Exemplo n.º 1
0
Arquivo: area.c Projeto: caomw/grass
/*!
   \brief Find FIRST category of given field and area

   \param Map pointer to Map_info structure
   \param area area id
   \param field layer number

   \return first found category of given field
   \return -1 no centroid or no category found
 */
int Vect_get_area_cat(const struct Map_info *Map, int area, int field)
{
    int i;
    static struct line_cats *Cats = NULL;

    if (!Cats)
	Cats = Vect_new_cats_struct();
    else
	Vect_reset_cats(Cats);

    if (Vect_get_area_cats(Map, area, Cats) == 1 || Cats->n_cats == 0) {
	return -1;
    }

    for (i = 0; i < Cats->n_cats; i++) {
	if (Cats->field[i] == field) {
	    return Cats->cat[i];
	}
    }

    return -1;
}
Exemplo n.º 2
0
Arquivo: main.c Projeto: caomw/grass
int main(int argc, char *argv[])
{
    char *p;
    int i, j, k;
    int method, half, use_catno;
    const char *mapset;
    struct GModule *module;
    struct Option *point_opt,	/* point vector */
     *area_opt,			/* area vector */
     *point_type_opt,		/* point type */
     *point_field_opt,		/* point layer */
     *area_field_opt,		/* area layer */
     *method_opt,		/* stats method */
     *point_column_opt,		/* point column for stats */
     *count_column_opt,		/* area column for point count */
     *stats_column_opt,		/* area column for stats result */
     *fs_opt;			/* field separator for printed output */
    struct Flag *print_flag;
    char *fs;
    struct Map_info PIn, AIn;
    int point_type, point_field, area_field;
    struct line_pnts *Points;
    struct line_cats *ACats, *PCats;
    AREA_CAT *Area_cat;
    int pline, ptype, count;
    int area, nareas, nacats, nacatsalloc;
    int ctype, nrec;
    struct field_info *PFi, *AFi;
    dbString stmt;
    dbDriver *Pdriver, *Adriver;
    char buf[2000];
    int update_ok, update_err;
    struct boxlist *List;
    struct bound_box box;
    dbCatValArray cvarr;
    dbColumn *column;
    struct pvalcat
    {
	double dval;
	int catno;
    } *pvalcats;
    int npvalcats, npvalcatsalloc;
    stat_func *statsvalue = NULL;
    double result;

    column = NULL;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("attribute table"));
    G_add_keyword(_("database"));
    G_add_keyword(_("univariate statistics"));
    G_add_keyword(_("zonal statistics"));
    module->description = _("Count points in areas, calculate statistics from point attributes.");

    point_opt = G_define_standard_option(G_OPT_V_INPUT);
    point_opt->key = "points";
    point_opt->description = _("Name of existing vector map with points");
    /* point_opt->guisection = _("Required"); */

    area_opt = G_define_standard_option(G_OPT_V_INPUT);
    area_opt->key = "areas";
    area_opt->description = _("Name of existing vector map with areas");
    /* area_opt->guisection = _("Required"); */

    point_type_opt = G_define_standard_option(G_OPT_V_TYPE);
    point_type_opt->key = "type";
    point_type_opt->options = "point,centroid";
    point_type_opt->answer = "point";
    point_type_opt->label = _("Feature type");
    point_type_opt->required = NO;

    point_field_opt = G_define_standard_option(G_OPT_V_FIELD);
    point_field_opt->key = "player";
    point_field_opt->label = _("Layer number for points map");

    area_field_opt = G_define_standard_option(G_OPT_V_FIELD);
    area_field_opt->key = "alayer";
    area_field_opt->label = _("Layer number for area map");

    method_opt = G_define_option();
    method_opt->key = "method";
    method_opt->type = TYPE_STRING;
    method_opt->required = NO;
    method_opt->multiple = NO;
    p = G_malloc(1024);
    for (i = 0; menu[i].name; i++) {
	if (i)
	    strcat(p, ",");
	else
	    *p = 0;
	strcat(p, menu[i].name);
    }
    method_opt->options = p;
    method_opt->description = _("Method for aggregate statistics");

    point_column_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    point_column_opt->key = "pcolumn";
    point_column_opt->required = NO;
    point_column_opt->multiple = NO;
    point_column_opt->label =
	_("Column name of points map to use for statistics");
    point_column_opt->description = _("Column of points map must be numeric");

    count_column_opt = G_define_option();
    count_column_opt->key = "ccolumn";
    count_column_opt->type = TYPE_STRING;
    count_column_opt->required = NO;
    count_column_opt->multiple = NO;
    count_column_opt->label = _("Column name to upload points count");
    count_column_opt->description =
	_("Column to hold points count, must be of type integer, will be created if not existing");

    stats_column_opt = G_define_option();
    stats_column_opt->key = "scolumn";
    stats_column_opt->type = TYPE_STRING;
    stats_column_opt->required = NO;
    stats_column_opt->multiple = NO;
    stats_column_opt->label = _("Column name to upload statistics");
    stats_column_opt->description =
	_("Column to hold statistics, must be of type double, will be created if not existing");

    fs_opt = G_define_standard_option(G_OPT_F_SEP);

    print_flag = G_define_flag();
    print_flag->key = 'p';
    print_flag->label =
	_("Print output to stdout, do not update attribute table");
    print_flag->description = _("First column is always area category");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    point_type = Vect_option_to_types(point_type_opt);

    point_field = atoi(point_field_opt->answer);
    area_field = atoi(area_field_opt->answer);

    if (print_flag->answer)
	/* get field separator */
	    fs = G_option_to_separator(fs_opt);
    else
	    fs = NULL;

    /* check for stats */
    if (method_opt->answer) {
	if (!point_column_opt->answer) {
	    G_fatal_error("Method but no point column selected");
	}
	if (!print_flag->answer && !stats_column_opt->answer)
	    G_fatal_error("Name for stats column is missing");
    }

    if (point_column_opt->answer) {
	if (!method_opt->answer)
	    G_fatal_error("No method for statistics selected");
	if (!print_flag->answer && !stats_column_opt->answer)
	    G_fatal_error("Name for stats column is missing");
    }
    
    /* Open points vector */
    if ((mapset = G_find_vector2(point_opt->answer, "")) == NULL)
	G_fatal_error(_("Vector map <%s> not found"), point_opt->answer);

    Vect_set_open_level(2);
    if (Vect_open_old(&PIn, point_opt->answer, mapset) < 0)
	G_fatal_error(_("Unable to open vector map <%s>"), point_opt->answer);

    /* Open areas vector */
    if ((mapset = G_find_vector2(area_opt->answer, "")) == NULL)
	G_fatal_error(_("Vector map <%s> not found"), area_opt->answer);
    if (!print_flag->answer && strcmp(mapset, G_mapset()) != 0)
	G_fatal_error(_("Vector map <%s> is not in user mapset and cannot be updated"),
		      area_opt->answer);

    Vect_set_open_level(2);
    if (Vect_open_old(&AIn, area_opt->answer, mapset) < 0)
	G_fatal_error(_("Unable to open vector map <%s>"), area_opt->answer);

    method = -1;
    use_catno = 0;
    half = 0;
    if (method_opt->answer) {
	/* get the method */
	for (method = 0; (p = menu[method].name); method++)
	    if ((strcmp(p, method_opt->answer) == 0))
		break;
	if (!p) {
	    G_warning(_("<%s=%s> unknown %s"),
		      method_opt->key, method_opt->answer,
		      method_opt->answer);
	    G_usage();
	    exit(EXIT_FAILURE);
	}

	/* establish the statsvalue routine */
	statsvalue = menu[method].method;

	/* category number of lowest/highest value */
	if ((strcmp(menu[method].name, menu[5].name) == 0) ||
	    (strcmp(menu[method].name, menu[7].name) == 0))
	    use_catno = 1;

	G_debug(1, "method: %s, use cat value: %s", menu[method].name,
		(use_catno == 1 ? "yes" : "no"));
    }

    /* Open database driver */
    db_init_string(&stmt);
    Adriver = NULL;

    if (!print_flag->answer) {

	AFi = Vect_get_field(&AIn, area_field);
	if (AFi == NULL)
	    G_fatal_error(_("Database connection not defined for layer %d"),
			  area_field);

	Adriver = db_start_driver_open_database(AFi->driver, AFi->database);
	if (Adriver == NULL)
	    G_fatal_error(_("Unable to open database <%s> with driver <%s>"),
			  AFi->database, AFi->driver);

	if (!count_column_opt->answer)
	    G_fatal_error(_("ccolumn is required to upload point counts"));

	/* check if count column exists */
	G_debug(1, "check if count column exists");
	db_get_column(Adriver, AFi->table, count_column_opt->answer, &column);
	if (column) {
	    /* check count column type */
	    if (db_column_Ctype(Adriver, AFi->table, count_column_opt->answer)
		!= DB_C_TYPE_INT)
		G_fatal_error(_("ccolumn must be of type integer"));

	    db_free_column(column);
	    column = NULL;
	}
	else {
	    /* create count column */
	    /* db_add_column() exists but is not implemented,
	     * see lib/db/stubs/add_col.c */
	    sprintf(buf, "alter table %s add column %s integer",
	                    AFi->table, count_column_opt->answer);
	    db_set_string(&stmt, buf);
	    if (db_execute_immediate(Adriver, &stmt) != DB_OK)
		G_fatal_error(_("Unable to add column <%s>"),
			      count_column_opt->answer);
	}

	if (method_opt->answer) {
	    if (!stats_column_opt->answer)
		G_fatal_error(_("scolumn is required to upload point stats"));

	    /* check if stats column exists */
	    G_debug(1, "check if stats column exists");
	    db_get_column(Adriver, AFi->table, stats_column_opt->answer,
			  &column);
	    if (column) {
		/* check stats column type */
		if (db_column_Ctype
		    (Adriver, AFi->table,
		     stats_column_opt->answer) != DB_C_TYPE_DOUBLE)
		    G_fatal_error(_("scolumn must be of type double"));

		db_free_column(column);
		column = NULL;
	    }
	    else {
		/* create stats column */
		/* db_add_column() exists but is not implemented,
		 * see lib/db/stubs/add_col.c */
		sprintf(buf, "alter table %s add column %s double",
				AFi->table, stats_column_opt->answer);
		db_set_string(&stmt, buf);
		if (db_execute_immediate(Adriver, &stmt) != DB_OK)
		    G_fatal_error(_("Unable to add column <%s>"),
				  stats_column_opt->answer);
	    }
	}
    }
    else
	AFi = NULL;

