = (CkArrayIndex**)alloca(nRemotePes * sizeof(CkArrayIndex*)); if (needSort) { // if we are sorting the array, then we need to fix the problem that belongingList // refers to the original ordering! This is done by mapping indicesPe in a way coherent // with the original ordering. int previous, i, j; qsort(msg->indicesCount, sizes[0], sizeof(ComlibMulticastIndexCount), indexCountCompare); for (j=0; j<nRemotePes; ++j) if (indicesCount[j].pe == msg->indicesCount[0].pe) break; indicesPe[j] = msg->indices; previous = j; for (i=1; i<nRemotePes; ++i) { for (j=0; j<nRemotePes; ++j) if (indicesCount[j].pe == msg->indicesCount[i].pe) break; indicesPe[j] = indicesPe[previous] + indicesCount[previous].count; previous = j; } } else { indicesPe[0] = msg->indices; for (int i=1; i<nRemotePes; ++i) indicesPe[i] = indicesPe[i-1] + indicesCount[i-1].count; } for (int i=0; i<cmsg->sec_id->_nElems; ++i) { if (belongingList[i] >= 0) { // If the object is located on a remote PE (-1 is local) *indicesPe[belongingList[i]] = cmsg->sec_id->_elems[i]; indicesPe[belongingList[i]]++; } } memcpy(msg->usrMsg, env, sizes[2] * sizeof(char)); envelope *newenv = UsrToEnv(msg); delete [] indicesCount; delete [] belongingList; newenv->getArrayMgr() = env->getArrayMgr(); newenv->getsetArraySrcPe() = env->getsetArraySrcPe(); newenv->getsetArrayEp() = env->getsetArrayEp(); newenv->getsetArrayHops() = env->getsetArrayHops(); newenv->getsetArrayIndex() = env->getsetArrayIndex(); #if CMK_REPLAYSYSTEM || CMK_TRACE_ENABLED newenv->setEvent(env->getEvent()); #endif newenv->setSrcPe(env->getSrcPe()); return (ComlibMulticastMsg *)EnvToUsr(newenv); }
void RectMulticastStrategy::handleNewMulticastMessage(envelope *env) { ComlibPrintf("[%d] : In handleNewMulticastMessage\n", CkMyPe()); CkUnpackMessage(&env); int sender=env->getSrcPe(); int localElems; envelope *newenv; CkArrayIndex *local_idx_list; sinfo.unpack(env, localElems, local_idx_list, newenv); ComlibMulticastMsg *cbmsg = (ComlibMulticastMsg *)EnvToUsr(env); ComlibSectionHashKey key(cbmsg->_cookie.pe, cbmsg->_cookie.sInfo.cInfo.id); ComlibRectSectionHashObject *old_obj = NULL; old_obj = sec_ht.get(key); if(old_obj != NULL) { delete old_obj; } /* CkArrayIndex *idx_list_array = new CkArrayIndex[idx_list.size()]; for(int count = 0; count < idx_list.size(); count++) idx_list_array[count] = idx_list[count]; */ int cur_sec_id=cbmsg->_cookie.sInfo.cInfo.id; // need everyPe for rectangle not just local_idx_list ComlibMulticastMsg *lll = cbmsg; envelope *ppp = UsrToEnv(cbmsg); CkUnpackMessage(&ppp); int ttt=0; int uuu=0; for (int i=0; i<lll->nPes; ++i) { // ComlibPrintf(" %d (",lll->indicesCount[i].pe); uuu++; for (int j=0; j<lll->indicesCount[i].count; ++j) { // ComlibPrintf(" %d",((int*)&(lll->indices[ttt]))[1]); ttt++; } // ComlibPrintf(" )"); } ComlibPrintf("[%d] cbmsg for intermediate has %d indices %d pes\n",CkMyPe(),ttt, uuu); CkAssert(uuu>0); CkAssert(ttt>0); ComlibRectSectionHashObject *new_obj = createObjectOnIntermediatePe(ttt, cbmsg->indices, cbmsg->nPes, cbmsg->indicesCount, sender, cur_sec_id ); // now revise obj for local use only sinfo.getRemotePelist(localElems, local_idx_list, new_obj->npes, new_obj->pelist); sinfo.getLocalIndices(localElems, local_idx_list, new_obj->indices); sec_ht.put(key) = new_obj; CkPackMessage(&newenv); #ifndef LOCAL_MULTI_OFF localMulticast(newenv, new_obj); //local multicast always copies #endif CmiFree(newenv); //NEED this }
