Exemplo n.º 1
0
/*!
   \brief Finds node

   Find the node corresponding to each point in the point_list

   \param In pointer to Map_info structure
   \param point_list list of points (their ids)
 */
void NetA_points_to_nodes(struct Map_info *In, struct ilist *point_list)
{
    int i, node;
    struct line_pnts *Points = Vect_new_line_struct();

    for (i = 0; i < point_list->n_values; i++) {
	/* Vect_get_line_nodes(In, point_list->value[i], &node, NULL); */
	node = Vect_find_node(In, Points->x[0], Points->y[0], Points->z[0], 0, 0);
	point_list->value[i] = node;
    }
    Vect_destroy_line_struct(Points);
}
Exemplo n.º 2
0
/* Snap to node */
int snap(double *x, double *y)
{
    int node;
    double thresh;

    G_debug(2, "snap(): x = %f, y = %f", *x, *y);

    thresh = get_thresh();

    node = Vect_find_node(&Map, *x, *y, 0, thresh, 0);

    if (node > 0)
	Vect_get_node_coor(&Map, node, x, y, NULL);

    G_debug(2, "node = %d x = %f, y = %f", node, *x, *y);
    return node;
}
Exemplo n.º 3
0
int main(int argc, char *argv[])
{
    struct Map_info In, Out;
    static struct line_pnts *Points;
    struct line_cats *Cats;
    struct GModule *module;	/* GRASS module for parsing arguments */
    struct Option *map_in, *map_out;
    struct Option *method_opt, *afield_opt, *nfield_opt, *abcol,
                  *afcol, *ncol;
    struct Flag *add_f;
    int with_z;
    int afield, nfield, mask_type;
    dglGraph_s *graph;
    int *component, nnodes, type, i, nlines, components, max_cat;
    char buf[2000], *covered;
    char *desc;

    /* Attribute table */
    dbString sql;
    dbDriver *driver;
    struct field_info *Fi;

    /* initialize GIS environment */
    G_gisinit(argv[0]);		/* reads grass env, stores program name to G_program_name() */

    /* initialize module */
    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("network"));
    G_add_keyword(_("components"));
    module->description =
	_("Computes strongly and weakly connected components in the network.");

    /* Define the different options as defined in gis.h */
    map_in = G_define_standard_option(G_OPT_V_INPUT);

    afield_opt = G_define_standard_option(G_OPT_V_FIELD);
    afield_opt->key = "arc_layer";
    afield_opt->answer = "1";
    afield_opt->label = _("Arc layer");
    afield_opt->guisection = _("Cost");

    nfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    nfield_opt->key = "node_layer";
    nfield_opt->answer = "2";
    nfield_opt->label = _("Node layer");
    nfield_opt->guisection = _("Cost");

    afcol = G_define_standard_option(G_OPT_DB_COLUMN);
    afcol->key = "arc_column";
    afcol->required = NO;
    afcol->description =
	_("Arc forward/both direction(s) cost column (number)");
    afcol->guisection = _("Cost");

    abcol = G_define_standard_option(G_OPT_DB_COLUMN);
    abcol->key = "arc_backward_column";
    abcol->required = NO;
    abcol->description = _("Arc backward direction cost column (number)");
    abcol->guisection = _("Cost");

    ncol = G_define_option();
    ncol->key = "node_column";
    ncol->type = TYPE_STRING;
    ncol->required = NO;
    ncol->description = _("Node cost column (number)");
    ncol->guisection = _("Cost");

    map_out = G_define_standard_option(G_OPT_V_OUTPUT);

    method_opt = G_define_option();
    method_opt->key = "method";
    method_opt->type = TYPE_STRING;
    method_opt->required = YES;
    method_opt->multiple = NO;
    method_opt->options = "weak,strong";
    desc = NULL;
    G_asprintf(&desc,
	       "weak;%s;strong;%s",
	       _("Weakly connected components"),
	       _("Strongly connected components"));
    method_opt->descriptions = desc;
    method_opt->description = _("Type of components");

    add_f = G_define_flag();
    add_f->key = 'a';
    add_f->description = _("Add points on nodes");

    /* options and flags parser */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);
    /* TODO: make an option for this */
    mask_type = GV_LINE | GV_BOUNDARY;

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    Vect_check_input_output_name(map_in->answer, map_out->answer,
				 G_FATAL_EXIT);

    Vect_set_open_level(2);

    if (1 > Vect_open_old(&In, map_in->answer, ""))
	G_fatal_error(_("Unable to open vector map <%s>"), map_in->answer);

    with_z = Vect_is_3d(&In);

    if (0 > Vect_open_new(&Out, map_out->answer, with_z)) {
	Vect_close(&In);
	G_fatal_error(_("Unable to create vector map <%s>"), map_out->answer);
    }

    /* parse filter option and select appropriate lines */
    afield = Vect_get_field_number(&In, afield_opt->answer);
    nfield = Vect_get_field_number(&In, nfield_opt->answer);

    if (0 != Vect_net_build_graph(&In, mask_type, afield, nfield, afcol->answer,
                                  abcol->answer, ncol->answer, 0, 2))
        G_fatal_error(_("Unable to build graph for vector map <%s>"), Vect_get_full_name(&In));

    graph = Vect_net_get_graph(&In);
    nnodes = Vect_get_num_nodes(&In);
    component = (int *)G_calloc(nnodes + 1, sizeof(int));
    covered = (char *)G_calloc(nnodes + 1, sizeof(char));
    if (!component || !covered) {
	G_fatal_error(_("Out of memory"));
	exit(EXIT_FAILURE);
    }
    /* Create table */
    Fi = Vect_default_field_info(&Out, 1, NULL, GV_1TABLE);
    Vect_map_add_dblink(&Out, 1, NULL, Fi->table, GV_KEY_COLUMN, Fi->database,
			Fi->driver);
    db_init_string(&sql);
    driver = db_start_driver_open_database(Fi->driver, Fi->database);
    if (driver == NULL)
	G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
		      Fi->database, Fi->driver);

    sprintf(buf, "create table %s ( cat integer, comp integer)", Fi->table);

    db_set_string(&sql, buf);
    G_debug(2, "%s", db_get_string(&sql));

    if (db_execute_immediate(driver, &sql) != DB_OK) {
	db_close_database_shutdown_driver(driver);
	G_fatal_error(_("Unable to create table: '%s'"), db_get_string(&sql));
    }

    if (db_create_index2(driver, Fi->table, GV_KEY_COLUMN) != DB_OK)
	G_warning(_("Cannot create index"));

    if (db_grant_on_table
	(driver, Fi->table, DB_PRIV_SELECT, DB_GROUP | DB_PUBLIC) != DB_OK)
	G_fatal_error(_("Cannot grant privileges on table <%s>"), Fi->table);

    db_begin_transaction(driver);

    if (method_opt->answer[0] == 'w') {
	G_message(_("Computing weakly connected components..."));
	components = NetA_weakly_connected_components(graph, component);
    }
    else {
	G_message(_("Computing strongly connected components..."));
	components = NetA_strongly_connected_components(graph, component);
    }

    G_debug(3, "Components: %d", components);

    G_message(_("Writing output..."));

    Vect_copy_head_data(&In, &Out);
    Vect_hist_copy(&In, &Out);
    Vect_hist_command(&Out);

    nlines = Vect_get_num_lines(&In);
    max_cat = 1;
    G_percent(0, nlines, 4);
    for (i = 1; i <= nlines; i++) {
	int comp, cat;

	G_percent(i, nlines, 4);
	type = Vect_read_line(&In, Points, Cats, i);
	if (!Vect_cat_get(Cats, afield, &cat))
	    continue;
	if (type == GV_LINE || type == GV_BOUNDARY) {
	    int node1, node2;

	    Vect_get_line_nodes(&In, i, &node1, &node2);
	    if (component[node1] == component[node2]) {
		comp = component[node1];
	    }
	    else {
		continue;
	    }
	}
	else if (type == GV_POINT) {
	    int node;

	    /* Vect_get_line_nodes(&In, i, &node, NULL); */
	    node = Vect_find_node(&In, Points->x[0], Points->y[0], Points->z[0], 0, 0);
	    if (!node)
		continue;
	    comp = component[node];
	    covered[node] = 1;
	}
	else
	    continue;
	
	cat = max_cat++;
	Vect_reset_cats(Cats);
	Vect_cat_set(Cats, 1, cat);
	Vect_write_line(&Out, type, Points, Cats);
	insert_new_record(driver, Fi, &sql, cat, comp);
    }

    /*add points on nodes not covered by any point in the network */
    if (add_f->answer) {
	for (i = 1; i <= nnodes; i++)
	    if (!covered[i]) {
		Vect_reset_cats(Cats);
		Vect_cat_set(Cats, 1, max_cat);
		NetA_add_point_on_node(&In, &Out, i, Cats);
		insert_new_record(driver, Fi, &sql, max_cat++, component[i]);
	    }
    }

    db_commit_transaction(driver);
    db_close_database_shutdown_driver(driver);

    Vect_close(&In);

    Vect_build(&Out);
    Vect_close(&Out);