    Pdriver = NULL;
    if (method_opt->answer) {

	G_verbose_message(_("collecting attributes from points vector..."));

	PFi = Vect_get_field(&PIn, point_field);
	if (PFi == NULL)
	    G_fatal_error(_("Database connection not defined for layer %d"),
			  point_field);

	Pdriver = db_start_driver_open_database(PFi->driver, PFi->database);
	if (Pdriver == NULL)
	    G_fatal_error(_("Unable to open database <%s> with driver <%s>"),
			  PFi->database, PFi->driver);

	/* check if point column exists */
	db_get_column(Pdriver, PFi->table, point_column_opt->answer, &column);
	if (column) {
	    db_free_column(column);
	    column = NULL;
	}
	else {
	    G_fatal_error(_("Column <%s> not found in table <%s>"),
			  point_column_opt->answer, PFi->table);
	}

	/* Check column type */
	ctype =
	    db_column_Ctype(Pdriver, PFi->table, point_column_opt->answer);

	if (ctype == DB_C_TYPE_INT)
	    half = menu[method].half;
	else if (ctype == DB_C_TYPE_DOUBLE)
	    half = 0;
	else
	    G_fatal_error(_("column for points vector must be numeric"));

	db_CatValArray_init(&cvarr);
	nrec = db_select_CatValArray(Pdriver, PFi->table, PFi->key,
				     point_column_opt->answer, NULL, &cvarr);
	G_debug(1, "selected values = %d", nrec);
	db_close_database_shutdown_driver(Pdriver);
    }

    Points = Vect_new_line_struct();
    ACats = Vect_new_cats_struct();
    PCats = Vect_new_cats_struct();
    List = Vect_new_boxlist(0);

    /* Allocate space ( may be more than needed (duplicate cats and elements without cats) ) */
    if ((nareas = Vect_get_num_areas(&AIn)) <= 0)
	G_fatal_error("No areas in area input vector");

    nacatsalloc = nareas;
    Area_cat = (AREA_CAT *) G_calloc(nacatsalloc, sizeof(AREA_CAT));

    /* Read all cats from 'area' */
    nacats = 0;
    for (area = 1; area <= nareas; area++) {

	Vect_get_area_cats(&AIn, area, ACats);

	if (ACats->n_cats <= 0)
	    continue;
	for (i = 0; i < ACats->n_cats; i++) {

	    if (ACats->field[i] == area_field) {
		Area_cat[nacats].area_cat = ACats->cat[i];
		Area_cat[nacats].count = 0;
		Area_cat[nacats].nvalues = 0;
		Area_cat[nacats].nalloc = 0;
		nacats++;
		if (nacats >= nacatsalloc) {
		    nacatsalloc += 100;
		    Area_cat =
			(AREA_CAT *) G_realloc(Area_cat,
					       nacatsalloc *
					       sizeof(AREA_CAT));
		}
	    }

	}
    }

    G_debug(1, "%d cats loaded from vector (including duplicates)", nacats);

    /* Sort by category */
    qsort((void *)Area_cat, nacats, sizeof(AREA_CAT), cmp_area);

    /* remove duplicate categories */
    for (i = 1; i < nacats; i++) {
	if (Area_cat[i].area_cat == Area_cat[i - 1].area_cat) {
	    for (j = i; j < nacats - 1; j++) {
		Area_cat[j].area_cat = Area_cat[j + 1].area_cat;
	    }
	    nacats--;
	}
    }

    G_debug(1, "%d cats loaded from vector (unique)", nacats);

    /* Go through all areas in area vector and find points in points vector
     * falling into the area */
    npvalcatsalloc = 10;
    npvalcats = 0;
    pvalcats =
	(struct pvalcat *)G_calloc(npvalcatsalloc, sizeof(struct pvalcat));

    G_message(_("Selecting points for each area..."));
    count = 0;
    for (area = 1; area <= nareas; area++) {
	dbCatVal *catval;

	G_debug(3, "area = %d", area);
	G_percent(area, nareas, 2);

	Vect_get_area_cats(&AIn, area, ACats);

	if (ACats->n_cats <= 0)
	    continue;

	/* select points by box */
	Vect_get_area_box(&AIn, area, &box);
	box.T = PORT_DOUBLE_MAX;
	box.B = -PORT_DOUBLE_MAX;

	Vect_select_lines_by_box(&PIn, &box, point_type, List);
	G_debug(4, "%d points selected by box", List->n_values);

	/* For each point in box check if it is in the area */
	for (i = 0; i < List->n_values; i++) {

	    pline = List->id[i];
	    G_debug(4, "%d: point %d", i, pline);

	    ptype = Vect_read_line(&PIn, Points, PCats, pline);
	    if (!(ptype & point_type))
		continue;

	    /* point in area */
	    if (Vect_point_in_area(Points->x[0], Points->y[0], &AIn, area, &box)) {
		AREA_CAT *area_info, search_ai;

		int tmp_cat;

		/* stats on point column */
		if (method_opt->answer) {
		    npvalcats = 0;
		    tmp_cat = -1;
		    for (j = 0; j < PCats->n_cats; j++) {
			if (PCats->field[j] == point_field) {
			    if (tmp_cat >= 0)
				G_debug(3,
					"More cats found in point layer (point=%d)",
					pline);
			    tmp_cat = PCats->cat[j];

			    /* find cat in array */
			    db_CatValArray_get_value(&cvarr, tmp_cat,
						     &catval);

			    if (catval) {
				pvalcats[npvalcats].catno = tmp_cat;
				switch (cvarr.ctype) {
				case DB_C_TYPE_INT:
				    pvalcats[npvalcats].dval = catval->val.i;
				    npvalcats++;
				    break;

				case DB_C_TYPE_DOUBLE:
				    pvalcats[npvalcats].dval = catval->val.d;
				    npvalcats++;
				    break;
				}
				if (npvalcats >= npvalcatsalloc) {
				    npvalcatsalloc += 10;
				    pvalcats =
					(struct pvalcat *)G_realloc(pvalcats,
								    npvalcatsalloc
								    *
								    sizeof
								    (struct
								     pvalcat));
				}
			    }
			}
		    }
		}

		/* update count for all area cats of given field */
		search_ai.area_cat = -1;
		for (j = 0; j < ACats->n_cats; j++) {
		    if (ACats->field[j] == area_field) {
			if (search_ai.area_cat >= 0)
			    G_debug(3,
				    "More cats found in area layer (area=%d)",
				    area);
			search_ai.area_cat = ACats->cat[j];

			/* find cat in array */
			area_info =
			    (AREA_CAT *) bsearch((void *)&search_ai, Area_cat,
						 nacats, sizeof(AREA_CAT),
						 cmp_area);
			if (area_info->area_cat != search_ai.area_cat)
			    G_fatal_error(_("could not find area category %d"),
					  search_ai.area_cat);

			/* each point is counted once, also if it has
			 * more than one category or no category
			 * OK? */
			area_info->count++;

			if (method_opt->answer) {
			    /* ensure enough space */
			    if (area_info->nvalues + npvalcats >=
				area_info->nalloc) {
				if (area_info->nalloc == 0) {
				    area_info->nalloc = npvalcats + 10;
				    area_info->values =
					(double *)G_calloc(area_info->nalloc,
							   sizeof(double));
				    area_info->cats =
					(int *)G_calloc(area_info->nalloc,
							sizeof(int));
				}
				else
				    area_info->nalloc +=
					area_info->nvalues + npvalcats + 10;
				area_info->values =
				    (double *)G_realloc(area_info->values,
							area_info->nalloc *
							sizeof(double));
				area_info->cats =
				    (int *)G_realloc(area_info->cats,
						     area_info->nalloc *
						     sizeof(int));
			    }
			    for (k = 0; k < npvalcats; k++) {
				area_info->cats[area_info->nvalues] =
				    pvalcats[k].catno;
				area_info->values[area_info->nvalues] =
				    pvalcats[k].dval;
				area_info->nvalues++;
			    }
			}
		    }
		}
		count++;
	    }
	}			/* next point in box */
    }				/* next area */

    G_debug(1, "count = %d", count);

    /* release catval array */
    if (method_opt->answer)
	db_CatValArray_free(&cvarr);

    Vect_close(&PIn);

    /* Update table or print to stdout */
    if (print_flag->answer) {	/* print header */
	fprintf(stdout, "area_cat%scount", fs);
	if (method_opt->answer)
	    fprintf(stdout, "%s%s", fs, menu[method].name);
	fprintf(stdout, "\n");
    }
    else {
	G_message("Updating attributes for area vector...");
	update_err = update_ok = 0;
    }
    if (Adriver)
	db_begin_transaction(Adriver);

    for (i = 0; i < nacats; i++) {
	if (!print_flag->answer)
	    G_percent(i, nacats, 2);

	result = 0;

	if (Area_cat[i].count > 0 && method_opt->answer) {
	    /* get stats */
	    statsvalue(&result, Area_cat[i].values, Area_cat[i].nvalues,
			NULL);

	    if (half)
		result += 0.5;
	    else if (use_catno)
		result = Area_cat[i].cats[(int)result];
	}
	if (print_flag->answer) {
	    fprintf(stdout, "%d%s%d", Area_cat[i].area_cat, fs,
		    Area_cat[i].count);
	    if (method_opt->answer) {
		if (Area_cat[i].count > 0)
		    fprintf(stdout, "%s%.15g", fs, result);
		else
		    fprintf(stdout, "%snull", fs);
	    }
	    fprintf(stdout, "\n");
	}
	else {
	    sprintf(buf, "update %s set %s = %d", AFi->table,
		    count_column_opt->answer, Area_cat[i].count);
	    db_set_string(&stmt, buf);
	    if (method_opt->answer) {
		if (Area_cat[i].count > 0)
		    sprintf(buf, " , %s = %.15g", stats_column_opt->answer,
			    result);
		else
		    sprintf(buf, " , %s = null", stats_column_opt->answer);
		db_append_string(&stmt, buf);
	    }
	    sprintf(buf, " where %s = %d", AFi->key, Area_cat[i].area_cat);
	    db_append_string(&stmt, buf);
	    G_debug(2, "SQL: %s", db_get_string(&stmt));
	    if (db_execute_immediate(Adriver, &stmt) == DB_OK) {
		update_ok++;
	    }
	    else {
		update_err++;
	    }

	}
    }
    if (Adriver)
	db_commit_transaction(Adriver);

    if (!print_flag->answer) {
	G_percent(nacats, nacats, 2);
	db_close_database_shutdown_driver(Adriver);
	db_free_string(&stmt);
	G_message(_("%d records updated"), update_ok);
	if (update_err > 0)
	    G_message(_("%d update errors"), update_err);