/// Pack/unpack/sizing operator void Event::pup(PUP::er &p) { int msgSize, spawn = 0; SpawnedEvent *tmp = NULL; evID.pup(p); p(fnIdx); p(timestamp); p(done); p(commitBfrLen); p(commitErr); p(srt); p(ert); p(svt); p(evt); // commitBfr if (p.isUnpacking() && (commitBfrLen > 0)) { // unpack non-empty commitBfr commitBfr = new char[commitBfrLen]; p(commitBfr, commitBfrLen); } else if (commitBfrLen > 0) // pack/size non-empty commitBfr p(commitBfr, commitBfrLen); else // unpack empty commitBfr commitBfr = NULL; // msg if (p.isUnpacking()) { // unpack msg p(msgSize); // unpack msgSize if (msgSize > 0) { // if nonzero, unpack msg msg = (eventMsg *)CmiAlloc(msgSize); // allocate space p((char *)msg, msgSize); // unpack into space msg = (eventMsg *)EnvToUsr((envelope *)msg); // reset msg pointer } else // empty message msg = NULL; // set msg to null } else { // pack msg if (msg != NULL) { // msg is not null msgSize = (UsrToEnv(msg))->getTotalsize(); // get msg size p(msgSize); // pack msg size p((char *)(UsrToEnv(msg)), msgSize); // pack from start of envelope } else { // msg is null msgSize = 0; p(msgSize); // pack size of zero } } // spawnedList if (p.isUnpacking()) { // unpack spawnedList p(spawn); // unpack spawn count if (spawn > 0) spawnedList = tmp = new SpawnedEvent(); else spawnedList = NULL; while (spawn > 0) { // unpack each spawned event record tmp->pup(p); tmp->next = NULL; spawn--; if (spawn > 0) { tmp->next = new SpawnedEvent(); tmp = tmp->next; } } } else { // pack/size spawnedList tmp = spawnedList; while (tmp != NULL) { // count the spawn spawn++; tmp = tmp->next; } p(spawn); // pack the spawn count tmp = spawnedList; while (tmp != NULL) { // pack each spawn tmp->pup(p); tmp = tmp->next; } } if (p.isUnpacking()) { cpData = NULL; // to be set later serialCPdata = NULL; serialCPdataSz = 0; } }
void CkFreeMsg(void *msg) { if (msg!=NULL) { CmiFree(UsrToEnv(msg)); } }
// Interpret data in a message in a user-friendly way. // Ignores most of the envelope fields used by CkPupMessage, // and instead concentrates on user data void CpdPupMessage(PUP::er &p, void *msg) { envelope *env=UsrToEnv(msg); //int wasPacked=env->isPacked(); int size=env->getTotalsize(); int prioBits=env->getPriobits(); int from=env->getSrcPe(); PUPn(from); //PUPn(wasPacked); PUPn(prioBits); int userSize=size-sizeof(envelope)-sizeof(int)*CkPriobitsToInts(prioBits); PUPn(userSize); int msgType = env->getMsgIdx(); PUPn(msgType); int envType = env->getMsgtype(); PUPn(envType); //p.synchronize(PUP::sync_last_system); int ep=CkMessageToEpIdx(msg); PUPn(ep); // Pup the information specific to this envelope type if (envType == ForArrayEltMsg || envType == ArrayEltInitMsg) { int arrID = env->getArrayMgr().idx; PUPn(arrID); CkArrayIndex &idx = env->getsetArrayIndex(); int nInts = idx.nInts; int dimension = idx.dimension; PUPn(nInts); PUPn(dimension); p.comment("index"); if (dimension >=4 && dimension <=6) { p((short int *)idx.index, dimension); } else { p(idx.index, nInts); } } else if (envType == ForNodeBocMsg || envType == ForBocMsg) { int groupID = env->getGroupNum().idx; PUPn(groupID); } else if (envType == BocInitMsg || envType == NodeBocInitMsg) { int groupID = env->getGroupNum().idx; PUPn(groupID); } else if (envType == NewVChareMsg || envType == ForVidMsg || envType == FillVidMsg) { p.comment("ptr"); void *ptr = env->getVidPtr(); pup_pointer(&p, &ptr); } else if (envType == ForChareMsg) { p.comment("ptr"); void *ptr = env->getObjPtr(); pup_pointer(&p, &ptr); } /* user data */ p.comment("data"); p.synchronize(PUP::sync_begin_object); if (_entryTable[ep]->messagePup!=NULL) _entryTable[ep]->messagePup(p,msg); else CkMessage::ckDebugPup(p,msg); p.synchronize(PUP::sync_end_object); }