    G_done_msg(_("Found %d components."), components);

    exit(EXIT_SUCCESS);
}
Exemplo n.º 4
0
Arquivo: main.c Projeto: caomw/grass
int main(int argc, char **argv)
{
    int i, j, ret, centre, line, centre1, centre2, tfield, tucfield;
    int nlines, nnodes, type, ltype, afield, nfield, geo, cat;
    int node, node1, node2;
    double cost, e1cost, e2cost, n1cost, n2cost, s1cost, s2cost, l, l1;
    struct Option *map, *output;
    struct Option *afield_opt, *nfield_opt, *afcol, *abcol, *ncol, *type_opt,
	*term_opt, *cost_opt, *tfield_opt, *tucfield_opt;
    struct Flag *geo_f, *turntable_f;
    struct GModule *module;
    struct Map_info Map, Out;
    struct cat_list *catlist;
    CENTER *Centers = NULL;
    int acentres = 0, ncentres = 0;
    NODE *Nodes;
    struct line_cats *Cats;
    struct line_pnts *Points, *SPoints;
    int niso, aiso;
    double *iso;
    int npnts1, apnts1 = 0, npnts2, apnts2 = 0;
    ISOPOINT *pnts1 = NULL, *pnts2 = NULL;
    int next_iso;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("network"));
    G_add_keyword(_("isolines"));
    module->label = _("Splits net by cost isolines.");
    module->description =
	_
	("Splits net to bands between cost isolines (direction from center). "
	 "Center node must be opened (costs >= 0). "
	 "Costs of center node are used in calculation.");

    map = G_define_standard_option(G_OPT_V_INPUT);
    output = G_define_standard_option(G_OPT_V_OUTPUT);

    term_opt = G_define_standard_option(G_OPT_V_CATS);
    term_opt->key = "ccats";
    term_opt->required = YES;
    term_opt->description =
	_("Categories of centers (points on nodes) to which net "
	  "will be allocated, "
	  "layer for this categories is given by nlayer option");

    cost_opt = G_define_option();
    cost_opt->key = "costs";
    cost_opt->type = TYPE_INTEGER;
    cost_opt->multiple = YES;
    cost_opt->required = YES;
    cost_opt->description = _("Costs for isolines");

    afield_opt = G_define_standard_option(G_OPT_V_FIELD);
    afield_opt->key = "alayer";
    afield_opt->answer = "1";
    afield_opt->required = YES;
    afield_opt->label = _("Arc layer");

    type_opt = G_define_standard_option(G_OPT_V_TYPE);
    type_opt->options = "line,boundary";
    type_opt->answer = "line,boundary";
    type_opt->required = YES;
    type_opt->label = _("Arc type");

    nfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    nfield_opt->key = "nlayer";
    nfield_opt->answer = "2";
    nfield_opt->required = YES;
    nfield_opt->label = _("Node layer");

    afcol = G_define_standard_option(G_OPT_DB_COLUMN);
    afcol->key = "afcolumn";
    afcol->description =
	_("Arc forward/both direction(s) cost column (number)");
    afcol->guisection = _("Cost");

    abcol = G_define_standard_option(G_OPT_DB_COLUMN);
    abcol->key = "abcolumn";
    abcol->description = _("Arc backward direction cost column (number)");
    abcol->guisection = _("Cost");

    ncol = G_define_standard_option(G_OPT_DB_COLUMN);
    ncol->key = "ncolumn";
    ncol->description = _("Node cost column (number)");
    ncol->guisection = _("Cost");

    turntable_f = G_define_flag();
    turntable_f->key = 't';
    turntable_f->description = _("Use turntable");
    turntable_f->guisection = _("Turntable");

    tfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    tfield_opt->key = "tlayer";
    tfield_opt->answer = "3";
    tfield_opt->label = _("Layer with turntable");
    tfield_opt->description =
	_("Relevant only with -t flag");
    tfield_opt->guisection = _("Turntable");

    tucfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    tucfield_opt->key = "tuclayer";
    tucfield_opt->answer = "4";
    tucfield_opt->label = _("Layer with unique categories used in turntable");
    tucfield_opt->description =
	_("Relevant only with -t flag");
    tucfield_opt->guisection = _("Turntable");

    geo_f = G_define_flag();
    geo_f->key = 'g';
    geo_f->description =
	_("Use geodesic calculation for longitude-latitude locations");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    Vect_check_input_output_name(map->answer, output->answer, G_FATAL_EXIT);

    Cats = Vect_new_cats_struct();
    Points = Vect_new_line_struct();
    SPoints = Vect_new_line_struct();

    type = Vect_option_to_types(type_opt);

    catlist = Vect_new_cat_list();
    Vect_str_to_cat_list(term_opt->answer, catlist);

    /* Iso costs */
    aiso = 1;
    iso = (double *)G_malloc(aiso * sizeof(double));
    /* Set first iso to 0 */
    iso[0] = 0;
    niso = 1;
    i = 0;
    while (cost_opt->answers[i]) {
	if (niso == aiso) {
	    aiso += 1;
	    iso = (double *)G_realloc(iso, aiso * sizeof(double));
	}
	iso[niso] = atof(cost_opt->answers[i]);
	if (iso[niso] <= 0)
	    G_fatal_error(_("Wrong iso cost: %f"), iso[niso]);

	if (iso[niso] <= iso[niso - 1])
	    G_fatal_error(_("Iso cost: %f less than previous"), iso[niso]);

	G_verbose_message(_("Iso cost %d: %f"), niso, iso[niso]);
	niso++;
	i++;
    }

    /* Should not happen: */
    if (niso < 2)
	G_warning(_
		  ("Not enough costs, everything reachable falls to first band"));

    if (geo_f->answer)
	geo = 1;
    else
	geo = 0;

    Vect_set_open_level(2);
    if (Vect_open_old(&Map, map->answer, "") < 0)
	G_fatal_error(_("Unable to open vector map <%s>"), map->answer);

    afield = Vect_get_field_number(&Map, afield_opt->answer);
    nfield = Vect_get_field_number(&Map, nfield_opt->answer);
    tfield = Vect_get_field_number(&Map, tfield_opt->answer);
    tucfield = Vect_get_field_number(&Map, tucfield_opt->answer);

    /* Build graph */
    if (turntable_f->answer)
	Vect_net_ttb_build_graph(&Map, type, afield, nfield, tfield, tucfield,
				 afcol->answer, abcol->answer, ncol->answer,
				 geo, 0);
    else
	Vect_net_build_graph(&Map, type, afield, nfield, afcol->answer,
			     abcol->answer, ncol->answer, geo, 0);

    nnodes = Vect_get_num_nodes(&Map);
    nlines = Vect_get_num_lines(&Map);

    /* Create list of centres based on list of categories */
    for (i = 1; i <= nlines; i++) {
	ltype = Vect_get_line_type(&Map, i);
	if (!(ltype & GV_POINT))
	    continue;

	Vect_read_line(&Map, Points, Cats, i);
	node =
	    Vect_find_node(&Map, Points->x[0], Points->y[0], Points->z[0], 0,
			   0);
	if (!node) {
	    G_warning(_("Point is not connected to the network"));
	    continue;
	}
	if (!(Vect_cat_get(Cats, nfield, &cat)))
	    continue;
	if (Vect_cat_in_cat_list(cat, catlist)) {
	    Vect_net_get_node_cost(&Map, node, &n1cost);
	    if (n1cost == -1) {	/* closed */
		G_warning(_("Centre at closed node (costs = -1) ignored"));
	    }
	    else {
		if (acentres == ncentres) {
		    acentres += 1;
		    Centers =
			(CENTER *) G_realloc(Centers,
					     acentres * sizeof(CENTER));
		}
		Centers[ncentres].cat = cat;
		Centers[ncentres].node = node;
		G_debug(2, "centre = %d node = %d cat = %d", ncentres,
			node, cat);
		ncentres++;
	    }
	}
    }

    G_message(_("Number of centres: %d (nlayer %d)"), ncentres, nfield);

    if (ncentres == 0)
	G_warning(_
		  ("Not enough centres for selected nlayer. Nothing will be allocated."));

    /* alloc and reset space for all nodes */
    if (turntable_f->answer) {
	/* if turntable is used we are looking for lines as destinations, instead of the intersections (nodes) */
	Nodes = (NODE *) G_calloc((nlines * 2 + 2), sizeof(NODE));
	for (i = 2; i <= (nlines * 2 + 2); i++) {
	    Nodes[i].centre = -1;/* NOTE: first two items of Nodes are not used */
	}

    }
    else {
	Nodes = (NODE *) G_calloc((nnodes + 1), sizeof(NODE));
	for (i = 1; i <= nnodes; i++) {
	    Nodes[i].centre = -1;
	}
    }

    apnts1 = 1;
    pnts1 = (ISOPOINT *) G_malloc(apnts1 * sizeof(ISOPOINT));

    apnts2 = 1;
    pnts2 = (ISOPOINT *) G_malloc(apnts2 * sizeof(ISOPOINT));