	Vect_set_db_updated(&AIn);
    }

    Vect_close(&AIn);

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}
Exemplo n.º 3
0
int main(int argc, char *argv[])
{
    struct Map_info In, Out, Error;
    struct line_pnts *Points;
    struct line_cats *Cats;
    int i, type, iter;
    struct GModule *module;	/* GRASS module for parsing arguments */
    struct Option *map_in, *map_out, *error_out, *thresh_opt, *method_opt,
	*look_ahead_opt;
    struct Option *iterations_opt, *cat_opt, *alpha_opt, *beta_opt, *type_opt;
    struct Option *field_opt, *where_opt, *reduction_opt, *slide_opt;
    struct Option *angle_thresh_opt, *degree_thresh_opt,
	*closeness_thresh_opt;
    struct Option *betweeness_thresh_opt;
    struct Flag *notab_flag, *loop_support_flag;
    int with_z;
    int total_input, total_output;	/* Number of points in the input/output map respectively */
    double thresh, alpha, beta, reduction, slide, angle_thresh;
    double degree_thresh, closeness_thresh, betweeness_thresh;
    int method;
    int look_ahead, iterations;
    int loop_support;
    int layer;
    int n_lines;
    int simplification, mask_type;
    struct cat_list *cat_list = NULL;
    char *s, *descriptions;

    /* initialize GIS environment */
    G_gisinit(argv[0]);		/* reads grass env, stores program name to G_program_name() */

    /* initialize module */
    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("generalization"));
    G_add_keyword(_("simplification"));
    G_add_keyword(_("smoothing"));
    G_add_keyword(_("displacement"));
    G_add_keyword(_("network generalization"));
    module->description = _("Performs vector based generalization.");

    /* Define the different options as defined in gis.h */
    map_in = G_define_standard_option(G_OPT_V_INPUT);

    field_opt = G_define_standard_option(G_OPT_V_FIELD_ALL);

    type_opt = G_define_standard_option(G_OPT_V_TYPE);
    type_opt->options = "line,boundary,area";
    type_opt->answer = "line,boundary,area";
    type_opt->guisection = _("Selection");
    
    map_out = G_define_standard_option(G_OPT_V_OUTPUT);

    error_out = G_define_standard_option(G_OPT_V_OUTPUT);
    error_out->key = "error";
    error_out->required = NO;
    error_out->description =
	_("Error map of all lines and boundaries not being generalized due to topology issues or over-simplification");

    method_opt = G_define_option();
    method_opt->key = "method";
    method_opt->type = TYPE_STRING;
    method_opt->required = YES;
    method_opt->multiple = NO;
    method_opt->options =
	"douglas,douglas_reduction,lang,reduction,reumann,boyle,sliding_averaging,distance_weighting,chaiken,hermite,snakes,network,displacement";
    descriptions = NULL;
    G_asprintf(&descriptions,
               "douglas;%s;"
               "douglas_reduction;%s;"
               "lang;%s;"
               "reduction;%s;"
               "reumann;%s;"
               "boyle;%s;"
               "sliding_averaging;%s;"
               "distance_weighting;%s;"
               "chaiken;%s;"
               "hermite;%s;"
               "snakes;%s;"
               "network;%s;"
               "displacement;%s;",
               _("Douglas-Peucker Algorithm"),
               _("Douglas-Peucker Algorithm with reduction parameter"),
               _("Lang Simplification Algorithm"),
               _("Vertex Reduction Algorithm eliminates points close to each other"),
               _("Reumann-Witkam Algorithm"),
               _("Boyle's Forward-Looking Algorithm"),
               _("McMaster's Sliding Averaging Algorithm"),
               _("McMaster's Distance-Weighting Algorithm"),
               _("Chaiken's Algorithm"),
               _("Interpolation by Cubic Hermite Splines"),
               _("Snakes method for line smoothing"),
               _("Network generalization"),
               _("Displacement of lines close to each other"));
    method_opt->descriptions = G_store(descriptions);
    
    method_opt->description = _("Generalization algorithm");

    thresh_opt = G_define_option();
    thresh_opt->key = "threshold";
    thresh_opt->type = TYPE_DOUBLE;
    thresh_opt->required = YES;
    thresh_opt->options = "0-1000000000";
    thresh_opt->description = _("Maximal tolerance value");

    look_ahead_opt = G_define_option();
    look_ahead_opt->key = "look_ahead";
    look_ahead_opt->type = TYPE_INTEGER;
    look_ahead_opt->required = NO;
    look_ahead_opt->answer = "7";
    look_ahead_opt->description = _("Look-ahead parameter");

    reduction_opt = G_define_option();
    reduction_opt->key = "reduction";
    reduction_opt->type = TYPE_DOUBLE;
    reduction_opt->required = NO;
    reduction_opt->answer = "50";
    reduction_opt->options = "0-100";
    reduction_opt->description =
	_("Percentage of the points in the output of 'douglas_reduction' algorithm");
    
    slide_opt = G_define_option();
    slide_opt->key = "slide";
    slide_opt->type = TYPE_DOUBLE;
    slide_opt->required = NO;
    slide_opt->answer = "0.5";
    slide_opt->options = "0-1";
    slide_opt->description =
	_("Slide of computed point toward the original point");

    angle_thresh_opt = G_define_option();
    angle_thresh_opt->key = "angle_thresh";
    angle_thresh_opt->type = TYPE_DOUBLE;
    angle_thresh_opt->required = NO;
    angle_thresh_opt->answer = "3";
    angle_thresh_opt->options = "0-180";
    angle_thresh_opt->description =
	_("Minimum angle between two consecutive segments in Hermite method");

    degree_thresh_opt = G_define_option();
    degree_thresh_opt->key = "degree_thresh";
    degree_thresh_opt->type = TYPE_INTEGER;
    degree_thresh_opt->required = NO;
    degree_thresh_opt->answer = "0";
    degree_thresh_opt->description =
	_("Degree threshold in network generalization");

    closeness_thresh_opt = G_define_option();
    closeness_thresh_opt->key = "closeness_thresh";
    closeness_thresh_opt->type = TYPE_DOUBLE;
    closeness_thresh_opt->required = NO;
    closeness_thresh_opt->answer = "0";
    closeness_thresh_opt->options = "0-1";
    closeness_thresh_opt->description =
	_("Closeness threshold in network generalization");

    betweeness_thresh_opt = G_define_option();
    betweeness_thresh_opt->key = "betweeness_thresh";
    betweeness_thresh_opt->type = TYPE_DOUBLE;
    betweeness_thresh_opt->required = NO;
    betweeness_thresh_opt->answer = "0";
    betweeness_thresh_opt->description =
	_("Betweeness threshold in network generalization");

    alpha_opt = G_define_option();
    alpha_opt->key = "alpha";
    alpha_opt->type = TYPE_DOUBLE;
    alpha_opt->required = NO;
    alpha_opt->answer = "1.0";
    alpha_opt->description = _("Snakes alpha parameter");

    beta_opt = G_define_option();
    beta_opt->key = "beta";
    beta_opt->type = TYPE_DOUBLE;
    beta_opt->required = NO;
    beta_opt->answer = "1.0";
    beta_opt->description = _("Snakes beta parameter");

    iterations_opt = G_define_option();
    iterations_opt->key = "iterations";
    iterations_opt->type = TYPE_INTEGER;
    iterations_opt->required = NO;
    iterations_opt->answer = "1";
    iterations_opt->description = _("Number of iterations");

    cat_opt = G_define_standard_option(G_OPT_V_CATS);
    cat_opt->guisection = _("Selection");
    
    where_opt = G_define_standard_option(G_OPT_DB_WHERE);
    where_opt->guisection = _("Selection");

    loop_support_flag = G_define_flag();
    loop_support_flag->key = 'l';
    loop_support_flag->label = _("Disable loop support");
    loop_support_flag->description = _("Do not modify end points of lines forming a closed loop");

    notab_flag = G_define_standard_flag(G_FLG_V_TABLE);
    notab_flag->description = _("Do not copy attributes");
    notab_flag->guisection = _("Attributes");
    
    /* options and flags parser */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    thresh = atof(thresh_opt->answer);
    look_ahead = atoi(look_ahead_opt->answer);
    alpha = atof(alpha_opt->answer);
    beta = atof(beta_opt->answer);
    reduction = atof(reduction_opt->answer);
    iterations = atoi(iterations_opt->answer);
    slide = atof(slide_opt->answer);
    angle_thresh = atof(angle_thresh_opt->answer);
    degree_thresh = atof(degree_thresh_opt->answer);
    closeness_thresh = atof(closeness_thresh_opt->answer);
    betweeness_thresh = atof(betweeness_thresh_opt->answer);

    mask_type = type_mask(type_opt);
    G_debug(3, "Method: %s", method_opt->answer);

    s = method_opt->answer;

    if (strcmp(s, "douglas") == 0)
	method = DOUGLAS;
    else if (strcmp(s, "lang") == 0)
	method = LANG;
    else if (strcmp(s, "reduction") == 0)
	method = VERTEX_REDUCTION;
    else if (strcmp(s, "reumann") == 0)
	method = REUMANN;
    else if (strcmp(s, "boyle") == 0)
	method = BOYLE;
    else if (strcmp(s, "distance_weighting") == 0)
	method = DISTANCE_WEIGHTING;
    else if (strcmp(s, "chaiken") == 0)
	method = CHAIKEN;
    else if (strcmp(s, "hermite") == 0)
	method = HERMITE;
    else if (strcmp(s, "snakes") == 0)
	method = SNAKES;
    else if (strcmp(s, "douglas_reduction") == 0)
	method = DOUGLAS_REDUCTION;
    else if (strcmp(s, "sliding_averaging") == 0)
	method = SLIDING_AVERAGING;
    else if (strcmp(s, "network") == 0)
	method = NETWORK;
    else if (strcmp(s, "displacement") == 0) {
	method = DISPLACEMENT;
	/* we can displace only the lines */
	mask_type = GV_LINE;
    }
    else {
	G_fatal_error(_("Unknown method"));
	exit(EXIT_FAILURE);
    }


    /* simplification or smoothing? */
    switch (method) {
    case DOUGLAS:
    case DOUGLAS_REDUCTION:
    case LANG:
    case VERTEX_REDUCTION:
    case REUMANN:
	simplification = 1;
	break;
    default:
	simplification = 0;
	break;
    }


    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    Vect_check_input_output_name(map_in->answer, map_out->answer,
				 G_FATAL_EXIT);