void CentralLB::ProcessReceiveMigration(CkReductionMsg *msg) { #if CMK_LBDB_ON int i; LBMigrateMsg *m = storedMigrateMsg; CmiAssert(m!=NULL); delete msg; #if (defined(_FAULT_MLOG_) || defined(_FAULT_CAUSAL_)) int *dummyCounts; DEBUGF(("[%d] Starting ReceiveMigration WITH step %d m->step %d\n",CkMyPe(),step(),m->step)); // CmiPrintf("[%d] Starting ReceiveMigration step %d m->step %d\n",CkMyPe(),step(),m->step); if(step() > m->step){ char str[100]; envelope *env = UsrToEnv(m); return; } lbDecisionCount = m->lbDecisionCount; #endif if (_lb_args.debug() > 1) if (CkMyPe()%1024==0) CmiPrintf("[%d] Starting ReceiveMigration step %d at %f\n",CkMyPe(),step(), CmiWallTimer()); for (i=0; i<CkNumPes(); i++) theLbdb->lastLBInfo.expectedLoad[i] = m->expectedLoad[i]; CmiAssert(migrates_expected <= 0 || migrates_completed == migrates_expected); /*FAULT_EVAC*/ if(!CmiNodeAlive(CkMyPe())){ delete m; return; } migrates_expected = 0; future_migrates_expected = 0; #if (defined(_FAULT_MLOG_) || defined(_FAULT_CAUSAL_)) int sending=0; int dummy=0; LBDB *_myLBDB = theLbdb->getLBDB(); if(_restartFlag){ dummyCounts = new int[CmiNumPes()]; bzero(dummyCounts,sizeof(int)*CmiNumPes()); } #endif for(i=0; i < m->n_moves; i++) { MigrateInfo& move = m->moves[i]; const int me = CkMyPe(); if (move.from_pe == me && move.to_pe != me) { DEBUGF(("[%d] migrating object to %d\n",move.from_pe,move.to_pe)); // migrate object, in case it is already gone, inform toPe #if (!defined(_FAULT_MLOG_) && !defined(_FAULT_CAUSAL_)) if (theLbdb->Migrate(move.obj,move.to_pe) == 0) thisProxy[move.to_pe].MissMigrate(!move.async_arrival); #else if(_restartFlag == 0){ DEBUG(CmiPrintf("[%d] need to move object from %d to %d \n",CkMyPe(),move.from_pe,move.to_pe)); theLbdb->Migrate(move.obj,move.to_pe); sending++; }else{ if(_myLBDB->validObjHandle(move.obj)){ DEBUG(CmiPrintf("[%d] need to move object from %d to %d \n",CkMyPe(),move.from_pe,move.to_pe)); theLbdb->Migrate(move.obj,move.to_pe); sending++; }else{ DEBUG(CmiPrintf("[%d] dummy move to pe %d detected after restart \n",CmiMyPe(),move.to_pe)); dummyCounts[move.to_pe]++; dummy++; } } #endif } else if (move.from_pe != me && move.to_pe == me) { DEBUGF(("[%d] expecting object from %d\n",move.to_pe,move.from_pe)); if (!move.async_arrival) migrates_expected++; else future_migrates_expected++; } else { #if CMK_GLOBAL_LOCATION_UPDATE UpdateLocation(move); #endif } } DEBUGF(("[%d] in ReceiveMigration %d moves expected: %d future expected: %d\n",CkMyPe(),m->n_moves, migrates_expected, future_migrates_expected)); // if (_lb_debug) CkPrintf("[%d] expecting %d objects migrating.\n", CkMyPe(), migrates_expected); #if (defined(_FAULT_MLOG_) || defined(_FAULT_CAUSAL_)) if(_restartFlag){ sendDummyMigrationCounts(dummyCounts); _restartFlag =0; delete []dummyCounts; } #endif #if 0 if (m->n_moves ==0) { theLbdb->SetLBPeriod(theLbdb->GetLBPeriod()*2); } #endif cur_ld_balancer = m->next_lb; if((CkMyPe() == cur_ld_balancer) && (cur_ld_balancer != 0)){ LBDatabaseObj()->set_avail_vector(m->avail_vector, -2); } if (migrates_expected == 0 || migrates_completed == migrates_expected) MigrationDone(1); delete m; // CkEvacuatedElement(); #if (defined(_FAULT_MLOG_) || defined(_FAULT_CAUSAL_)) // migrates_expected = 0; // // ResumeClients(1); #endif #endif }