    /* Fill Nodes by neares centre and costs from that centre */
    for (centre = 0; centre < ncentres; centre++) {
	node1 = Centers[centre].node;
	Vect_net_get_node_cost(&Map, node1, &n1cost);
	G_debug(2, "centre = %d node = %d cat = %d", centre, node1,
		Centers[centre].cat);
	G_message(_("Calculating costs from centre %d..."), centre + 1);
	if (turntable_f->answer)
	    for (line = 1; line <= nlines; line++) {
		G_debug(5, "  node1 = %d line = %d", node1, line);
		Vect_net_get_node_cost(&Map, line, &n2cost);
		/* closed, left it as not attached */

		if (Vect_read_line(&Map, Points, Cats, line) < 0)
		    continue;
		if (Vect_get_line_type(&Map, line) != GV_LINE)
		    continue;
		if (!Vect_cat_get(Cats, tucfield, &cat))
		    continue;

		for (j = 0; j < 2; j++) {
		    if (j == 1)
			cat *= -1;

		    ret =
			Vect_net_ttb_shortest_path(&Map, node1, 0, cat, 1,
						   tucfield, NULL,
						   &cost);
		    if (ret == -1) {
			continue;
		    }		/* node unreachable */

		    /* We must add centre node costs (not calculated by Vect_net_shortest_path() ), but
	             *  only if centre and node are not identical, because at the end node cost is add later */
		    if (ret != 1)
			cost += n1cost;

		    G_debug(5,
			    "Arc nodes: %d %d cost: %f (x old cent: %d old cost %f",
			    node1, line, cost, Nodes[line * 2 + j].centre,
			    Nodes[line * 2 + j].cost);
		    if (Nodes[line * 2 + j].centre == -1 ||
			cost < Nodes[line * 2 + j].cost) {
			Nodes[line * 2 + j].cost = cost;
			Nodes[line * 2 + j].centre = centre;
		    }
		}
	    }
	else
	    for (node2 = 1; node2 <= nnodes; node2++) {
		G_percent(node2, nnodes, 1);
		G_debug(5, "  node1 = %d node2 = %d", node1, node2);
		Vect_net_get_node_cost(&Map, node2, &n2cost);
		if (n2cost == -1) {
		    continue;
		}		/* closed, left it as not attached */

		ret = Vect_net_shortest_path(&Map, node1, node2, NULL, &cost);
		if (ret == -1) {
		    continue;
		}		/* node unreachable */

		/* We must add centre node costs (not calculated by Vect_net_shortest_path() ), but
		 *  only if centre and node are not identical, because at the end node cost is add later */
		if (node1 != node2)
		    cost += n1cost;
		G_debug(5,
			"Arc nodes: %d %d cost: %f (x old cent: %d old cost %f",
			node1, node2, cost, Nodes[node2].centre,
			Nodes[node2].cost);
		if (Nodes[node2].centre == -1 || cost < Nodes[node2].cost) {
		    Nodes[node2].cost = cost;
		    Nodes[node2].centre = centre;
		}
	    }
    }

    /* Write arcs to new map */
    if (Vect_open_new(&Out, output->answer, Vect_is_3d(&Map)) < 0)
	G_fatal_error(_("Unable to create vector map <%s>"), output->answer);

    Vect_hist_command(&Out);

    G_message("Generating isolines...");
    nlines = Vect_get_num_lines(&Map);
    for (line = 1; line <= nlines; line++) {
	G_percent(line, nlines, 2);

	ltype = Vect_read_line(&Map, Points, NULL, line);
	if (!(ltype & type)) {
	    continue;
	}

	l = Vect_line_length(Points);
	if (l == 0)
	    continue;

	if (turntable_f->answer) {
	    centre1 = Nodes[line * 2].centre;
	    centre2 = Nodes[line * 2 + 1].centre;
	    s1cost = Nodes[line * 2].cost;
	    s2cost = Nodes[line * 2 + 1].cost;
	    n1cost = n2cost = 0;
	}
	else {
	    Vect_get_line_nodes(&Map, line, &node1, &node2);
	    centre1 = Nodes[node1].centre;
	    centre2 = Nodes[node2].centre;
	    s1cost = Nodes[node1].cost;
	    s2cost = Nodes[node2].cost;

	    Vect_net_get_node_cost(&Map, node1, &n1cost);
	    Vect_net_get_node_cost(&Map, node2, &n2cost);

	}

	Vect_net_get_line_cost(&Map, line, GV_FORWARD, &e1cost);
	Vect_net_get_line_cost(&Map, line, GV_BACKWARD, &e2cost);

	G_debug(3, "Line %d : length = %f", line, l);
	G_debug(3, "Arc centres: %d %d (nodes: %d %d)", centre1, centre2,
		node1, node2);

	G_debug(3, "  s1cost = %f n1cost = %f e1cost = %f", s1cost, n1cost,
		e1cost);
	G_debug(3, "  s2cost = %f n2cost = %f e2cost = %f", s2cost, n2cost,
		e2cost);


	/* First check if arc is reachable from at least one side */
	if ((centre1 != -1 && n1cost != -1 && e1cost != -1) ||
	    (centre2 != -1 && n2cost != -1 && e2cost != -1)) {
	    /* Line is reachable at least from one side */
	    G_debug(3, "  -> arc is reachable");

	    /* Add costs of node to starting costs */
	    s1cost += n1cost;
	    s2cost += n2cost;

	    e1cost /= l;
	    e2cost /= l;

	    /* Find points on isolines along the line in both directions, add them to array,
	     *  first point is placed at the beginning/end of line */
	    /* Forward */
	    npnts1 = 0;		/* in case this direction is closed */
	    if (centre1 != -1 && n1cost != -1 && e1cost != -1) {
		/* Find iso for beginning of the line */
		next_iso = 0;
		for (i = niso - 1; i >= 0; i--) {
		    if (iso[i] <= s1cost) {
			next_iso = i;
			break;
		    }
		}
		/* Add first */
		pnts1[0].iso = next_iso;
		pnts1[0].distance = 0;
		npnts1++;
		next_iso++;

		/* Calculate distances for points along line */
		while (next_iso < niso) {
		    if (e1cost == 0)
			break;	/* Outside line */
		    l1 = (iso[next_iso] - s1cost) / e1cost;
		    if (l1 >= l)
			break;	/* Outside line */

		    if (npnts1 == apnts1) {
			apnts1 += 1;
			pnts1 =
			    (ISOPOINT *) G_realloc(pnts1,
						   apnts1 * sizeof(ISOPOINT));
		    }
		    pnts1[npnts1].iso = next_iso;
		    pnts1[npnts1].distance = l1;
		    G_debug(3,
			    "  forward %d : iso %d : distance %f : cost %f",
			    npnts1, next_iso, l1, iso[next_iso]);
		    npnts1++;
		    next_iso++;
		}
	    }
	    G_debug(3, "  npnts1 = %d", npnts1);

	    /* Backward */
	    npnts2 = 0;
	    if (centre2 != -1 && n2cost != -1 && e2cost != -1) {
		/* Find iso for beginning of the line */
		next_iso = 0;
		for (i = niso - 1; i >= 0; i--) {
		    if (iso[i] <= s2cost) {
			next_iso = i;
			break;
		    }
		}
		/* Add first */
		pnts2[0].iso = next_iso;
		pnts2[0].distance = l;
		npnts2++;
		next_iso++;

		/* Calculate distances for points along line */
		while (next_iso < niso) {
		    if (e2cost == 0)
			break;	/* Outside line */
		    l1 = (iso[next_iso] - s2cost) / e2cost;
		    if (l1 >= l)
			break;	/* Outside line */

		    if (npnts2 == apnts2) {
			apnts2 += 1;
			pnts2 =
			    (ISOPOINT *) G_realloc(pnts2,
						   apnts2 * sizeof(ISOPOINT));
		    }
		    pnts2[npnts2].iso = next_iso;
		    pnts2[npnts2].distance = l - l1;
		    G_debug(3,
			    "  backward %d : iso %d : distance %f : cost %f",
			    npnts2, next_iso, l - l1, iso[next_iso]);
		    npnts2++;
		    next_iso++;
		}
	    }
	    G_debug(3, "  npnts2 = %d", npnts2);

	    /* Limit number of points by maximum costs in reverse direction, this may remove
	     *  also the first point in one direction, but not in both */
	    /* Forward */
	    if (npnts2 > 0) {
		for (i = 0; i < npnts1; i++) {
		    G_debug(3,
			    "  pnt1 = %d dist1 = %f iso1 = %d max iso2 = %d",
			    i, pnts1[i].distance, pnts1[i].iso,
			    pnts2[npnts2 - 1].iso);
		    if (pnts2[npnts2 - 1].iso < pnts1[i].iso) {
			G_debug(3, "    -> cut here");
			npnts1 = i;
			break;
		    }
		}
	    }
	    G_debug(3, "  npnts1 cut = %d", npnts1);

	    /* Backward */
	    if (npnts1 > 0) {
		for (i = 0; i < npnts2; i++) {
		    G_debug(3,
			    "  pnt2 = %d dist2 = %f iso2 = %d max iso1 = %d",
			    i, pnts2[i].distance, pnts2[i].iso,
			    pnts1[npnts1 - 1].iso);
		    if (pnts1[npnts1 - 1].iso < pnts2[i].iso) {
			G_debug(3, "    -> cut here");
			npnts2 = i;
			break;
		    }
		}
	    }
	    G_debug(3, "  npnts2 cut = %d", npnts2);