    Vect_set_open_level(2);

    if (Vect_open_old2(&In, map_in->answer, "", field_opt->answer) < 1)
	G_fatal_error(_("Unable to open vector map <%s>"), map_in->answer);

    if (Vect_get_num_primitives(&In, mask_type) == 0) {
	G_warning(_("No lines found in input map <%s>"), map_in->answer);
	Vect_close(&In);
	exit(EXIT_SUCCESS);
    }
    with_z = Vect_is_3d(&In);

    if (0 > Vect_open_new(&Out, map_out->answer, with_z)) {
	Vect_close(&In);
	G_fatal_error(_("Unable to create vector map <%s>"), map_out->answer);
    }

    if (error_out->answer) {
        if (0 > Vect_open_new(&Error, error_out->answer, with_z)) {
	    Vect_close(&In);
	    G_fatal_error(_("Unable to create error vector map <%s>"), error_out->answer);
        }
    }


    Vect_copy_head_data(&In, &Out);
    Vect_hist_copy(&In, &Out);
    Vect_hist_command(&Out);

    total_input = total_output = 0;

    layer = Vect_get_field_number(&In, field_opt->answer);
    /* parse filter options */
    if (layer > 0)
	cat_list = Vect_cats_set_constraint(&In, layer, 
			      where_opt->answer, cat_opt->answer);

    if (method == DISPLACEMENT) {
	/* modifies only lines, all other features including boundaries are preserved */
	/* options where, cats, and layer are respected */
	G_message(_("Displacement..."));
	snakes_displacement(&In, &Out, thresh, alpha, beta, 1.0, 10.0,
			    iterations, cat_list, layer);
    }

    /* TODO: rearrange code below. It's really messy */
    if (method == NETWORK) {
	/* extracts lines of selected type, all other features are discarded */
	/* options where, cats, and layer are ignored */
	G_message(_("Network generalization..."));
	total_output =
	    graph_generalization(&In, &Out, mask_type, degree_thresh, 
	                         closeness_thresh, betweeness_thresh);
    }

    /* copy tables here because method == NETWORK is complete and 
     * tables for Out may be needed for parse_filter_options() below */
    if (!notab_flag->answer) {
	if (method == NETWORK)
	    copy_tables_by_cats(&In, &Out);
	else
	    Vect_copy_tables(&In, &Out, -1);
    }
    else if (where_opt->answer && method < NETWORK) {
	G_warning(_("Attributes are needed for 'where' option, copying table"));
	Vect_copy_tables(&In, &Out, -1);
    }

    /* smoothing/simplification */
    if (method < NETWORK) {
	/* modifies only lines of selected type, all other features are preserved */
	int not_modified_boundaries = 0, n_oversimplified = 0;
	struct line_pnts *APoints;  /* original Points */

	set_topo_debug();

	Vect_copy_map_lines(&In, &Out);
	Vect_build_partial(&Out, GV_BUILD_CENTROIDS);

	G_message("-----------------------------------------------------");
	G_message(_("Generalization (%s)..."), method_opt->answer);
	G_message(_("Using threshold: %g %s"), thresh, G_database_unit_name(1));
	G_percent_reset();

	APoints = Vect_new_line_struct();

	n_lines = Vect_get_num_lines(&Out);
	for (i = 1; i <= n_lines; i++) {
	    int after = 0;

	    G_percent(i, n_lines, 1);

	    type = Vect_read_line(&Out, APoints, Cats, i);

	    if (!(type & GV_LINES) || !(mask_type & type))
		continue;

	    if (layer > 0) {
		if ((type & GV_LINE) &&
		    !Vect_cats_in_constraint(Cats, layer, cat_list))
		    continue;
		else if ((type & GV_BOUNDARY)) {
		    int do_line = 0;
		    int left, right;
		    
		    do_line = Vect_cats_in_constraint(Cats, layer, cat_list);

		    if (!do_line) {
			
			/* check if any of the centroids is selected */
			Vect_get_line_areas(&Out, i, &left, &right);
			if (left < 0)
			    left = Vect_get_isle_area(&Out, abs(left));
			if (right < 0)
			    right = Vect_get_isle_area(&Out, abs(right));

			if (left > 0) {
			    Vect_get_area_cats(&Out, left, Cats);
			    do_line = Vect_cats_in_constraint(Cats, layer, cat_list);
			}
			
			if (!do_line && right > 0) {
			    Vect_get_area_cats(&Out, right, Cats);
			    do_line = Vect_cats_in_constraint(Cats, layer, cat_list);
			}
		    }
		    if (!do_line)
			continue;
		}
	    }

	    Vect_line_prune(APoints);

	    if (APoints->n_points < 2)
		/* Line of length zero, delete if boundary ? */
		continue;

	    total_input += APoints->n_points;

	    /* copy points */
	    Vect_reset_line(Points);
	    Vect_append_points(Points, APoints, GV_FORWARD);
	    
	    loop_support = 0;
	    if (!loop_support_flag->answer) {
		int n1, n2;

		Vect_get_line_nodes(&Out, i, &n1, &n2);
		if (n1 == n2) {
		    if (Vect_get_node_n_lines(&Out, n1) == 2) {
			if (abs(Vect_get_node_line(&Out, n1, 0)) == i &&
			    abs(Vect_get_node_line(&Out, n1, 1)) == i)
			    loop_support = 1;
		    }
		}
	    }
		
	    for (iter = 0; iter < iterations; iter++) {
		switch (method) {
		case DOUGLAS:
		    douglas_peucker(Points, thresh, with_z);
		    break;
		case DOUGLAS_REDUCTION:
		    douglas_peucker_reduction(Points, thresh, reduction,
					      with_z);
		    break;
		case LANG:
		    lang(Points, thresh, look_ahead, with_z);
		    break;
		case VERTEX_REDUCTION:
		    vertex_reduction(Points, thresh, with_z);
		    break;
		case REUMANN:
		    reumann_witkam(Points, thresh, with_z);
		    break;
		case BOYLE:
		    boyle(Points, look_ahead, loop_support, with_z);
		    break;
		case SLIDING_AVERAGING:
		    sliding_averaging(Points, slide, look_ahead, loop_support, with_z);
		    break;
		case DISTANCE_WEIGHTING:
		    distance_weighting(Points, slide, look_ahead, loop_support, with_z);
		    break;
		case CHAIKEN:
		    chaiken(Points, thresh, loop_support, with_z);
		    break;
		case HERMITE:
		    hermite(Points, thresh, angle_thresh, loop_support, with_z);
		    break;
		case SNAKES:
		    snakes(Points, alpha, beta, loop_support, with_z);
		    break;
		}
	    }

	    if (loop_support == 0) { 
		/* safety check, BUG in method if not passed */
		if (APoints->x[0] != Points->x[0] || 
		    APoints->y[0] != Points->y[0] ||
		    APoints->z[0] != Points->z[0])
		    G_fatal_error(_("Method '%s' did not preserve first point"), method_opt->answer);
		    
		if (APoints->x[APoints->n_points - 1] != Points->x[Points->n_points - 1] || 
		    APoints->y[APoints->n_points - 1] != Points->y[Points->n_points - 1] ||
		    APoints->z[APoints->n_points - 1] != Points->z[Points->n_points - 1])
		    G_fatal_error(_("Method '%s' did not preserve last point"), method_opt->answer);
	    }
	    else {
		/* safety check, BUG in method if not passed */
		if (Points->x[0] != Points->x[Points->n_points - 1] || 
		    Points->y[0] != Points->y[Points->n_points - 1] ||
		    Points->z[0] != Points->z[Points->n_points - 1])
		    G_fatal_error(_("Method '%s' did not preserve loop"), method_opt->answer);
	    }

	    Vect_line_prune(Points);

	    /* oversimplified line */
	    if (Points->n_points < 2) {
		after = APoints->n_points;
		n_oversimplified++;
                if (error_out->answer)
		    Vect_write_line(&Error, type, APoints, Cats);
	    }
	    /* check for topology corruption */
	    else if (type == GV_BOUNDARY) {
		if (!check_topo(&Out, i, APoints, Points, Cats)) {
		    after = APoints->n_points;
		    not_modified_boundaries++;
                    if (error_out->answer)
		        Vect_write_line(&Error, type, APoints, Cats);
		}
		else
		    after = Points->n_points;
	    }
	    else {
		/* type == GV_LINE */
		Vect_rewrite_line(&Out, i, type, Points, Cats);
		after = Points->n_points;
	    }

	    total_output += after;
	}
	if (not_modified_boundaries > 0)
	    G_warning(_("%d boundaries were not modified because modification would damage topology"),
		      not_modified_boundaries);
	if (n_oversimplified > 0)
	    G_warning(_("%d lines/boundaries were not modified due to over-simplification"),
		      n_oversimplified);
	G_message("-----------------------------------------------------");

	/* make sure that clean topo is built at the end */
	Vect_build_partial(&Out, GV_BUILD_NONE);
        if (error_out->answer)
	    Vect_build_partial(&Error, GV_BUILD_NONE);
    }

    Vect_build(&Out);
    if (error_out->answer)
        Vect_build(&Error);

    Vect_close(&In);
    Vect_close(&Out);
    if (error_out->answer)
        Vect_close(&Error);

    G_message("-----------------------------------------------------");
    if (total_input != 0 && total_input != total_output)
	G_done_msg(_("Number of vertices for selected features %s from %d to %d (%d%% remaining)"),
                   simplification ? _("reduced") : _("changed"), 
                   total_input, total_output,
                   (total_output * 100) / total_input);
    else
        G_done_msg(" ");

    exit(EXIT_SUCCESS);
}
Exemplo n.º 4
0
int main(int argc, char *argv[])
{
    int i, j, precision, field, type, nlines;
    int do_attr = 0, attr_cols[8], attr_size = 0, db_open = 0, cnt = 0;

    double width, radius;
    struct Option *in_opt, *out_opt, *prec_opt, *type_opt, *attr_opt,
	*field_opt;
    struct GModule *module;
    struct Map_info In;
    struct bound_box box;

    /* vector */
    struct line_pnts *Points;
    struct line_cats *Cats;

    /* attribs */
    dbDriver *Driver = NULL;
    dbHandle handle;
    dbTable *Table;
    dbString dbstring;
    struct field_info *Fi;

    /* init */
    G_gisinit(argv[0]);