void CentralLB::LoadBalance() { #if CMK_LBDB_ON int proc; const int clients = CkNumPes(); #if ! USE_REDUCTION // build data buildStats(); #else for (proc = 0; proc < clients; proc++) statsMsgsList[proc] = NULL; #endif theLbdb->ResetAdaptive(); if (!_lb_args.samePeSpeed()) statsData->normalize_speed(); if (_lb_args.debug()) CmiPrintf("\nCharmLB> %s: PE [%d] step %d starting at %f Memory: %f MB\n", lbname, cur_ld_balancer, step(), start_lb_time, CmiMemoryUsage()/(1024.0*1024.0)); // if we are in simulation mode read data if (LBSimulation::doSimulation) simulationRead(); char *availVector = LBDatabaseObj()->availVector(); for(proc = 0; proc < clients; proc++) statsData->procs[proc].available = (CmiBool)availVector[proc]; preprocess(statsData); // CkPrintf("Before Calling Strategy\n"); if (_lb_args.printSummary()) { LBInfo info(clients); // not take comm data info.getInfo(statsData, clients, 0); LBRealType mLoad, mCpuLoad, totalLoad; info.getSummary(mLoad, mCpuLoad, totalLoad); int nmsgs, nbytes; statsData->computeNonlocalComm(nmsgs, nbytes); CkPrintf("[%d] Load Summary (before LB): max (with bg load): %f max (obj only): %f average: %f at step %d nonlocal: %d msgs %.2fKB.\n", CkMyPe(), mLoad, mCpuLoad, totalLoad/clients, step(), nmsgs, 1.0*nbytes/1024); // if (_lb_args.debug() > 1) { // for (int i=0; i<statsData->n_objs; i++) // CmiPrintf("[%d] %.10f %.10f\n", i, statsData->objData[i].minWall, statsData->objData[i].maxWall); // } } #if CMK_REPLAYSYSTEM LDHandle *loadBalancer_pointers; if (_replaySystem) { loadBalancer_pointers = (LDHandle*)malloc(CkNumPes()*sizeof(LDHandle)); for (int i=0; i<statsData->n_objs; ++i) loadBalancer_pointers[statsData->from_proc[i]] = statsData->objData[i].handle.omhandle.ldb; } #endif LBMigrateMsg* migrateMsg = Strategy(statsData); #if (defined(_FAULT_MLOG_) || defined(_FAULT_CAUSAL_)) migrateMsg->step = step(); #endif #if CMK_REPLAYSYSTEM CpdHandleLBMessage(&migrateMsg); if (_replaySystem) { for (int i=0; i<migrateMsg->n_moves; ++i) migrateMsg->moves[i].obj.omhandle.ldb = loadBalancer_pointers[migrateMsg->moves[i].from_pe]; free(loadBalancer_pointers); } #endif LBDatabaseObj()->get_avail_vector(migrateMsg->avail_vector); migrateMsg->next_lb = LBDatabaseObj()->new_lbbalancer(); // if this is the step at which we need to dump the database simulationWrite(); // calculate predicted load // very time consuming though, so only happen when debugging is on if (_lb_args.printSummary()) { LBInfo info(clients); // not take comm data getPredictedLoadWithMsg(statsData, clients, migrateMsg, info, 0); LBRealType mLoad, mCpuLoad, totalLoad; info.getSummary(mLoad, mCpuLoad, totalLoad); int nmsgs, nbytes; statsData->computeNonlocalComm(nmsgs, nbytes); CkPrintf("[%d] Load Summary (after LB): max (with bg load): %f max (obj only): %f average: %f at step %d nonlocal: %d msgs %.2fKB useMem: %.2fKB.\n", CkMyPe(), mLoad, mCpuLoad, totalLoad/clients, step(), nmsgs, 1.0*nbytes/1024, (1.0*useMem())/1024); for (int i=0; i<clients; i++) migrateMsg->expectedLoad[i] = info.peLoads[i]; } DEBUGF(("[%d]calling recv migration\n",CkMyPe())); #if (defined(_FAULT_MLOG_) || defined(_FAULT_CAUSAL_)) lbDecisionCount++; migrateMsg->lbDecisionCount = lbDecisionCount; #endif envelope *env = UsrToEnv(migrateMsg); if (1) { // broadcast thisProxy.ReceiveMigration(migrateMsg); } else { // split the migration for each processor for (int p=0; p<CkNumPes(); p++) { LBMigrateMsg *m = extractMigrateMsg(migrateMsg, p); thisProxy[p].ReceiveMigration(m); } delete migrateMsg; } // Zero out data structures for next cycle // CkPrintf("zeroing out data\n"); statsData->clear(); stats_msg_count=0; #endif }