	    /* Biggest cost shoud be equal if exist (npnts > 0). Cut out overlapping segments,
	     *  this can cut only points on line but not first points */
	    if (npnts1 > 1 && npnts2 > 1) {
		while (npnts1 > 1 && npnts2 > 1) {
		    if (pnts1[npnts1 - 1].distance >= pnts2[npnts2 - 1].distance) {	/* overlap */
			npnts1--;
			npnts2--;
		    }
		    else {
			break;
		    }
		}
	    }
	    G_debug(3, "  npnts1 2. cut = %d", npnts1);
	    G_debug(3, "  npnts2 2. cut = %d", npnts2);

	    /* Now we have points in both directions which may not overlap, npoints in one
	     *  direction may be 0 but not both */

	    /* Join both arrays, iso of point is for next segment (point is at the beginning) */
	    /* In case npnts1 == 0 add point at distance 0 */
	    if (npnts1 == 0) {
		G_debug(3,
			"  npnts1 = 0 -> add first at distance 0, cat = %d",
			pnts2[npnts2 - 1].iso);
		pnts1[0].iso = pnts2[npnts2 - 1].iso;	/* use last point iso in reverse direction */
		pnts1[0].distance = 0;
		npnts1++;
	    }
	    for (i = npnts2 - 1; i >= 0; i--) {
		/* Check if identical */
		if (pnts1[npnts1 - 1].distance == pnts2[i].distance)
		    continue;

		if (npnts1 == apnts1) {
		    apnts1 += 1;
		    pnts1 =
			(ISOPOINT *) G_realloc(pnts1,
					       apnts1 * sizeof(ISOPOINT));
		}
		pnts1[npnts1].iso = pnts2[i].iso - 1;	/* last may be -1, but it is not used */
		pnts1[npnts1].distance = pnts2[i].distance;
		npnts1++;
	    }
	    /* In case npnts2 == 0 add point at the end */
	    if (npnts2 == 0) {
		pnts1[npnts1].iso = 0;	/* not used */
		pnts1[npnts1].distance = l;
		npnts1++;
	    }

	    /* Create line segments. */
	    for (i = 1; i < npnts1; i++) {
		cat = pnts1[i - 1].iso + 1;
		G_debug(3, "  segment %f - %f cat %d", pnts1[i - 1].distance,
			pnts1[i].distance, cat);
		ret =
		    Vect_line_segment(Points, pnts1[i - 1].distance,
				      pnts1[i].distance, SPoints);
		if (ret == 0) {
		    G_warning(_
			      ("Cannot get line segment, segment out of line"));
		}
		else {
		    Vect_reset_cats(Cats);
		    Vect_cat_set(Cats, 1, cat);
		    Vect_write_line(&Out, ltype, SPoints, Cats);
		}
	    }
	}
	else {
	    /* arc is not reachable */
	    G_debug(3, "  -> arc is not reachable");
	    Vect_reset_cats(Cats);
	    Vect_write_line(&Out, ltype, Points, Cats);
	}
    }

    Vect_build(&Out);

    /* Free, ... */
    G_free(Nodes);
    G_free(Centers);
    Vect_close(&Map);
    Vect_close(&Out);

    exit(EXIT_SUCCESS);
}
Exemplo n.º 5
0
/* Same as path() but get start/stop from the command line (for non-interactive use)
   Hamish Bowman March 2007 */
int coor_path(struct Map_info *Map, const struct color_rgb *hcolor,
	      int be_bold, double start_x, double start_y,
	      double end_x, double end_y)
{
    int ret;
    double nx, ny, fx, fy, tx, ty, msize, maxdist;
    struct line_pnts *Points;
    int start_node, end_node;
    double fdist, tdist, cost;

    Points = Vect_new_line_struct();

    msize = 10 * (D_d_to_u_col(2.0) - D_d_to_u_col(1.0));	/* do it better */
    G_debug(1, "msize = %f\n", msize);

    /*
       x1 = D_d_to_u_col ((double)(screen_x-WDTH));
       y1 = D_d_to_u_row ((double)(screen_y-WDTH));
       x2 = D_d_to_u_col ((double)(screen_x+WDTH));
       y2 = D_d_to_u_row ((double)(screen_y+WDTH));

       x1 = fabs ( x2 - x1 );
       y1 = fabs ( y2 - y1 );

       if ( x1 > y1 ) maxdist = x1;
       else maxdist = y1;
     */

/**  maxdist = 10 pixels on the display (WDTH*2); ?
 **   ie related to zoom level ??  just use msize ?? **/
    maxdist = msize;

    G_debug(1, "Maximum distance in map units = %f\n", maxdist);


    /* Vect_find_node(): find number of nearest node, 0 if not found */
    start_node = Vect_find_node(Map, start_x, start_y, 0.0, maxdist, 0);
    if (start_node > 0) {
	Vect_get_node_coor(Map, start_node, &nx, &ny, NULL);
	fprintf(stderr, _("Node %d: %f %f\n"), start_node, nx, ny);
    }
    if (start_node > 0) {
	fx = nx;
	fy = ny;
    }
    else {
	fx = start_x;
	fy = start_y;
    }
    D_RGB_color(hcolor->r, hcolor->g, hcolor->b);
    D_plot_icon(fx, fy, G_ICON_BOX, 0.0, msize);


    end_node = Vect_find_node(Map, end_x, end_y, 0.0, maxdist, 0);
    if (end_node > 0) {
	Vect_get_node_coor(Map, end_node, &nx, &ny, NULL);
	fprintf(stderr, _("Node %d: %f %f\n"), end_node, nx, ny);
    }
    if (end_node > 0) {
	tx = nx;
	ty = ny;
    }
    else {
	tx = end_x;
	ty = end_y;
    }
    D_RGB_color(hcolor->r, hcolor->g, hcolor->b);
    D_plot_icon(tx, ty, G_ICON_CROSS, 0.0, msize);


    G_debug(2, "find path %f %f -> %f %f", fx, fy, tx, ty);

    ret =
	Vect_net_shortest_path_coor(Map, fx, fy, 0.0, tx, ty, 0.0,
				    5 * maxdist, 5 * maxdist, &cost, Points,
				    NULL, NULL, NULL, &fdist, &tdist);
    if (ret == 0) {
	fprintf(stdout, _("Destination unreachable\n"));
    }
    else {
	fprintf(stdout, _("Costs on the network = %f\n"), cost);
	fprintf(stdout, _("  Distance to the network = %f, "
			  "distance from the network = %f\n\n"),
		fdist, tdist);

	display(Map, Points, hcolor, 1, 1, be_bold);
    }

    return 0;
}
Exemplo n.º 6
0
int main(int argc, char *argv[])
{
    struct Map_info In, Out;
    static struct line_pnts *Points, *PPoints;
    struct line_cats *Cats, *TCats;
    struct ilist *slist;
    struct GModule *module;	/* GRASS module for parsing arguments */
    struct Option *map_in, *map_out;
    struct Option *catf_opt, *fieldf_opt, *wheref_opt;
    struct Option *catt_opt, *fieldt_opt, *wheret_opt, *typet_opt;
    struct Option *afield_opt, *nfield_opt, *abcol, *afcol, *ncol, *atype_opt;
    struct Flag *geo_f, *segments_f;
    int with_z, geo, segments;
    int atype, ttype;
    struct varray *varrayf, *varrayt;
    int flayer, tlayer;
    int afield, nfield;
    dglGraph_s *graph;
    struct ilist *nodest;
    int i, j, nnodes, nlines;
    int *dst, *nodes_to_features;
    int from_nr;			/* 'from' features not reachable */
    dglInt32_t **nxt;
    struct line_cats **on_path;
    char *segdir;
    char buf[2000];

    /* Attribute table */
    dbString sql;
    dbDriver *driver;
    struct field_info *Fi;

    /* initialize GIS environment */
    G_gisinit(argv[0]);		/* reads grass env, stores program name to G_program_name() */

    /* initialize module */
    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("network"));
    G_add_keyword(_("shortest path"));
    module->label = _("Computes shortest distance via the network between "
		      "the given sets of features.");
    module->description =
	_("Finds the shortest paths from each 'from' point to the nearest 'to' feature "
	 "and various information about this relation are uploaded to the attribute table.");