    /* parse command-line */
    module = G_define_module();
    module->description = _("Exports a vector map to SVG file.");
    G_add_keyword(_("vector"));
    G_add_keyword(_("export"));

    in_opt = G_define_standard_option(G_OPT_V_INPUT);

    field_opt = G_define_standard_option(G_OPT_V_FIELD_ALL);

    out_opt = G_define_standard_option(G_OPT_F_OUTPUT);
    out_opt->description = _("Name for SVG output file");

    type_opt = G_define_option();
    type_opt->key = "type";
    type_opt->type = TYPE_STRING;
    type_opt->required = YES;
    type_opt->multiple = NO;
    type_opt->answer = "poly";
    type_opt->options = "poly,line,point";
    type_opt->label = _("Output type");
    type_opt->description = _("Defines which feature-type will be extracted");

    prec_opt = G_define_option();
    prec_opt->key = "precision";
    prec_opt->type = TYPE_INTEGER;
    prec_opt->required = NO;
    prec_opt->answer = "6";
    prec_opt->multiple = NO;
    prec_opt->description = _("Coordinate precision");

    attr_opt = G_define_standard_option(G_OPT_DB_COLUMNS);
    attr_opt->key = "attribute";
    attr_opt->required = NO;
    attr_opt->multiple = YES;
    attr_opt->description = _("Attribute(s) to include in output SVG");
    
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    if (type_opt->answer[0] == 'l') {
        type = TYPE_LINE;
    }
    else {
        if (type_opt->answer[2] == 'l')
            type = TYPE_POLY;
        else
            type = TYPE_POINT;
    }
            
    /* override coordinate precision if any */
    precision = atof(prec_opt->answer);
    if (precision < 0) {
	G_fatal_error(_("Precision must not be negative"));
    }
    if (precision > 15) {
	G_fatal_error(_("Precision must not be higher than 15"));
    }

    /* open input vector */
    Vect_set_open_level(2);
    if (Vect_open_old2(&In, in_opt->answer, "", field_opt->answer) < 0)
	G_fatal_error(_("Unable to open vector map <%s>"), in_opt->answer);

    /* parse field number */
    field = Vect_get_field_number(&In, field_opt->answer);

    /* open db-driver to attribs */
    db_init_string(&dbstring);

    /* check for requested field */
    Fi = Vect_get_field(&In, field);
    if (Fi != NULL) {
	Driver = db_start_driver(Fi->driver);
	if (Driver == NULL) {
	    G_fatal_error(_("Unable to start driver <%s>"), Fi->driver);
	}

	/* open db */
	db_init_handle(&handle);
	db_set_handle(&handle, Fi->database, NULL);
	if (db_open_database(Driver, &handle) != DB_OK) {
	    G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
			  Fi->database, Fi->driver);
	}

	db_set_string(&dbstring, Fi->table);
	if (db_describe_table(Driver, &dbstring, &Table) != DB_OK) {
	    G_fatal_error(_("Unable to describe table <%s>"), Fi->table);
	}

	/* define column-indices for columns to extract */
	dbColumn *Column;

	for (i = 0; i < db_get_table_number_of_columns(Table); i++) {
	    Column = db_get_table_column(Table, i);
	    if (attr_opt->answer != NULL) {
		for (j = 0; attr_opt->answers[j] != NULL; j++) {
		    if (G_strcasecmp(attr_opt->answers[j],
				     db_get_column_name(Column)) == 0) {
			attr_cols[attr_size] = i;
			attr_size += 1;
			break;
		    }
		}
	    }
	}
	do_attr = 1;
	db_open = 1;
    }

    /* parse bounding box and define default stroke-width, radius */
    Vect_get_map_box(&In, &box);
    if ((box.E - box.W) >= (box.N - box.S)) {
	radius = (box.E - box.W) * RADIUS_SCALE;
	width = (box.E - box.W) * WIDTH_SCALE;
    }
    else {
	radius = (box.N - box.S) * RADIUS_SCALE;
	width = (box.N - box.S) * WIDTH_SCALE;
    }

    /* open output SVG-file and print SVG-header with viewBox and Namenspaces */
    if ((fpsvg = fopen(out_opt->answer, "w")) == NULL) {
	G_fatal_error(_("Unable to create SVG file <%s>"), out_opt->answer);
    }

    fprintf(fpsvg, "<svg xmlns=\"%s\" xmlns:xlink=\"%s\" xmlns:gg=\"%s\" ",
	    SVG_NS, XLINK_NS, GRASS_NS);
    fprintf(fpsvg, "viewBox=\"%.*f %.*f %.*f %.*f\">\n",
	    precision, box.W,
	    precision, box.N * -1,
	    precision, box.E - box.W, precision, box.N - box.S);
    fprintf(fpsvg, "<title>v.out.svg %s %s</title>\n", in_opt->answer,
	    out_opt->answer);

    nlines = Vect_get_num_lines(&In);
    
    /* extract areas if any or requested */
    if (type == TYPE_POLY) {
	if (Vect_get_num_areas(&In) == 0) {
	    G_warning(_("No areas found, skipping %s"), "type=poly");
	}
	else {
            int nareas;
            
            nareas = Vect_get_num_areas(&In);
	    /* extract area as paths */
	    fprintf(fpsvg,
		    " <g id=\"%s\" fill=\"#CCC\" stroke=\"#000\" stroke-width=\"%.*f\" >\n",
		    G_Areas, precision, width);
	    for (i = 1; i <= nareas; i++) {
		G_percent(i, nareas, 5);

		/* skip areas without centroid */
		if (Vect_get_area_centroid(&In, i) == 0) {
		    G_warning(_("Skipping area %d without centroid"), i);
		    continue;
		}

		/* extract attribs, parse area */
		Vect_get_area_cats(&In, i, Cats);
		fprintf(fpsvg, "  <path ");
		if (Cats->n_cats > 0) {
		    mk_attribs(Cats->cat[0], Fi, Driver, Table, attr_cols,
			       attr_size, do_attr);
		}
		fprintf(fpsvg, "d=\"");

		Vect_get_area_points(&In, i, Points);
		mk_path(Points, precision);

		/* append islands if any within current path */
		for (j = 0; j < Vect_get_area_num_isles(&In, i); j++) {
		    Vect_get_isle_points(&In, Vect_get_area_isle(&In, i, j),
					 Points);
		    mk_path(Points, precision);
		}
		fprintf(fpsvg, "\" />\n");
		cnt += 1;
	    }
	    fprintf(fpsvg, " </g>\n");
	    G_message(_("%d areas extracted"), cnt);
	}
    }
    
    /* extract points if requested */
    if (type == TYPE_POINT) {
	if (Vect_get_num_primitives(&In, GV_POINTS) == 0) {
	    G_warning(_("No points found, skipping %s"), "type=point");
	}
	else {
	    /* extract points as circles */
	    fprintf(fpsvg, " <g id=\"%s\" fill=\"#FC0\" stroke=\"#000\" "
		    "stroke-width=\"%.*f\" >\n", G_Points, precision, width);
	    for (i = 1; i <= nlines; i++) {
		G_percent(i, nlines, 5);
                
		if (!(Vect_read_line(&In, Points, Cats, i) & GV_POINTS))
                    continue;
                
		if (field != -1 && !Vect_cat_get(Cats, field, NULL))
		    continue;
                
		for (j = 0; j < Points->n_points; j++) {
		    fprintf(fpsvg, "  <circle ");
		    if (Cats->n_cats > 0) {
			mk_attribs(Cats->cat[j], Fi, Driver, Table, attr_cols,
				   attr_size, do_attr);
		    }
		    fprintf(fpsvg, "cx=\"%.*f\" cy=\"%.*f\" r=\"%.*f\" />\n",
			    precision, Points->x[j],
			    precision, Points->y[j] * -1, precision, radius);
		    cnt += 1;
		}

	    }
	    fprintf(fpsvg, " </g>\n");
	    G_message(_("%d points extracted"), cnt);
	}
    }
    
    /* extract lines if requested */
    if (type == TYPE_LINE) {
	if (Vect_get_num_primitives(&In, GV_LINES) == 0) {
	    G_warning(_("No lines found, skipping %s"), "type=line");
	}
	else {
	    /* extract lines as paths */
	    fprintf(fpsvg, " <g id=\"%s\" fill=\"none\" stroke=\"#000\" "
		    "stroke-width=\"%.*f\" >\n", G_Lines, precision, width);
	    for (i = 1; i <= nlines; i++) {
		G_percent(i, nlines, 5);
                
		if (!(Vect_read_line(&In, Points, Cats, i) & GV_LINES))
                    continue;
                
                if (field != -1 && !Vect_cat_get(Cats, field, NULL))
		    continue;
                
		fprintf(fpsvg, "  <path ");
		if (Cats->n_cats > 0) {
		    mk_attribs(Cats->cat[0], Fi, Driver, Table,
			       attr_cols, attr_size, do_attr);
		}

		fprintf(fpsvg, "d=\"");
		mk_path(Points, precision);
		fprintf(fpsvg, "\" />\n");
		cnt += 1;
	    }
	    fprintf(fpsvg, " </g>\n");
	    G_message(_("%d lines extracted"), cnt);
	}
    }
    /* finish code */
    fprintf(fpsvg, "</svg>\n");

    if (db_open == 1) {
	/* close database handle */
	db_close_database(Driver);
	db_shutdown_driver(Driver);
    }

    /* close SVG-file */
    fclose(fpsvg);
    
    exit(EXIT_SUCCESS);
}
Exemplo n.º 5
0
/*!
  \brief Write data to GRASS ASCII vector format

  Prints message if some features without category are skipped.