void CkSetQueueing(void *msg, int strategy) { UsrToEnv(msg)->setQueueing((unsigned char) strategy); }
/** This is the main charm setup routine. It's called on all processors after Converse initialization. This routine gets passed to Converse from "main.C". The main purpose of this routine is to set up the objects and Ckpv's used during a regular Charm run. See the comment at the top of the file for overall flow. */ void _initCharm(int unused_argc, char **argv) { int inCommThread = (CmiMyRank() == CmiMyNodeSize()); DEBUGF(("[%d,%.6lf ] _initCharm started\n",CmiMyPe(),CmiWallTimer())); CkpvInitialize(size_t *, _offsets); CkpvAccess(_offsets) = new size_t[32]; CkpvInitialize(PtrQ*,_buffQ); CkpvInitialize(PtrVec*,_bocInitVec); CkpvInitialize(void*, _currentChare); CkpvInitialize(int, _currentChareType); CkpvInitialize(CkGroupID, _currentGroup); CkpvInitialize(void *, _currentNodeGroupObj); CkpvInitialize(CkGroupID, _currentGroupRednMgr); CkpvInitialize(GroupTable*, _groupTable); CkpvInitialize(GroupIDTable*, _groupIDTable); CkpvInitialize(CmiImmediateLockType, _groupTableImmLock); CkpvInitialize(bool, _destroyingNodeGroup); CkpvAccess(_destroyingNodeGroup) = false; CkpvInitialize(UInt, _numGroups); CkpvInitialize(int, _numInitsRecd); CkpvInitialize(int, _initdone); CkpvInitialize(char**, Ck_argv); CkpvAccess(Ck_argv)=argv; CkpvInitialize(MsgPool*, _msgPool); CkpvInitialize(CkCoreState *, _coreState); /* Added for evacuation-sayantan */ #ifndef __BIGSIM__ CpvInitialize(char *,_validProcessors); #endif CkpvInitialize(char ,startedEvac); CpvInitialize(int,serializer); _initChareTables(); // for checkpointable plain chares CksvInitialize(UInt, _numNodeGroups); CksvInitialize(GroupTable*, _nodeGroupTable); CksvInitialize(GroupIDTable, _nodeGroupIDTable); CksvInitialize(CmiImmediateLockType, _nodeGroupTableImmLock); CksvInitialize(CmiNodeLock, _nodeLock); CksvInitialize(PtrVec*,_nodeBocInitVec); CksvInitialize(UInt,_numInitNodeMsgs); CkpvInitialize(int,_charmEpoch); CkpvAccess(_charmEpoch)=0; CksvInitialize(int, _triggersSent); CksvAccess(_triggersSent) = 0; CkpvInitialize(_CkOutStream*, _ckout); CkpvInitialize(_CkErrStream*, _ckerr); CkpvInitialize(Stats*, _myStats); CkpvAccess(_groupIDTable) = new GroupIDTable(0); CkpvAccess(_groupTable) = new GroupTable; CkpvAccess(_groupTable)->init(); CkpvAccess(_groupTableImmLock) = CmiCreateImmediateLock(); CkpvAccess(_numGroups) = 1; // make 0 an invalid group number CkpvAccess(_buffQ) = new PtrQ(); CkpvAccess(_bocInitVec) = new PtrVec(); CkpvAccess(_currentNodeGroupObj) = NULL; if(CkMyRank()==0) { CksvAccess(_numNodeGroups) = 1; //make 0 an invalid group number CksvAccess(_numInitNodeMsgs) = 0; CksvAccess(_nodeLock) = CmiCreateLock(); CksvAccess(_nodeGroupTable) = new GroupTable(); CksvAccess(_nodeGroupTable)->init(); CksvAccess(_nodeGroupTableImmLock) = CmiCreateImmediateLock(); CksvAccess(_nodeBocInitVec) = new PtrVec(); } CkCallbackInit(); CmiNodeAllBarrier(); #if ! CMK_BIGSIM_CHARM initQd(argv); // bigsim calls it in ConverseCommonInit #endif CkpvAccess(_coreState)=new CkCoreState(); CkpvAccess(_numInitsRecd) = 0; CkpvAccess(_initdone) = 0; CkpvAccess(_ckout) = new _CkOutStream(); CkpvAccess(_ckerr) = new _CkErrStream(); _charmHandlerIdx = CkRegisterHandler((CmiHandler)_bufferHandler); _initHandlerIdx = CkRegisterHandler((CmiHandler)_initHandler); CkNumberHandlerEx(_initHandlerIdx, (CmiHandlerEx)_initHandler, CkpvAccess(_coreState)); _roRestartHandlerIdx = CkRegisterHandler((CmiHandler)_roRestartHandler); _exitHandlerIdx = CkRegisterHandler((CmiHandler)_exitHandler); //added for interoperabilitY _libExitHandlerIdx = CkRegisterHandler((CmiHandler)_libExitHandler); _bocHandlerIdx = CkRegisterHandler((CmiHandler)_initHandler); CkNumberHandlerEx(_bocHandlerIdx, (CmiHandlerEx)_initHandler, CkpvAccess(_coreState)); #ifdef __BIGSIM__ if(BgNodeRank()==0) #endif _infoIdx = CldRegisterInfoFn((CldInfoFn)_infoFn); _triggerHandlerIdx = CkRegisterHandler((CmiHandler)_triggerHandler); _ckModuleInit(); CldRegisterEstimator((CldEstimator)_charmLoadEstimator); _futuresModuleInit(); // part of futures implementation is a converse module _loadbalancerInit(); _metabalancerInit(); #if CMK_MEM_CHECKPOINT init_memcheckpt(argv); #endif initCharmProjections(); #if CMK_TRACE_IN_CHARM // initialize trace module in ck traceCharmInit(argv); #endif CkpvInitialize(int, envelopeEventID); CkpvAccess(envelopeEventID) = 0; CkMessageWatcherInit(argv,CkpvAccess(_coreState)); /** The rank-0 processor of each node calls the translator-generated "_register" routines. _register routines call the charm.h "CkRegister*" routines, which record function pointers and class information for all Charm entities, like Chares, Arrays, and readonlies. There's one _register routine generated for each .ci file. _register routines *must* be called in the same order on every node, and *must not* be called by multiple threads simultaniously. */ #ifdef __BIGSIM__ if(BgNodeRank()==0) #else if(CkMyRank()==0) #endif { SDAG::registerPUPables(); CmiArgGroup("Charm++",NULL); _parseCommandLineOpts(argv); _registerInit(); CkRegisterMsg("System", 0, 0, CkFreeMsg, sizeof(int)); CkRegisterChareInCharm(CkRegisterChare("null", 0, TypeChare)); CkIndex_Chare::__idx=CkRegisterChare("Chare", sizeof(Chare), TypeChare); CkRegisterChareInCharm(CkIndex_Chare::__idx); CkIndex_Group::__idx=CkRegisterChare("Group", sizeof(Group), TypeGroup); CkRegisterChareInCharm(CkIndex_Group::__idx); CkRegisterEp("null", (CkCallFnPtr)_nullFn, 0, 0, 0+CK_EP_INTRINSIC); /** These _register calls are for the built-in Charm .ci files, like arrays and load balancing. If you add a .ci file to charm, you'll have to add a call to the _register routine here, or make your library into a "-module". */ _registerCkFutures(); _registerCkArray(); _registerLBDatabase(); _registerMetaBalancer(); _registerCkCallback(); _registertempo(); _registerwaitqd(); _registerCkCheckpoint(); #if CMK_MEM_CHECKPOINT _registerCkMemCheckpoint(); #endif /* Setup Control Point Automatic Tuning Framework. By default it is enabled as a part of charm, however it won't enable its tracing module unless a +CPEnableMeasurements command line argument is specified. See trace-common.C for more info Thus there should be no noticable overhead to always having the control point framework linked in. */ #if CMK_WITH_CONTROLPOINT _registerPathHistory(); _registerControlPoints(); _registerTraceControlPoints(); #endif /** CkRegisterMainModule is generated by the (unique) "mainmodule" .ci file. It will include calls to register all the .ci files. */ CkRegisterMainModule(); /** _registerExternalModules is actually generated by charmc at link time (as "moduleinit<pid>.C"). This generated routine calls the _register functions for the .ci files of libraries linked using "-module". This funny initialization is most useful for