    /* Define the different options as defined in gis.h */
    map_in = G_define_standard_option(G_OPT_V_INPUT);
    map_out = G_define_standard_option(G_OPT_V_OUTPUT);

    afield_opt = G_define_standard_option(G_OPT_V_FIELD);
    afield_opt->key = "arc_layer";
    afield_opt->answer = "1";
    afield_opt->label = _("Arc layer");
    afield_opt->guisection = _("Cost");

    atype_opt = G_define_standard_option(G_OPT_V_TYPE);
    atype_opt->key = "arc_type";
    atype_opt->options = "line,boundary";
    atype_opt->answer = "line,boundary";
    atype_opt->label = _("Arc type");
    atype_opt->guisection = _("Cost");

    nfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    nfield_opt->key = "node_layer";
    nfield_opt->answer = "2";
    nfield_opt->label = _("Node layer");
    nfield_opt->guisection = _("Cost");

    fieldf_opt = G_define_standard_option(G_OPT_V_FIELD);
    fieldf_opt->key = "from_layer";
    fieldf_opt->label = _("From layer number or name");
    fieldf_opt->guisection = _("From");

    catf_opt = G_define_standard_option(G_OPT_V_CATS);
    catf_opt->key = "from_cats";
    catf_opt->label = _("From category values");
    catf_opt->guisection = _("From");

    wheref_opt = G_define_standard_option(G_OPT_DB_WHERE);
    wheref_opt->key = "from_where";
    wheref_opt->label =
	_("From WHERE conditions of SQL statement without 'where' keyword");
    wheref_opt->guisection = _("From");

    fieldt_opt = G_define_standard_option(G_OPT_V_FIELD);
    fieldt_opt->key = "to_layer";
    fieldt_opt->description = _("To layer number or name");
    fieldt_opt->guisection = _("To");

    typet_opt = G_define_standard_option(G_OPT_V_TYPE);
    typet_opt->key = "to_type";
    typet_opt->options = "point,line,boundary";
    typet_opt->answer = "point";
    typet_opt->description = _("To feature type");
    typet_opt->guisection = _("To");

    catt_opt = G_define_standard_option(G_OPT_V_CATS);
    catt_opt->key = "to_cats";
    catt_opt->label = _("To category values");
    catt_opt->guisection = _("To");

    wheret_opt = G_define_standard_option(G_OPT_DB_WHERE);
    wheret_opt->key = "to_where";
    wheret_opt->label =
	_("To WHERE conditions of SQL statement without 'where' keyword");
    wheret_opt->guisection = _("To");

    afcol = G_define_standard_option(G_OPT_DB_COLUMN);
    afcol->key = "arc_column";
    afcol->required = NO;
    afcol->description =
	_("Arc forward/both direction(s) cost column (number)");
    afcol->guisection = _("Cost");

    abcol = G_define_standard_option(G_OPT_DB_COLUMN);
    abcol->key = "arc_backward_column";
    abcol->required = NO;
    abcol->description = _("Arc backward direction cost column (number)");
    abcol->guisection = _("Cost");

    ncol = G_define_standard_option(G_OPT_DB_COLUMN);
    ncol->key = "node_column";
    ncol->required = NO;
    ncol->description = _("Node cost column (number)");
    ncol->guisection = _("Cost");

    geo_f = G_define_flag();
    geo_f->key = 'g';
    geo_f->description =
	_("Use geodesic calculation for longitude-latitude locations");

    segments_f = G_define_flag();
#if 0
    /* use this to sync with v.net.path */
    segments_f->key = 's';
    segments_f->description = _("Write output as original input segments, "
				"not each path as one line.");
#else
    segments_f->key = 'l';
    segments_f->description = _("Write each output path as one line, "
				"not as original input segments.");
#endif

    /* options and flags parser */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    atype = Vect_option_to_types(atype_opt);
    ttype = Vect_option_to_types(typet_opt);

    Points = Vect_new_line_struct();
    PPoints = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();
    TCats = Vect_new_cats_struct();
    slist = G_new_ilist();

    Vect_check_input_output_name(map_in->answer, map_out->answer,
				 G_FATAL_EXIT);

    Vect_set_open_level(2);

    if (1 > Vect_open_old(&In, map_in->answer, ""))
	G_fatal_error(_("Unable to open vector map <%s>"), map_in->answer);

    with_z = Vect_is_3d(&In);

    if (0 > Vect_open_new(&Out, map_out->answer, with_z)) {
	Vect_close(&In);
	G_fatal_error(_("Unable to create vector map <%s>"), map_out->answer);
    }


    if (geo_f->answer) {
	geo = 1;
	if (G_projection() != PROJECTION_LL)
	    G_warning(_("The current projection is not longitude-latitude"));
    }
    else
	geo = 0;

#if 0
    /* use this to sync with v.net.path */
    segments = segments_f->answer;
#else
    segments = !segments_f->answer;
#endif

    nnodes = Vect_get_num_nodes(&In);
    nlines = Vect_get_num_lines(&In);

    dst = (int *)G_calloc(nnodes + 1, sizeof(int));
    nxt = (dglInt32_t **) G_calloc(nnodes + 1, sizeof(dglInt32_t *));
    nodes_to_features = (int *)G_calloc(nnodes + 1, sizeof(int));
    on_path =
	(struct line_cats **)G_calloc(nlines + 1, sizeof(struct line_cats *));
    segdir = (char *)G_calloc(nlines + 1, sizeof(char));

    if (!dst || !nxt || !nodes_to_features || !on_path || !segdir)
	G_fatal_error(_("Out of memory"));

    for (i = 1; i <= nlines; i++) {
	on_path[i] = Vect_new_cats_struct();
	segdir[i] = 0;
    }

    /*initialise varrays and nodes list appropriatelly */
    afield = Vect_get_field_number(&In, afield_opt->answer);
    nfield = Vect_get_field_number(&In, nfield_opt->answer);

    flayer = atoi(fieldf_opt->answer);
    tlayer = atoi(fieldt_opt->answer);

    if (NetA_initialise_varray(&In, flayer, GV_POINT, wheref_opt->answer,
			   catf_opt->answer, &varrayf) <= 0) {
	G_fatal_error(_("No 'from' features selected. "
			"Please check options '%s', '%s', '%s'."),
			fieldf_opt->key, wheref_opt->key, catf_opt->key);
    }

    if (NetA_initialise_varray(&In, tlayer, ttype, wheret_opt->answer,
			   catt_opt->answer, &varrayt) <= 0) {
	G_fatal_error(_("No 'to' features selected. "
			"Please check options '%s', '%s', '%s'."),
			fieldt_opt->key, wheret_opt->key, catt_opt->key);
    }

    nodest = Vect_new_list();
    NetA_varray_to_nodes(&In, varrayt, nodest, nodes_to_features);
    
    if (nodest->n_values == 0)
	G_fatal_error(_("No 'to' features"));
    
    if (0 != Vect_net_build_graph(&In, atype, afield, nfield, afcol->answer, abcol->answer,
                                   ncol->answer, geo, 2))
        G_fatal_error(_("Unable to build graph for vector map <%s>"), Vect_get_full_name(&In));

    graph = Vect_net_get_graph(&In);

    G_message(_("Distances to 'to' features ..."));

    NetA_distance_to_points(graph, nodest, dst, nxt);

    /* Create table */
    Fi = Vect_default_field_info(&Out, 1, NULL, GV_1TABLE);
    Vect_map_add_dblink(&Out, 1, NULL, Fi->table, GV_KEY_COLUMN, Fi->database,
			Fi->driver);
    db_init_string(&sql);
    driver = db_start_driver_open_database(Fi->driver, Fi->database);
    if (driver == NULL)
	G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
		      Fi->database, Fi->driver);
    db_set_error_handler_driver(driver);

    sprintf(buf,
	    "create table %s ( cat integer, tcat integer, dist double precision)",
	    Fi->table);

    db_set_string(&sql, buf);
    G_debug(2, "%s", db_get_string(&sql));

    if (db_execute_immediate(driver, &sql) != DB_OK) {
	G_fatal_error(_("Unable to create table: '%s'"), db_get_string(&sql));
    }

    if (db_create_index2(driver, Fi->table, GV_KEY_COLUMN) != DB_OK)
	G_warning(_("Cannot create index"));

    if (db_grant_on_table
	(driver, Fi->table, DB_PRIV_SELECT, DB_GROUP | DB_PUBLIC) != DB_OK)
	G_fatal_error(_("Cannot grant privileges on table <%s>"), Fi->table);

    db_begin_transaction(driver);

    Vect_copy_head_data(&In, &Out);
    Vect_hist_copy(&In, &Out);
    Vect_hist_command(&Out);

    G_message(_("Tracing paths from 'from' features ..."));
    from_nr = 0;
    for (i = 1; i <= nlines; i++) {
	if (varrayf->c[i]) {
	    int type = Vect_read_line(&In, Points, Cats, i);
	    int node, tcat, cat;
	    double cost;
	    dglInt32_t *vertex, vertex_id;

	    if (!Vect_cat_get(Cats, flayer, &cat))
		continue;
		
	    if (type & GV_POINTS) {
		node = Vect_find_node(&In, Points->x[0], Points->y[0], Points->z[0], 0, 0);
	    }
	    else {
		Vect_get_line_nodes(&In, i, &node, NULL);
	    }
	    if (node < 1)
		continue;
	    if (dst[node] < 0) {
		/* unreachable */
		from_nr++;
 		continue;
	    }
	    cost = dst[node] / (double)In.dgraph.cost_multip;
	    vertex = dglGetNode(graph, node);
	    vertex_id = node;
	    slist->n_values = 0;
	    while (nxt[vertex_id] != NULL) {
		int edge_id;

		edge_id = (int) dglEdgeGet_Id(graph, nxt[vertex_id]);
		if (segments) {
		    Vect_cat_set(on_path[abs(edge_id)], 1, cat);
		    if (edge_id < 0) {
			segdir[abs(edge_id)] = 1;
		    }
		}
		else
		    G_ilist_add(slist, edge_id);

		vertex = dglEdgeGet_Tail(graph, nxt[vertex_id]);
		vertex_id = dglNodeGet_Id(graph, vertex);
	    }
	    G_debug(3, "read line %d, vertex id %d", nodes_to_features[vertex_id], (int)vertex_id);
	    Vect_read_line(&In, NULL, TCats, nodes_to_features[vertex_id]);
	    if (!Vect_cat_get(TCats, tlayer, &tcat))
		continue;