  \param[out] ascii  pointer to the output ASCII file
  \param[out] att    att file (< version 5 only)
  \param Map    pointer to Map_info structure
  \param ver    version number 4 or 5
  \param format format GV_ASCII_FORMAT_POINT or GV_ASCII_FORMAT_STD
  \param dp     number of significant digits
  \param fs     field separator
  \param region_flag check region
  \param type   feature type filter
  \param field  field number
  \param Clist  list of categories to filter features or NULL
  \param where  SQL select where statement to filter features or NULL
  \param column_names array of columns to be included to the output or NULL
                 "*" as the first item in the array indicates all columns
  \param header TRUE to print also header

  \return number of written features
  \return -1 on error
*/
int Vect_write_ascii(FILE *ascii,
		     FILE *att, struct Map_info *Map, int ver,
		     int format, int dp, char *fs, int region_flag, int type,
		     int field, const struct cat_list *Clist, const char* where,
		     const char **column_names, int header)
{
    int ltype, ctype, i, cat, line, left, right, found;
    double *xptr, *yptr, *zptr, x, y;
    static struct line_pnts *Points;
    struct line_cats *Cats, *ACats;
    char *xstring, *ystring, *zstring;
    size_t xsize, ysize, zsize;
    struct Cell_head window;
    struct ilist *fcats;
    int count, n_skipped;

    /* where || columns */
    struct field_info *Fi;
    dbDriver *driver;
    dbValue value;
    dbHandle handle;
    int *cats, ncats, more;
    dbTable *Table;
    dbString dbstring;
    dbColumn *Column;
    dbValue *Value;
    char *buf;
    size_t bufsize;
    dbCursor cursor;
    /* columns */
    char **columns;
    int *coltypes;
    char *all_columns;
    
    Fi = NULL;
    driver = NULL;
    columns = NULL;
    coltypes = NULL;
    all_columns = NULL;
    
    G_zero(&value, sizeof(dbValue));
    db_init_string(&dbstring);

    xstring = NULL;
    ystring = NULL;
    zstring = NULL;
    xsize = 0;
    ysize = 0;
    zsize = 0;
    buf = NULL;
    bufsize = 0;

    /* get the region */
    G_get_window(&window);

    count = ncats = 0;
    xstring = ystring = zstring = NULL;
    cats = NULL;
    
    if (field > 0 && (where || column_names)) {
	Fi = Vect_get_field(Map, field);
	if (!Fi) {
	    G_fatal_error(_("Database connection not defined for layer %d"),
			  field);
	}

	driver = db_start_driver(Fi->driver);
	if (!driver)
	    G_fatal_error(_("Unable to start driver <%s>"), Fi->driver);
	
	db_init_handle(&handle);
	db_set_handle(&handle, Fi->database, NULL);
	
	if (db_open_database(driver, &handle) != DB_OK)
	    G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
			  Fi->database, Fi->driver);
	
	/* select cats (sorted array) */
	ncats = db_select_int(driver, Fi->table, Fi->key, where, &cats);
	G_debug(3, "%d categories selected from table <%s>", ncats, Fi->table);

	if (!column_names) {
	    db_close_database(driver);
	    db_shutdown_driver(driver);
	}
	else {
	    int icol, ncols;
	    const char *col_name;
            int len_all = 0;
            
	    db_set_string(&dbstring, Fi->table);
	    if (db_describe_table(driver, &dbstring, &Table) != DB_OK) {
		G_warning(_("Unable to describe table <%s>"), Fi->table);
		return -1;
	    }
	    
	    ncols = db_get_table_number_of_columns(Table);
	    columns = (char **) G_malloc((ncols + 1) * sizeof(char *));

            if (column_names[0] && strcmp(column_names[0], "*") == 0) {
                
                /* all columns */
                icol = 0;
                for (i = 0; i < ncols; i++) {
                    col_name = db_get_column_name(db_get_table_column(Table, i));
		    /* key column skipped */
                    if (strcmp(Fi->key, col_name) != 0)
			columns[icol++] = G_store(col_name);
                }
                columns[icol] = NULL;
            }
            else {
		int j;

		icol = 0;
		i = 0;
		while (column_names[i]) {
		    /* key column skipped */
                    if (strcmp(Fi->key, column_names[i]) != 0) {
			found = 0;
			for (j = 0; j < ncols; j++) {
			    col_name = db_get_column_name(db_get_table_column(Table, j));
			    if (strcmp(col_name, column_names[i]) == 0) {
				columns[icol++] = G_store(col_name);
				found = 1;
				break;
			    }
			}
			if (!found) {
			    G_warning(_("Column <%s> does not exist"),
				      column_names[i]);
			    G_important_message(_("Available columns:"));
			    for (j = 0; j < ncols; j++) {
				col_name = db_get_column_name(db_get_table_column(Table, j));
				G_important_message("%s", col_name);
			    }
			    G_warning(_("Export cancelled"));
			    db_close_database(driver);
			    db_shutdown_driver(driver);
			    return -1;
			}
		    }
		    i++;
                }
                columns[icol] = NULL;
            }

	    db_zero_string(&dbstring);
	    db_free_table(Table);
	    Table = NULL;
            
	    if (columns[0]) {
		/* selected columns only */
		i = 0;
		while (columns[i])
		    len_all += strlen(columns[i++]);
		
		coltypes = G_malloc(i * sizeof(int));
		
		all_columns = G_malloc(len_all + i + 2);

		i = 0;
		strcpy(all_columns, columns[0]);
		while (columns[i]) {
		    /* get column types */
		    coltypes[i] = db_column_Ctype(driver, Fi->table, columns[i]);
		    if (coltypes[i] < 0) {
			db_close_database(driver);
			db_shutdown_driver(driver);
			G_warning(_("Unknown type of column <%s>, export cancelled"),
				  columns[i]);
			return -1;
		    }
		    if (i > 0) {
			strcat(all_columns, ",");
			strcat(all_columns, columns[i]);
		    }
		    i++;
		}
	    }
	    else {
		/* no column or only key column selected */
		G_free(columns);
		columns = NULL;

		db_close_database(driver);
		db_shutdown_driver(driver);
	    }
	}
    }

    if (format == GV_ASCII_FORMAT_POINT && header) {

	/* print header */
	if (Map->head.with_z)
	    fprintf(ascii, "east%snorth%sheight%scat", fs, fs, fs);
	else
	    fprintf(ascii, "east%snorth%scat", fs, fs);
	if (columns) {
	    for (i = 0; columns[i]; i++) {
		if (db_select_value
		    (driver, Fi->table, Fi->key, cat,
		     columns[i], &value) < 0)
		    G_fatal_error(_("Unable to select record from table <%s> (key %s, column %s)"),
				  Fi->table, Fi->key, columns[i]);
		if (columns[i])
		    fprintf(ascii, "%s%s", fs, columns[i]);
		else
		    fprintf(ascii, "%s", columns[i]); /* can not happen */
	    }
	}
	fprintf(ascii, "%s", HOST_NEWLINE);
    }

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();
    ACats = Vect_new_cats_struct();
    fcats = Vect_new_list();

    /* by default, read_next_line will NOT read Dead lines */
    /* but we can override that (in Level I only) by specifying */
    /* the type  -1, which means match all line types */

    Vect_rewind(Map);

    count = n_skipped = line = 0;
    while (TRUE) {
	ltype = Vect_read_next_line(Map, Points, Cats);
	if (ltype == -1 ) {      /* failure */
	    if (columns) {
		db_close_database(driver);
		db_shutdown_driver(driver);

                free_col_arrays(coltypes, all_columns,
                                column_names && strcmp(column_names[0], "*") == 0 ? columns : NULL);
	    }
	    
	    return -1;
	}

	if (ltype == -2)	{	/* EOF */
	    if (columns) {
		db_close_database(driver);
		db_shutdown_driver(driver);
                
                free_col_arrays(coltypes, all_columns,
                                column_names && strcmp(column_names[0], "*") == 0 ? columns : NULL);
	    }
	    break;
	}

	line++;

	if (!(ltype & type))
	    continue;

	if (format == GV_ASCII_FORMAT_POINT && !(ltype & GV_POINTS))
	    continue;

	found = get_cat(Cats, Clist, cats, ncats, field, &cat);

	if (!found && field > 0 && ltype == GV_BOUNDARY &&
	    type & GV_AREA && Vect_level(Map) > 1) {
	    Vect_get_line_areas(Map, line, &left, &right);
	    if (left < 0)
		left = Vect_get_isle_area(Map, abs(left));
	    if (left > 0) {
		Vect_get_area_cats(Map, left, ACats);
		found = get_cat(ACats, Clist, cats, ncats, field, &cat);
	    }
	    if (right < 0)
		right = Vect_get_isle_area(Map, abs(right));
	    if (!found && right > 0) {
		Vect_get_area_cats(Map, right, ACats);
		found = get_cat(ACats, Clist, cats, ncats, field, &cat);
	    }
	}
	
	if (!found) {
            if (Cats->n_cats < 1)
                n_skipped++;
            
	    continue;
	}

	if (ver < 5) {
	    Vect_cat_get(Cats, 1, &cat);
	}

	switch (ltype) {
	case GV_BOUNDARY:
	    if (ver == 5)
		ctype = 'B';
	    else
		ctype = 'A';
	    break;
	case GV_CENTROID:
	    if (ver < 5) {
		if (att != NULL) {
		    if (cat > 0) {
			G_rasprintf(&xstring, &xsize, "%.*f", dp, Points->x[0]);
			G_trim_decimal(xstring);
			G_rasprintf(&ystring, &ysize, "%.*f", dp, Points->y[0]);
			G_trim_decimal(ystring);
			fprintf(att, "A %s %s %d%s", xstring, ystring, cat, HOST_NEWLINE);
		    }
		}
		continue;
	    }
	    ctype = 'C';
	    break;
	case GV_LINE:
	    ctype = 'L';
	    break;
	case GV_POINT:
	    ctype = 'P';
	    break;
	case GV_FACE:
	    ctype = 'F';
	    break;
	case GV_KERNEL:
	    ctype = 'K';
	    break;
	default:
	    ctype = 'X';
	    G_warning(_("Unknown feature type %d"), (int)ltype);
	    break;
	}

	if (format == GV_ASCII_FORMAT_POINT) {
	    if (region_flag) {
		if ((window.east < Points->x[0]) ||
		    (window.west > Points->x[0]))
		    continue;
	    }
	    G_rasprintf(&xstring, &xsize, "%.*f", dp, Points->x[0]);
	    G_trim_decimal(xstring);

	    if (region_flag) {
		if ((window.north < Points->y[0]) ||
		    (window.south > Points->y[0]))
		    continue;
	    }
	    G_rasprintf(&ystring, &ysize, "%.*f", dp, Points->y[0]);
	    G_trim_decimal(ystring);

	    Vect_field_cat_get(Cats, field, fcats);

	    if (Map->head.with_z && ver == 5) {
		if (region_flag) {
		    if ((window.top < Points->z[0]) ||
			(window.bottom > Points->z[0]))
			continue;
		}
		G_rasprintf(&zstring, &zsize, "%.*f", dp, Points->z[0]);
		G_trim_decimal(zstring);
		fprintf(ascii, "%s%s%s%s%s", xstring, fs, ystring, fs,
			zstring);
	    }
	    else {
		fprintf(ascii, "%s%s%s", xstring, fs, ystring);
	    }

	    if (fcats->n_values > 0 && cat > -1) {
		if (fcats->n_values > 1) {
		    G_warning(_("Feature has more categories. Only one category (%d) "
				"is exported."), cat);
		}
		fprintf(ascii, "%s%d", fs, cat);
		