AMPI/FEM programs, which don't have a .ci file and hence have no other way to control the _register process. */ _registerExternalModules(argv); _registerDone(); } /* The following will happen on every virtual processor in BigEmulator, not just on once per real processor */ if (CkMyRank() == 0) { CpdBreakPointInit(); } CmiNodeAllBarrier(); // Execute the initcalls registered in modules _initCallTable.enumerateInitCalls(); #if CMK_CHARMDEBUG CpdFinishInitialization(); #endif //CmiNodeAllBarrier(); CkpvAccess(_myStats) = new Stats(); CkpvAccess(_msgPool) = new MsgPool(); CmiNodeAllBarrier(); #if !(__FAULT__) CmiBarrier(); CmiBarrier(); CmiBarrier(); #endif #if CMK_SMP_TRACE_COMMTHREAD _TRACE_BEGIN_COMPUTATION(); #else if (!inCommThread) { _TRACE_BEGIN_COMPUTATION(); } #endif #ifdef ADAPT_SCHED_MEM if(CkMyRank()==0){ memCriticalEntries = new int[numMemCriticalEntries]; int memcnt=0; for(int i=0; i<_entryTable.size(); i++){ if(_entryTable[i]->isMemCritical){ memCriticalEntries[memcnt++] = i; } } } #endif #if (defined(_FAULT_MLOG_) || defined(_FAULT_CAUSAL_)) _messageLoggingInit(); #endif #ifndef __BIGSIM__ /* FAULT_EVAC */ CpvAccess(_validProcessors) = new char[CkNumPes()]; for(int vProc=0;vProc<CkNumPes();vProc++){ CpvAccess(_validProcessors)[vProc]=1; } _ckEvacBcastIdx = CkRegisterHandler((CmiHandler)_ckEvacBcast); _ckAckEvacIdx = CkRegisterHandler((CmiHandler)_ckAckEvac); #endif CkpvAccess(startedEvac) = 0; CpvAccess(serializer) = 0; evacuate = 0; CcdCallOnCondition(CcdSIGUSR1,(CcdVoidFn)CkDecideEvacPe,0); #if (defined(_FAULT_MLOG_) || defined(_FAULT_CAUSAL_)) CcdCallOnCondition(CcdSIGUSR2,(CcdVoidFn)CkMlogRestart,0); #endif if(_raiseEvac){ processRaiseEvacFile(_raiseEvacFile); /* if(CkMyPe() == 2){ // CcdCallOnConditionKeep(CcdPERIODIC_10s,(CcdVoidFn)CkDecideEvacPe,0); CcdCallFnAfter((CcdVoidFn)CkDecideEvacPe, 0, 10000); } if(CkMyPe() == 3){ CcdCallFnAfter((CcdVoidFn)CkDecideEvacPe, 0, 10000); }*/ } if (CkMyRank() == 0) { TopoManager_init(); } CmiNodeAllBarrier(); if (!_replaySystem) { CkFtFn faultFunc_restart = CkRestartMain; if (faultFunc == NULL || faultFunc == faultFunc_restart) { // this is not restart from memory // these two are blocking calls for non-bigsim #if ! CMK_BIGSIM_CHARM CmiInitCPUAffinity(argv); CmiInitMemAffinity(argv); #endif } CmiInitCPUTopology(argv); #if CMK_SHARED_VARS_POSIX_THREADS_SMP if (CmiCpuTopologyEnabled()) { int *pelist; int num; CmiGetPesOnPhysicalNode(0, &pelist, &num); #if !CMK_MULTICORE && !CMK_SMP_NO_COMMTHD // Count communication threads, if present // XXX: Assuming uniformity of node size here num += num/CmiMyNodeSize(); #endif if (!_Cmi_forceSpinOnIdle && num > CmiNumCores()) { if (CmiMyPe() == 0) CmiPrintf("\nCharm++> Warning: the number of SMP threads (%d) is greater than the number of physical cores (%d), so threads will sleep while idling. Use +CmiSpinOnIdle or +CmiSleepOnIdle to control this directly.\n\n", num, CmiNumCores()); CmiLock(CksvAccess(_nodeLock)); if (! _Cmi_sleepOnIdle) _Cmi_sleepOnIdle = 1; CmiUnlock(CksvAccess(_nodeLock)); } } #endif } if(CmiMyPe() == 0) { char *topoFilename; if(CmiGetArgStringDesc(argv,"+printTopo",&topoFilename,"topo file name")) { std::stringstream sstm; sstm << topoFilename << "." << CmiMyPartition(); std::string result = sstm.str(); FILE *fp; fp = fopen(result.c_str(), "w"); if (fp == NULL) { CkPrintf("Error opening %s file, writing to stdout\n", topoFilename); fp = stdout; } TopoManager_printAllocation(fp); fclose(fp); } } #if CMK_USE_PXSHM && ( CMK_CRAYXE || CMK_CRAYXC ) && CMK_SMP // for SMP on Cray XE6 (hopper) it seems pxshm has to be initialized // again after cpuaffinity is done if (CkMyRank() == 0) { CmiInitPxshm(argv); } CmiNodeAllBarrier(); #endif //CldCallback(); #if CMK_BIGSIM_CHARM && CMK_CHARMDEBUG // Register the BG handler for CCS. Notice that this is put into a variable shared by // the whole real processor. This because converse needs to find it. We check that all // virtual processors register the same index for this handler. CpdBgInit(); #endif if (faultFunc) { #if CMK_WITH_STATS if (CkMyPe()==0) _allStats = new Stats*[CkNumPes()]; #endif if (!inCommThread) { CkArgMsg *msg = (CkArgMsg *)CkAllocMsg(0, sizeof(CkArgMsg), 0); msg->argc = CmiGetArgc(argv); msg->argv = argv; faultFunc(_restartDir, msg); CkFreeMsg(msg); } }else if(CkMyPe()==0){ #if CMK_WITH_STATS _allStats = new Stats*[CkNumPes()]; #endif register size_t i, nMains=_mainTable.size(); for(i=0;i<nMains;i++) /* Create all mainchares */ { register int size = _chareTable[_mainTable[i]->chareIdx]->size; register void *obj = malloc(size); _MEMCHECK(obj); _mainTable[i]->setObj(obj); CkpvAccess(_currentChare) = obj; CkpvAccess(_currentChareType) = _mainTable[i]->chareIdx; register CkArgMsg *msg = (CkArgMsg *)CkAllocMsg(0, sizeof(CkArgMsg), 0); msg->argc = CmiGetArgc(argv); msg->argv = argv; _entryTable[_mainTable[i]->entryIdx]->call(msg, obj); #if (defined(_FAULT_MLOG_) || defined(_FAULT_CAUSAL_)) CpvAccess(_currentObj) = (Chare *)obj; #endif } _mainDone = 1; _STATS_RECORD_CREATE_CHARE_N(nMains); _STATS_RECORD_PROCESS_CHARE_N(nMains); for(i=0;i<_readonlyMsgs.size();i++) /* Send out readonly messages */ { register void *roMsg = (void *) *((char **)(_readonlyMsgs[i]->pMsg)); if(roMsg==0) continue; //Pack the message and send it to all other processors register envelope *env = UsrToEnv(roMsg); env->setSrcPe(CkMyPe()); env->setMsgtype(ROMsgMsg); env->setRoIdx(i); CmiSetHandler(env, _initHandlerIdx); CkPackMessage(&env); CmiSyncBroadcast(env->getTotalsize(), (char *)env); CpvAccess(_qd)->create(CkNumPes()-1); //For processor 0, unpack and re-set the global CkUnpackMessage(&env); _processROMsgMsg(env); _numInitMsgs++; } //Determine the size of the RODataMessage PUP::sizer ps; for(i=0;i<_readonlyTable.size();i++) _readonlyTable[i]->pupData(ps); //Allocate and fill out the RODataMessage envelope *env = _allocEnv(RODataMsg, ps.size()); PUP::toMem pp((char *)EnvToUsr(env)); for(i=0;i<_readonlyTable.size();i++) _readonlyTable[i]->pupData(pp); env->setCount(++_numInitMsgs); env->setSrcPe(CkMyPe()); CmiSetHandler(env, _initHandlerIdx); DEBUGF(("[%d,%.6lf] RODataMsg being sent of size %d \n",CmiMyPe(),CmiWallTimer(),env->getTotalsize())); CmiSyncBroadcastAndFree(env->getTotalsize(), (char *)env); CpvAccess(_qd)->create(CkNumPes()-1); _initDone(); } DEBUGF(("[%d,%d%.6lf] inCommThread %d\n",CmiMyPe(),CmiMyRank(),CmiWallTimer(),inCommThread)); // when I am a communication thread, I don't participate initDone. if (inCommThread) { CkNumberHandlerEx(_bocHandlerIdx,(CmiHandlerEx)_processHandler, CkpvAccess(_coreState)); CkNumberHandlerEx(_charmHandlerIdx,(CmiHandlerEx)_processHandler , CkpvAccess(_coreState)); _processBufferedMsgs(); } #if CMK_CHARMDEBUG // Should not use CpdFreeze inside a thread (since this processor is really a user-level thread) if (CpvAccess(cpdSuspendStartup)) { //CmiPrintf("In Parallel Debugging mode .....\n"); CpdFreeze(); } #endif #if __FAULT__ if(killFlag){ readKillFile(); } #endif }