	    Vect_write_line(&Out, type, Points, Cats);
	    sprintf(buf, "insert into %s values (%d, %d, %f)", Fi->table, cat,
		    tcat, cost);
	    db_set_string(&sql, buf);
	    G_debug(3, "%s", db_get_string(&sql));
	    if (db_execute_immediate(driver, &sql) != DB_OK) {
		G_fatal_error(_("Cannot insert new record: %s"),
			      db_get_string(&sql));
	    };

	    if (!segments) {
		Vect_reset_line(PPoints);
		for (j = 0; j < slist->n_values; j++) {
		    Vect_read_line(&In, Points, NULL, abs(slist->value[j]));
		    if (slist->value[j] > 0)
			Vect_append_points(PPoints, Points,
					   GV_FORWARD);
		    else
			Vect_append_points(PPoints, Points,
					   GV_BACKWARD);
		    PPoints->n_points--;
		}
		PPoints->n_points++;
		Vect_reset_cats(Cats);
		Vect_cat_set(Cats, 1, cat);
		Vect_write_line(&Out, GV_LINE, PPoints, Cats);
	    }

	}
    }

    if (segments) {
	for (i = 1; i <= nlines; i++) {
	    if (on_path[i]->n_cats > 0) {
		int type; 
		
		if (segdir[i]) {
		    type = Vect_read_line(&In, PPoints, NULL, i);
		    Vect_reset_line(Points);
		    Vect_append_points(Points, PPoints, GV_BACKWARD);
		}
		else
		    type = Vect_read_line(&In, Points, NULL, i);

		Vect_write_line(&Out, type, Points, on_path[i]);
	    }
	}
    }

    db_commit_transaction(driver);
    db_close_database_shutdown_driver(driver);

    Vect_build(&Out);

    Vect_close(&In);
    Vect_close(&Out);

    for (i = 1; i <= nlines; i++)
	Vect_destroy_cats_struct(on_path[i]);
    G_free(on_path);
    G_free(nodes_to_features);
    G_free(dst);
    G_free(nxt);
    G_free(segdir);

    if (from_nr)
	G_warning(n_("%d 'from' feature was not reachable",
                     "%d 'from' features were not reachable",
                     from_nr), from_nr);

    exit(EXIT_SUCCESS);
}
Exemplo n.º 7
0
int main(int argc, char **argv)
{
    int i, j, k, ret;
    int nlines, type, ltype, afield, tfield, geo, cat;
    int sp, nsp, nspused, node, line;
    struct Option *map, *output, *afield_opt, *tfield_opt, *afcol, *type_opt,
	*term_opt, *nsp_opt;
    struct Flag *geo_f;
    struct GModule *module;
    struct Map_info Map, Out;
    int *testnode;		/* array all nodes: 1 - should be tested as Steiner, 
				 * 0 - no need to test (unreachable or terminal) */
    struct ilist *TList;	/* list of terminal nodes */
    struct ilist *StArcs;	/* list of arcs on Steiner tree */
    struct ilist *StNodes;	/* list of nodes on Steiner tree */
    struct boxlist *pointlist;
    double cost, tmpcost;
    struct cat_list *Clist;
    struct line_cats *Cats;
    struct line_pnts *Points;
    
    /* Initialize the GIS calls */
    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("network"));
    G_add_keyword(_("steiner tree"));
    module->label =
	_("Creates Steiner tree for the network and given terminals.");
    module->description =
	_("Note that 'Minimum Steiner Tree' problem is NP-hard "
	  "and heuristic algorithm is used in this module so "
	  "the result may be sub optimal.");

    map = G_define_standard_option(G_OPT_V_INPUT);
    output = G_define_standard_option(G_OPT_V_OUTPUT);

    type_opt = G_define_standard_option(G_OPT_V_TYPE);
    type_opt->key = "arc_type";
    type_opt->options = "line,boundary";
    type_opt->answer = "line,boundary";
    type_opt->label = _("Arc type");

    afield_opt = G_define_standard_option(G_OPT_V_FIELD);
    afield_opt->key = "arc_layer";
    afield_opt->answer = "1";
    afield_opt->label = _("Arc layer");

    tfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    tfield_opt->key = "node_layer";
    tfield_opt->answer = "2";
    tfield_opt->label = _("Node layer (used for terminals)");

    afcol = G_define_option();
    afcol->key = "acolumn";
    afcol->type = TYPE_STRING;
    afcol->required = NO;
    afcol->description = _("Arcs' cost column (for both directions)");

    term_opt = G_define_standard_option(G_OPT_V_CATS);
    term_opt->key = "terminal_cats";
    term_opt->required = YES;
    term_opt->description =
	_("Categories of points on terminals (layer is specified by nlayer)");

    nsp_opt = G_define_option();
    nsp_opt->key = "npoints";
    nsp_opt->type = TYPE_INTEGER;
    nsp_opt->required = NO;
    nsp_opt->multiple = NO;
    nsp_opt->answer = "-1";
    nsp_opt->description = _("Number of Steiner points (-1 for all possible)");

    geo_f = G_define_flag();
    geo_f->key = 'g';
    geo_f->description =
	_("Use geodesic calculation for longitude-latitude locations");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    Cats = Vect_new_cats_struct();
    Points = Vect_new_line_struct();

    type = Vect_option_to_types(type_opt);
    afield = atoi(afield_opt->answer);

    TList = Vect_new_list();
    StArcs = Vect_new_list();
    StNodes = Vect_new_list();

    Clist = Vect_new_cat_list();
    tfield = atoi(tfield_opt->answer);
    Vect_str_to_cat_list(term_opt->answer, Clist);

    G_debug(1, "Imput categories:\n");
    for (i = 0; i < Clist->n_ranges; i++) {
	G_debug(1, "%d - %d\n", Clist->min[i], Clist->max[i]);
    }

    if (geo_f->answer)
	geo = 1;
    else
	geo = 0;

    Vect_check_input_output_name(map->answer, output->answer, G_FATAL_EXIT);

    Vect_set_open_level(2);

    if (Vect_open_old(&Map, map->answer, "") < 0)
	G_fatal_error(_("Unable to open vector map <%s>"), map->answer);

    nnodes = Vect_get_num_nodes(&Map);
    nlines = Vect_get_num_lines(&Map);

    /* Create list of terminals based on list of categories */
    for (i = 1; i <= nlines; i++) {
	ltype = Vect_get_line_type(&Map, i);
	if (!(ltype & GV_POINT))
	    continue;

	Vect_read_line(&Map, Points, Cats, i);
	if (!(Vect_cat_get(Cats, tfield, &cat)))
	    continue;
	node = Vect_find_node(&Map, Points->x[0], Points->y[0], Points->z[0], 0, 0);
	if (!node) {
	    G_warning(_("Point is not connected to the network (cat=%d)"), cat);
	    continue;
	}
	if (Vect_cat_in_cat_list(cat, Clist)) {
	    Vect_list_append(TList, node);
	}
    }

    nterms = TList->n_values;
    /* GTC Terminal refers to an Steiner tree endpoint */
    G_message(_("Number of terminals: %d\n"), nterms);

    if (nterms < 2) {
        /* GTC Terminal refers to an Steiner tree endpoint */
        G_fatal_error(_("Not enough terminals (< 2)"));
    }

    /* Number of steiner points */
    nsp = atoi(nsp_opt->answer);
    if (nsp > nterms - 2) {
	nsp = nterms - 2;
	G_warning(_("Requested number of Steiner points > than possible"));
    }
    else if (nsp == -1) {
	nsp = nterms - 2;
    }

    G_message(_("Number of Steiner points set to %d\n"), nsp);

    testnode = (int *)G_malloc((nnodes + 1) * sizeof(int));
    for (i = 1; i <= nnodes; i++)
	testnode[i] = 1;

    /* Alloc arrays of costs for nodes, first node at 1 (0 not used) */
    nodes_costs = (double **)G_malloc((nnodes) * sizeof(double *));
    for (i = 0; i < nnodes; i++) {
	nodes_costs[i] =
	    (double *)G_malloc((nnodes - i) * sizeof(double));
	for (j = 0; j < nnodes - i; j++)
	    nodes_costs[i][j] = -1;	/* init, i.e. cost was not calculated yet */
    }

    /* alloc memory from each to each other (not directed) terminal */
    i = nterms + nterms - 2;	/*  max number of terms + Steiner points */
    comps = (int *)G_malloc(i * sizeof(int));
    i = i * (i - 1) / 2;	/* number of combinations */
    term_costs = (COST *) G_malloc(i * sizeof(COST));