		/* print attributes */
		if (columns) {

		    G_rasprintf(&buf, &bufsize, "SELECT %s FROM %s WHERE %s = %d",
			    all_columns, Fi->table, Fi->key, cat);
		    G_debug(2, "SQL: %s", buf);
		    db_set_string(&dbstring, buf);

		    if (db_open_select_cursor
				    (driver, &dbstring, &cursor, DB_SEQUENTIAL) != DB_OK) {
			db_close_database(driver);
			db_shutdown_driver(driver);
			G_fatal_error(_("Cannot select attributes for cat = %d"),
			  cat);
		    }
		    if (db_fetch(&cursor, DB_NEXT, &more) != DB_OK) {
			db_close_database(driver);
			db_shutdown_driver(driver);
			G_fatal_error(_("Unable to fetch data from table"));
		    }

		    Table = db_get_cursor_table(&cursor);


		    for (i = 0; columns[i]; i++) {
			Column = db_get_table_column(Table, i);
			Value = db_get_column_value(Column);

			if (db_test_value_isnull(Value)) {
			    fprintf(ascii, "%s", fs);
			}
			else {
			    switch(coltypes[i])
			    {
			    case DB_C_TYPE_INT: {
				fprintf(ascii, "%s%d", fs, db_get_value_int(Value));
				break;
			    }
			    case DB_C_TYPE_DOUBLE: {
				fprintf(ascii, "%s%.*f", fs, dp, db_get_value_double(Value));
				break;
			    }
			    case DB_C_TYPE_STRING: {
				fprintf(ascii, "%s%s", fs, db_get_value_string(Value));
				break;
			    }
			    case DB_C_TYPE_DATETIME: {
				break;
			    }
			    case -1:
				G_fatal_error(_("Column <%s> not found in table <%s>"),
					      columns[i], Fi->table);
			    default: G_fatal_error(_("Column <%s>: unsupported data type"),
						   columns[i]);
			    }
			}
		    }
		    db_close_cursor(&cursor);
		}
	    }

	    fprintf(ascii, "%s", HOST_NEWLINE);
	}
	else if (format == GV_ASCII_FORMAT_STD) {
	    /* FORMAT_STANDARD */
	    if (ver == 5 && Cats->n_cats > 0)
		fprintf(ascii, "%c  %d %d%s", ctype, Points->n_points,
			Cats->n_cats, HOST_NEWLINE);
	    else
              fprintf(ascii, "%c  %d%s", ctype, Points->n_points, HOST_NEWLINE);

	    xptr = Points->x;
	    yptr = Points->y;
	    zptr = Points->z;

	    while (Points->n_points--) {

		G_rasprintf(&xstring, &xsize, "%.*f", dp, *xptr++);
		G_trim_decimal(xstring);
		G_rasprintf(&ystring, &ysize, "%.*f", dp, *yptr++);
		G_trim_decimal(ystring);

		if (ver == 5) {
		    if (Map->head.with_z) {
			G_rasprintf(&zstring, &zsize, "%.*f", dp, *zptr++);
			G_trim_decimal(zstring);
			fprintf(ascii, " %-12s %-12s %-12s%s", xstring,
				ystring, zstring, HOST_NEWLINE);
		    }
		    else {
                      fprintf(ascii, " %-12s %-12s%s", xstring, ystring, HOST_NEWLINE);
		    }
		}		/*Version 4 */
		else {
                    fprintf(ascii, " %-12s %-12s%s", ystring, xstring, HOST_NEWLINE);
		}
	    }

	    if (ver == 5) {
		for (i = 0; i < Cats->n_cats; i++) {
		    fprintf(ascii, " %-5d %-10d%s", Cats->field[i],
			    Cats->cat[i], HOST_NEWLINE);
		}
	    }
	    else {
		if (cat > -1) {
		    if (ltype == GV_POINT) {
			G_rasprintf(&xstring, &xsize, "%.*f", dp, Points->x[0]);
			G_trim_decimal(xstring);
			G_rasprintf(&ystring, &ysize, "%.*f", dp, Points->y[0]);
			G_trim_decimal(ystring);
			fprintf(att, "P %s %s %d%s", xstring, ystring, cat, HOST_NEWLINE);
		    }
		    else {
			x = (Points->x[1] + Points->x[0]) / 2;
			y = (Points->y[1] + Points->y[0]) / 2;

			G_rasprintf(&xstring, &xsize, "%.*f", dp, x);
			G_trim_decimal(xstring);
			G_rasprintf(&ystring, &ysize, "%.*f", dp, y);
			G_trim_decimal(ystring);
			fprintf(att, "L %s %s %d%s", xstring, ystring, cat, HOST_NEWLINE);
		    }
		}
	    }
	}
	else if (format == GV_ASCII_FORMAT_WKT) {
	    if (ltype & (GV_BOUNDARY | GV_CENTROID | GV_FACE | GV_KERNEL))
		continue;
	    /* Well-Known Text */
	    Vect_sfa_line_astext(Points, ltype, Vect_is_3d(Map), dp, ascii);
	    count++;
	}
	else {
	    G_fatal_error(_("Unknown format"));
	}
	count++;
    }

    if (format == GV_ASCII_FORMAT_WKT) {
	/* process areas - topology required */
	int i, area, nareas, isle, nisles;

	if (Vect_level(Map) < 2) {
	    G_warning(_("Topology not available, unable to process areas"));
	    nareas = 0;
	}
	else {
	    nareas = Vect_get_num_areas(Map);
	}
	for (area = 1; area <= nareas; area++) {
	    if (!Vect_area_alive(Map, area)) /* skip dead areas */
		continue;
	    if (Vect_get_area_cat(Map, area, field) < 0)
		continue;
	    /* get boundary -> linearring */
	    if (Vect_get_area_points(Map, area, Points) < 0) {
		G_warning(_("Unable to get boundary of area id %d"), area);
		continue;
	    }
	    fprintf(ascii, "POLYGON(");
	    /* write outter ring */
	    Vect_sfa_line_astext(Points, GV_BOUNDARY, 0, dp, ascii); /* boundary is always 2D */
	    /* get isles (holes) -> inner rings */
	    nisles = Vect_get_area_num_isles(Map, area);
	    for (i = 0; i < nisles; i++) {
		/* get isle boundary -> linearring */
		isle = Vect_get_area_isle(Map, area, i);
		if (Vect_get_isle_points(Map, isle, Points) < 0) {
		    G_warning(_("Unable to get boundary of isle id %d (area id %d)"), isle, area);
		    continue;
		}
		fprintf(ascii, ", ");
		/* write inner ring */
		Vect_sfa_line_astext(Points, GV_BOUNDARY, 0, dp, ascii); /* boundary is always 2D */
	    }
	    fprintf(ascii, ")%s", HOST_NEWLINE);
	    
	    count++;
	}
    }

    if (n_skipped > 0)
        G_important_message(_("%d features without category skipped. To export also "
                              "features without category use '%s=-1'."), n_skipped, "layer");
    
    Vect_destroy_line_struct(Points);
    Vect_destroy_cats_struct(Cats);
    Vect_destroy_cats_struct(ACats);
    
    return count;
}
Exemplo n.º 6
0
Arquivo: main.c Projeto: caomw/grass
int main(int argc, char *argv[])
{
    char *output, buf[DB_SQL_MAX];
    double (*rng)(void) = G_drand48;
    double zmin, zmax;
    int seed;
    int i, j, k, n, type, usefloat;
    int area, nareas, field;
    struct boxlist *List = NULL;
    BOX_SIZE *size_list = NULL;
    int alloc_size_list = 0;
    struct Map_info In, Out;
    struct line_pnts *Points;
    struct line_cats *Cats;
    struct cat_list *cat_list;
    struct bound_box box;
    struct Cell_head window;
    struct GModule *module;
    struct
    {
	struct Option *input, *field, *cats, *where, *output, *nsites,
		      *zmin, *zmax, *zcol, *ztype, *seed;
    } parm;
    struct
    {
	struct Flag *z, *notopo, *a;
    } flag;
    struct field_info *Fi;
    dbDriver *driver;
    dbTable *table;
    dbString sql;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("sampling"));
    G_add_keyword(_("statistics"));
    G_add_keyword(_("random"));
    module->description = _("Generates random 2D/3D vector points.");

    parm.output = G_define_standard_option(G_OPT_V_OUTPUT);

    parm.nsites = G_define_option();
    parm.nsites->key = "n";
    parm.nsites->type = TYPE_INTEGER;
    parm.nsites->required = YES;
    parm.nsites->description = _("Number of points to be created");

    parm.input = G_define_standard_option(G_OPT_V_INPUT);
    parm.input->required = NO;
    parm.input->description = _("Restrict points to areas in input vector");
    parm.input->guisection = _("Selection");

    parm.field = G_define_standard_option(G_OPT_V_FIELD_ALL);
    parm.field->guisection = _("Selection");

    parm.cats = G_define_standard_option(G_OPT_V_CATS);
    parm.cats->guisection = _("Selection");
    
    parm.where = G_define_standard_option(G_OPT_DB_WHERE);
    parm.where->guisection = _("Selection");

    parm.zmin = G_define_option();
    parm.zmin->key = "zmin";
    parm.zmin->type = TYPE_DOUBLE;
    parm.zmin->required = NO;
    parm.zmin->description =
	_("Minimum z height (needs -z flag or column name)");
    parm.zmin->answer = "0.0";
    parm.zmin->guisection = _("3D output");

    parm.zmax = G_define_option();
    parm.zmax->key = "zmax";
    parm.zmax->type = TYPE_DOUBLE;
    parm.zmax->required = NO;
    parm.zmax->description =
	_("Maximum z height (needs -z flag or column name)");
    parm.zmax->answer = "0.0";
    parm.zmax->guisection = _("3D output");

    parm.seed = G_define_option();
    parm.seed->key = "seed";
    parm.seed->type = TYPE_INTEGER;
    parm.seed->required = NO;
    parm.seed->description =
	_("The seed to initialize the random generator. If not set the process ID is used");

    parm.zcol = G_define_standard_option(G_OPT_DB_COLUMN);
    parm.zcol->label = _("Name of column for z values");
    parm.zcol->description =
	_("Writes z values to column");
    parm.zcol->guisection = _("3D output");

    parm.ztype = G_define_option();
    parm.ztype->key = "column_type";
    parm.ztype->type = TYPE_STRING;
    parm.ztype->required = NO;
    parm.ztype->multiple = NO;
    parm.ztype->description = _("Type of column for z values");
    parm.ztype->options = "integer,double precision";
    parm.ztype->answer = "double precision";
    parm.ztype->guisection = _("3D output");

    flag.z = G_define_flag();
    flag.z->key = 'z';
    flag.z->description = _("Create 3D output");
    flag.z->guisection = _("3D output");