    /* alloc memory for costs from Stp to each other terminal */
    i = nterms + nterms - 2 - 1;	/*  max number of terms + Steiner points - 1 */
    sp_costs = (COST *) G_malloc(i * sizeof(COST));

    terms = (int *)G_malloc((nterms + nterms - 2) * sizeof(int));	/* i.e. +(nterms - 2)  St Points */
    /* Create initial parts from list of terminals */
    G_debug(1, "List of terminal nodes (%d):\n", nterms);
    for (i = 0; i < nterms; i++) {
	G_debug(1, "%d\n", TList->value[i]);
	terms[i] = TList->value[i];
	testnode[terms[i]] = 0;	/* do not test as Steiner */
    }

    /* Build graph */
    Vect_net_build_graph(&Map, type, afield, 0, afcol->answer, NULL, NULL,
			 geo, 0);

    /* Init costs for all terminals */
    for (i = 0; i < nterms; i++)
	init_node_costs(&Map, terms[i]);

    /* Test if all terminal may be connected */
    for (i = 1; i < nterms; i++) {
	ret = get_node_costs(terms[0], terms[i], &cost);
	if (ret == 0) {
            /* GTC Terminal refers to an Steiner tree endpoint */
	    G_fatal_error(_("Terminal at node [%d] cannot be connected "
			    "to terminal at node [%d]"), terms[0], terms[i]);
	}
    }

    /* Remove not reachable from list of SP candidates */
    j = 0;
    for (i = 1; i <= nnodes; i++) {
	ret = get_node_costs(terms[0], i, &cost);
	if (ret == 0) {
	    testnode[i] = 0;
	    G_debug(2, "node %d removed from list of Steiner point candidates\n", i );
	    j++;
	}
    }

    G_message(_("[%d] (not reachable) nodes removed from list "
		"of Steiner point candidates"), j);

    /* calc costs for terminals MST */
    ret = mst(&Map, terms, nterms, &cost, PORT_DOUBLE_MAX, NULL, NULL, 0, 1);	/* no StP, rebuild */
    G_message(_("MST costs = %f"), cost);

    /* Go through all nodes and try to use as steiner points -> find that which saves most costs */
    nspused = 0;
    for (j = 0; j < nsp; j++) {
	sp = 0;
	G_verbose_message(_("Search for [%d]. Steiner point"), j + 1);

	for (i = 1; i <= nnodes; i++) {
	    G_percent(i, nnodes, 1);
	    if (testnode[i] == 0) {
		G_debug(3, "skip test for %d\n", i);
		continue;
	    }
	    ret =
		mst(&Map, terms, nterms + j, &tmpcost, cost, NULL, NULL, i,
		    0);
	    G_debug(2, "cost = %f x %f\n", tmpcost, cost);
	    if (tmpcost < cost) {	/* sp candidate */
		G_debug(3,
			"  steiner candidate node = %d mst = %f (x last = %f)\n",
			i, tmpcost, cost);
		sp = i;
		cost = tmpcost;
	    }
	}
	if (sp > 0) {
	    G_message(_("Steiner point at node [%d] was added "
			"to terminals (MST costs = %f)"), sp, cost);
	    terms[nterms + j] = sp;
	    init_node_costs(&Map, sp);
	    testnode[sp] = 0;
	    nspused++;
	    /* rebuild for nex cycle */
	    ret =
		mst(&Map, terms, nterms + nspused, &tmpcost, PORT_DOUBLE_MAX,
		    NULL, NULL, 0, 1);
	}
	else {			/* no steiner found */
	    G_message(_("No Steiner point found -> leaving cycle"));
	    break;
	}
    }

    G_message(_("Number of added Steiner points: %d "
	    "(theoretic max is %d).\n"), nspused, nterms - 2);

    /* Build lists of arcs and nodes for final version */
    ret =
	mst(&Map, terms, nterms + nspused, &cost, PORT_DOUBLE_MAX, StArcs,
	    StNodes, 0, 0);

    /* Calculate true costs, which may be lower than MST if steiner points were not used */

    if (nsp < nterms - 2) {
        G_message(_("Spanning tree costs on complet graph = %f\n"
            "(may be higher than resulting Steiner tree costs!!!)"),
		cost);
    }
    else
        G_message(_("Steiner tree costs = %f"), cost);

    /* Write arcs to new map */
    if (Vect_open_new(&Out, output->answer, Vect_is_3d(&Map)) < 0)
	G_fatal_error(_("Unable to create vector map <%s>"), output->answer);

    Vect_hist_command(&Out);

    G_debug(1, "Steiner tree:");
    G_debug(1, "Arcs' categories (layer %d, %d arcs):", afield,
	    StArcs->n_values);
    
    for (i = 0; i < StArcs->n_values; i++) {
	line = StArcs->value[i];
	ltype = Vect_read_line(&Map, Points, Cats, line);
	Vect_write_line(&Out, ltype, Points, Cats);
	Vect_cat_get(Cats, afield, &cat);
        G_debug(1, "arc cat = %d", cat);
    }
    
    G_debug(1, "Nodes' categories (layer %d, %d nodes):", tfield,
	    StNodes->n_values);

    k = 0;
    pointlist = Vect_new_boxlist(0);
    for (i = 0; i < StNodes->n_values; i++) {
	double x, y, z;
	struct bound_box box;
	
	node = StNodes->value[i];
	
	Vect_get_node_coor(&Map, node, &x, &y, &z);
	box.E = box.W = x;
	box.N = box.S = y;
	box.T = box.B = z;
	Vect_select_lines_by_box(&Map, &box, GV_POINT, pointlist);
	
	nlines = Vect_get_node_n_lines(&Map, node);
	for (j = 0; j < pointlist->n_values; j++) {
	    line = pointlist->id[j];
	    ltype = Vect_read_line(&Map, Points, Cats, line);
	    if (!(ltype & GV_POINT))
		continue;
	    if (!(Vect_cat_get(Cats, tfield, &cat)))
		continue;
	    Vect_write_line(&Out, ltype, Points, Cats);
	    G_debug(1, "node cat = %d", cat);
	    k++;
	}
    }

    Vect_build(&Out);

    G_message(n_("A Steiner tree with %d arc has been built",
            "A Steiner tree with %d arcs has been built", StArcs->n_values),
        StArcs->n_values);
    
    /* Free, ... */
    Vect_destroy_list(StArcs);
    Vect_destroy_list(StNodes);
    Vect_close(&Map);
    Vect_close(&Out);

    exit(EXIT_SUCCESS);
}
Exemplo n.º 8
0
int new_line_update(void *closure, int sxn, int syn, int button)
{
    struct new_line *nl = closure;
    double x = D_d_to_u_col(sxn);
    double y = D_d_to_u_row(syn);
    double dist;

    G_debug(3, "button = %d x = %d = %f y = %d = %f", button, sxn, x, syn, y);

    if (nl->first && button == 3) {	/* Quit tool ( points & lines ), first is always for points */
	Tool_next = TOOL_NOTHING;
	return 1;
    }
    
    if (button > 3) /* Do nothing on mouse scroll */ 
        return 0; 

    if (nl->type & GV_POINTS && (button == 1 ||  button == 2)) {
	snap(&x, &y);
	Vect_append_point(nl->Points, x, y, 0);

	write_line(&Map, nl->type, nl->Points);
	updated_lines_and_nodes_erase_refresh_display();
	return 1;
    }
    else {			/* GV_LINES */
	/* Button may be 1,2,3 */
	if (button == 1) {	/* New point */
	    if (snap(&x, &y) == 0) {
		/* If not snapping to other features, try to snap to lines start.
		 * Allows to create area of single boundary. */
		if (nl->Points->n_points > 2) {
		    dist = Vect_points_distance(nl->Points->x[0], nl->Points->y[0], 0, x, y, 0, WITHOUT_Z);
		    if (dist < get_thresh()) {
			x = nl->Points->x[0];
			y = nl->Points->y[0];
		    }
		}
	    }
	    if (Vect_append_point(nl->Points, x, y, 0) == -1) {
		G_warning(_("Out of memory! Point not added."));
		return 0;
	    }

	    if (nl->type == GV_LINE)
		symb_set_driver_color(SYMB_LINE);
	    else
		symb_set_driver_color(SYMB_BOUNDARY_0);

	    display_points(nl->Points, 1);
	    set_location(D_u_to_d_col(x), D_u_to_d_row(y));
	    nl->first = 0;
	    set_mode(MOUSE_LINE);
	}
	else if (button == 2) {	/* Undo last point */
	    if (nl->Points->n_points >= 1) {
		symb_set_driver_color(SYMB_BACKGROUND);
		display_points(nl->Points, 1);
		nl->Points->n_points--;

		if (nl->type == GV_LINE)
		    symb_set_driver_color(SYMB_LINE);
		else
		    symb_set_driver_color(SYMB_BOUNDARY_0);

		display_points(nl->Points, 1);
		set_location(D_u_to_d_col
			     (nl->Points->x[nl->Points->n_points - 1]),
			     D_u_to_d_row(nl->Points->
					  y[nl->Points->n_points - 1])
		    );
	    }
	    if (nl->Points->n_points == 0) {
		i_prompt_buttons(_("New point"), "", _("Quit tool"));
		nl->first = 1;
		set_mode(MOUSE_POINT);
	    }
	}
	else if (button == 3) {		/* write the line and quit */
	    if (nl->Points->n_points > 1) {
		/* Before the line is written, we must check if connected to existing nodes, if yes,
		 * such nodes must be add to update list before! the line is written (areas/isles */
		int node1 =
		    Vect_find_node(&Map, nl->Points->x[0], nl->Points->y[0],
				   nl->Points->z[0], 0, Vect_is_3d(&Map));
		int i = nl->Points->n_points - 1;
		int node2 =
		    Vect_find_node(&Map, nl->Points->x[i], nl->Points->y[i],
				   nl->Points->z[i], 0, Vect_is_3d(&Map));

		G_debug(2, "  old node1 = %d  old node2 = %d", node1, node2);
		write_line(&Map, nl->type, nl->Points);
		updated_lines_and_nodes_erase_refresh_display();
	    }
	    else
		G_warning(_("Less than 2 points for line -> nothing written"));

	    return 1;
	}
	G_debug(2, "n_points = %d", nl->Points->n_points);
    }

    i_prompt_buttons(_("New point"), _("Undo last point"), _("Close line"));
    return 0;
}
Exemplo n.º 9
0
int write_triple(struct Site *s1, struct Site *s2, struct Site *s3)
{
    int i;
    int node;
    static struct line_pnts *Points = NULL;
    static struct line_cats *Cats = NULL;
    struct Site *sa, *sb;


    if (!Points) {
	Points = Vect_new_line_struct();
	Cats = Vect_new_cats_struct();
    }

    if (triangulate) {
	for (i = 0; i < 3; i++) {
	    switch (i) {
	    case 0:
		sa = s1;
		sb = s2;
		break;
	    case 1:
		sa = s2;
		sb = s3;
		break;
	    case 2:
		sa = s3;
		sb = s1;
		break;
	    }

	    /* Look if the line already exists */
	    node =
		Vect_find_node(&Out, sa->coord.x, sa->coord.y, 0.0, 0.0, 0);

	    if (node > 0) {	/* node found */
		int j, nlines;
		int found = 0;
		double x, y, z;

		nlines = Vect_get_node_n_lines(&Out, node);

		for (j = 0; j < nlines; j++) {
		    int line, node2;

		    line = Vect_get_node_line(&Out, node, j);

		    if (line > 0)
			Vect_get_line_nodes(&Out, line, NULL, &node2);
		    else
			Vect_get_line_nodes(&Out, abs(line), &node2, NULL);

		    Vect_get_node_coor(&Out, node2, &x, &y, &z);

		    if (x == sb->coord.x && y == sb->coord.y) {
			found = 1;
			break;
		    }
		}

		if (found)
		    continue;	/* next segment */
	    }

	    /* Not found, write it */
	    Vect_reset_line(Points);
	    if (mode3d) {
		G_debug(3, "sa->coord.z: %f", sa->coord.z);
		Vect_append_point(Points, sa->coord.x, sa->coord.y,
				  sa->coord.z);
		Vect_append_point(Points, sb->coord.x, sb->coord.y,
				  sb->coord.z);
	    }
	    else {
		Vect_append_point(Points, sa->coord.x, sa->coord.y, 0.0);
		Vect_append_point(Points, sb->coord.x, sb->coord.y, 0.0);
	    }
	    Vect_write_line(&Out, Type, Points, Cats);
	}
    }

    return 0;
}
Exemplo n.º 10
0
/*!
   \brief Overlay 2 vector maps with AND.

   AND supports:point line area
   point  +     -    +
   line   -     -    -
   area   +     -    -

   \param AMap vector map A
   \param atype feature type for A
   \param AList unused ?
   \param AAList unused ?
   \param BMap vector map B
   \param btype feature type for B
   \param BList unused ?
   \param BAList unused ?
   \param operator operator code

   \return 1 on success
   \return 0 on error
 */
int
Vect_overlay_and(struct Map_info *AMap, int atype, struct ilist *AList,
		 struct ilist *AAList, struct Map_info *BMap, int btype,
		 struct ilist *BList, struct ilist *BAList,
		 struct Map_info *OMap)
{
    int i, j, k, node, line, altype, bltype, oltype, area, centr;
    struct line_pnts *Points;
    struct line_cats *ACats, *BCats, *OCats;
    struct ilist *AOList, *BOList;

    /* TODO: support Lists */

    Points = Vect_new_line_struct();
    ACats = Vect_new_cats_struct();
    BCats = Vect_new_cats_struct();
    OCats = Vect_new_cats_struct();
    AOList = Vect_new_list();
    BOList = Vect_new_list();

    /* TODO: support all types; at present only point x point, area x point and point x area supported  */
    if ((atype & GV_LINES) || (btype & GV_LINES))
	G_warning(_("Overlay: line/boundary types not supported by AND operator"));

    if ((atype & GV_AREA) && (btype & GV_AREA))
	G_warning(_("Overlay: area x area types not supported by AND operator"));

    /* TODO: more points in one node in one map */

    /* point x point: select all points with identical coordinates in both maps */
    if ((atype & GV_POINTS) && (btype & GV_POINTS)) {	/* both points and centroids */
	G_debug(3, "overlay: AND: point x point");
	for (i = 1; i <= Vect_get_num_lines(AMap); i++) {
	    altype = Vect_read_line(AMap, Points, ACats, i);
	    if (!(altype & GV_POINTS))
		continue;

	    node =
		Vect_find_node(BMap, Points->x[0], Points->y[0], Points->z[0],
			       0, 1);
	    G_debug(3, "overlay: node = %d", node);
	    if (node == 0)
		continue;

	    Vect_reset_cats(OCats);

	    for (j = 0; j < Vect_get_node_n_lines(BMap, node); j++) {
		line = Vect_get_node_line(BMap, node, j);
		bltype = Vect_read_line(BMap, NULL, BCats, line);
		if (!(bltype & GV_POINTS))
		    continue;

		/* Identical points found -> write out */
		/* TODO: do something if fields in ACats and BCats are identical */
		for (k = 0; k < ACats->n_cats; k++)
		    Vect_cat_set(OCats, ACats->field[k], ACats->cat[k]);

		for (k = 0; k < BCats->n_cats; k++)
		    Vect_cat_set(OCats, BCats->field[k], BCats->cat[k]);

		/* TODO: what to do if one type is GV_POINT and second GV_CENTROID */
		oltype = altype;
		Vect_write_line(OMap, oltype, Points, OCats);
		Vect_list_append(AOList, i);	/* add to list of written lines */
		Vect_list_append(BOList, line);
		break;
	    }
	}
    }

    /* TODO: check only labeled areas */
    /* point x area: select points from A in areas in B */
    if ((atype & GV_POINTS) && (btype & GV_AREA)) {	/* both points and centroids */
	G_debug(3, "overlay: AND: point x area");

	for (i = 1; i <= Vect_get_num_lines(AMap); i++) {
	    altype = Vect_read_line(AMap, Points, ACats, i);
	    if (!(altype & GV_POINTS))
		continue;

	    area = Vect_find_area(BMap, Points->x[0], Points->y[0]);
	    if (area == 0)
		continue;

	    Vect_reset_cats(OCats);

	    /* TODO: do something if fields in ACats and BCats are identical */
	    for (k = 0; k < ACats->n_cats; k++)
		Vect_cat_set(OCats, ACats->field[k], ACats->cat[k]);

	    centr = Vect_get_area_centroid(BMap, area);
	    if (centr > 0) {
		bltype = Vect_read_line(BMap, NULL, BCats, centr);
		for (k = 0; k < BCats->n_cats; k++)
		    Vect_cat_set(OCats, BCats->field[k], BCats->cat[k]);
	    }

	    /* Check if not yet written */
	    if (!(Vect_val_in_list(AOList, i))) {
		Vect_write_line(OMap, altype, Points, OCats);
		Vect_list_append(AOList, i);
	    }

	}
    }
    /* area x point: select points from B in areas in A */
    if ((btype & GV_POINTS) && (atype & GV_AREA)) {	/* both points and centroids */
	G_debug(3, "overlay: AND: area x point");

	for (i = 1; i <= Vect_get_num_lines(BMap); i++) {
	    bltype = Vect_read_line(BMap, Points, BCats, i);
	    if (!(bltype & GV_POINTS))
		continue;

	    area = Vect_find_area(AMap, Points->x[0], Points->y[0]);
	    if (area == 0)
		continue;

	    Vect_reset_cats(OCats);

	    /* TODO: do something if fields in ACats and BCats are identical */
	    for (k = 0; k < BCats->n_cats; k++)
		Vect_cat_set(OCats, BCats->field[k], BCats->cat[k]);

	    centr = Vect_get_area_centroid(AMap, area);
	    if (centr > 0) {
		altype = Vect_read_line(AMap, NULL, ACats, centr);
		for (k = 0; k < ACats->n_cats; k++)
		    Vect_cat_set(OCats, ACats->field[k], ACats->cat[k]);
	    }

	    /* Check if not yet written */
	    if (!(Vect_val_in_list(BOList, i))) {
		Vect_write_line(OMap, bltype, Points, OCats);
		Vect_list_append(BOList, i);
	    }

	}
    }

    return 0;
}