    flag.a = G_define_flag();
    flag.a->key = 'a';
    flag.a->description = _("Generate n points for each individual area");

    flag.notopo = G_define_standard_flag(G_FLG_V_TOPO);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    output = parm.output->answer;
    n = atoi(parm.nsites->answer);
    
    if(parm.seed->answer)
        seed = atoi(parm.seed->answer);

    if (n <= 0) {
	G_fatal_error(_("Number of points must be > 0 (%d given)"), n);
    }

    nareas = 0;
    cat_list = NULL;
    field = -1;
    if (parm.input->answer) {
	Vect_set_open_level(2); /* topology required */
	if (2 > Vect_open_old2(&In, parm.input->answer, "", parm.field->answer))
	    G_fatal_error(_("Unable to open vector map <%s>"),
			  parm.input->answer);

	if (parm.field->answer)
	    field = Vect_get_field_number(&In, parm.field->answer);

	if ((parm.cats->answer || parm.where->answer) && field == -1) {
	    G_warning(_("Invalid layer number (%d). Parameter '%s' or '%s' specified, assuming layer '1'."),
		      field, parm.cats->key, parm.where->key);
	    field = 1;
	}
	if (field > 0)
	    cat_list = Vect_cats_set_constraint(&In, field, parm.where->answer,
						parm.cats->answer);
	nareas = Vect_get_num_areas(&In);
	if (nareas == 0) {
	    Vect_close(&In);
	    G_fatal_error(_("No areas in vector map <%s>"), parm.input->answer);
	}
    }
    else {
	if (flag.a->answer)
	    G_fatal_error(_("The <-%c> flag requires an input vector with areas"),
	                  flag.a->key);
    }

    /* create new vector map */
    if (-1 == Vect_open_new(&Out, output, flag.z->answer ? WITH_Z : WITHOUT_Z))
        G_fatal_error(_("Unable to create vector map <%s>"), output);
    Vect_set_error_handler_io(NULL, &Out);

    /* Do we need to write random values into attribute table? */
    usefloat = -1;
    if (parm.zcol->answer) {
	Fi = Vect_default_field_info(&Out, 1, NULL, GV_1TABLE);
	driver =
	    db_start_driver_open_database(Fi->driver,
					  Vect_subst_var(Fi->database, &Out));
	if (driver == NULL) {
	    G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
			  Vect_subst_var(Fi->database, &Out), Fi->driver);
	}
        db_set_error_handler_driver(driver);
        
	db_begin_transaction(driver);

	db_init_string(&sql);
	sprintf(buf, "create table %s (%s integer, %s %s)", Fi->table, GV_KEY_COLUMN,
		parm.zcol->answer, parm.ztype->answer);
	db_set_string(&sql, buf);
	Vect_map_add_dblink(&Out, 1, NULL, Fi->table, GV_KEY_COLUMN, Fi->database,
			    Fi->driver);

	/* Create table */
	G_debug(3, db_get_string(&sql));
	if (db_execute_immediate(driver, &sql) != DB_OK) {
	    G_fatal_error(_("Unable to create table: %s"),
			  db_get_string(&sql));
	}

	/* Create index */
	if (db_create_index2(driver, Fi->table, Fi->key) != DB_OK)
	    G_warning(_("Unable to create index"));

	/* Grant */
	if (db_grant_on_table
	    (driver, Fi->table, DB_PRIV_SELECT,
	     DB_GROUP | DB_PUBLIC) != DB_OK) {
	    G_fatal_error(_("Unable to grant privileges on table <%s>"),
			  Fi->table);
	}

	/* OK. Let's check what type of column user has created */
	db_set_string(&sql, Fi->table);
	if (db_describe_table(driver, &sql, &table) != DB_OK) {
	    G_fatal_error(_("Unable to describe table <%s>"), Fi->table);
	}

	if (db_get_table_number_of_columns(table) != 2) {
	    G_fatal_error(_("Table should contain only two columns"));
	}

	type = db_get_column_sqltype(db_get_table_column(table, 1));
	if (type == DB_SQL_TYPE_SMALLINT || type == DB_SQL_TYPE_INTEGER)
	    usefloat = 0;
	if (type == DB_SQL_TYPE_REAL || type == DB_SQL_TYPE_DOUBLE_PRECISION)
	    usefloat = 1;
	if (usefloat < 0) {
	    G_fatal_error(_("You have created unsupported column type. This module supports only INTEGER"
			   " and DOUBLE PRECISION column types."));
	}
    }

    Vect_hist_command(&Out);

    /* Init the random seed */
    if(parm.seed->answer)
	G_srand48(seed);
    else
	G_srand48_auto();

    G_get_window(&window);

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    if (nareas > 0) {
	int first = 1, count;
	struct bound_box abox, bbox;

	box.W = window.west;
	box.E = window.east;
	box.S = window.south;
	box.N = window.north;
	box.B = -PORT_DOUBLE_MAX;
	box.T = PORT_DOUBLE_MAX;

	count = 0;

	for (i = 1; i <= nareas; i++) {
	    
	    if (!Vect_get_area_centroid(&In, i))
		continue;

	    if (field > 0) {
		if (Vect_get_area_cats(&In, i, Cats))
		    continue;

		if (!Vect_cats_in_constraint(Cats, field, cat_list))
		    continue;
	    }

	    Vect_get_area_box(&In, i, &abox);
	    if (!Vect_box_overlap(&abox, &box))
		continue;

	    if (first) {
		Vect_box_copy(&bbox, &abox);
		first = 0;
	    }
	    else
		Vect_box_extend(&bbox, &abox);
	    count++;
	}
	if (count == 0) {
	    Vect_close(&In);
	    Vect_close(&Out);
	    Vect_delete(output);
	    G_fatal_error(_("Selected areas in input vector <%s> do not overlap with the current region"),
			  parm.input->answer);
	}
	Vect_box_copy(&box, &bbox);

	/* does the vector overlap with the current region ? */
	if (box.W >= window.east || box.E <= window.west ||
	    box.S >= window.north || box.N <= window.south) {

	    Vect_close(&In);
	    Vect_close(&Out);
	    Vect_delete(output);
	    G_fatal_error(_("Input vector <%s> does not overlap with the current region"),
	                  parm.input->answer);
	}

	/* try to reduce the current region */
	if (window.east > box.E)
	    window.east = box.E;
	if (window.west < box.W)
	    window.west = box.W;
	if (window.north > box.N)
	    window.north = box.N;
	if (window.south < box.S)
	    window.south = box.S;

	List = Vect_new_boxlist(1);
	alloc_size_list = 10;
	size_list = G_malloc(alloc_size_list * sizeof(BOX_SIZE));
    }

    zmin = zmax = 0;
    if (flag.z->answer || parm.zcol->answer) {
	zmax = atof(parm.zmax->answer);
	zmin = atof(parm.zmin->answer);
    }

    G_message(_("Generating points..."));
    if (flag.a->answer && nareas > 0) {
	struct bound_box abox, bbox;
	int cat = 1;

	/* n points for each area */
	nareas = Vect_get_num_areas(&In);
	
	G_percent(0, nareas, 1);
	for (area = 1; area <= nareas; area++) {

	    G_percent(area, nareas, 1);

	    if (!Vect_get_area_centroid(&In, area))
		continue;

	    if (field > 0) {
		if (Vect_get_area_cats(&In, area, Cats))
		    continue;

		if (!Vect_cats_in_constraint(Cats, field, cat_list)) {
		    continue;
		}
	    }

	    box.W = window.west;
	    box.E = window.east;
	    box.S = window.south;
	    box.N = window.north;
	    box.B = -PORT_DOUBLE_MAX;
	    box.T = PORT_DOUBLE_MAX;
	    
	    Vect_get_area_box(&In, area, &abox);
	    if (!Vect_box_overlap(&box, &abox))
		continue;
		
	    bbox = abox;
	    if (bbox.W < box.W)
		bbox.W = box.W;
	    if (bbox.E > box.E)
		bbox.E = box.E;
	    if (bbox.S < box.S)
		bbox.S = box.S;
	    if (bbox.N > box.N)
		bbox.N = box.N;

	    for (i = 0; i < n; ++i) {
		double x, y, z;
		int outside = 1;
		int ret;

		Vect_reset_line(Points);
		Vect_reset_cats(Cats);

		while (outside) {
		    x = rng() * (bbox.W - bbox.E) + bbox.E;
		    y = rng() * (bbox.N - bbox.S) + bbox.S;
		    z = rng() * (zmax - zmin) + zmin;

		    ret = Vect_point_in_area(x, y, &In, area, &abox);

		    G_debug(3, "    area = %d Vect_point_in_area() = %d", area, ret);

		    if (ret >= 1) {
			outside = 0;
		    }
		}

		if (flag.z->answer)
		    Vect_append_point(Points, x, y, z);
		else
		    Vect_append_point(Points, x, y, 0.0);

		if (parm.zcol->answer) {
		    sprintf(buf, "insert into %s values ( %d, ", Fi->table, i + 1);
		    db_set_string(&sql, buf);
		    /* Round random value if column is integer type */
		    if (usefloat)
			sprintf(buf, "%f )", z);
		    else
			sprintf(buf, "%.0f )", z);
		    db_append_string(&sql, buf);

		    G_debug(3, db_get_string(&sql));
		    if (db_execute_immediate(driver, &sql) != DB_OK) {
			G_fatal_error(_("Cannot insert new row: %s"),
				      db_get_string(&sql));
		    }
		}

		Vect_cat_set(Cats, 1, cat++);
		Vect_write_line(&Out, GV_POINT, Points, Cats);
	    }
	}
    }
    else {
	/* n points in total */
	for (i = 0; i < n; ++i) {
	    double x, y, z;

	    G_percent(i, n, 4);

	    Vect_reset_line(Points);
	    Vect_reset_cats(Cats);

	    x = rng() * (window.west - window.east) + window.east;
	    y = rng() * (window.north - window.south) + window.south;
	    z = rng() * (zmax - zmin) + zmin;
	    
	    if (nareas) {
		int outside = 1;

		do {
		    /* select areas by box */
		    box.E = x;
		    box.W = x;
		    box.N = y;
		    box.S = y;
		    box.T = PORT_DOUBLE_MAX;
		    box.B = -PORT_DOUBLE_MAX;
		    Vect_select_areas_by_box(&In, &box, List);
		    G_debug(3, "  %d areas selected by box", List->n_values);

		    /* sort areas by size, the smallest is likely to be the nearest */
		    if (alloc_size_list < List->n_values) {
			alloc_size_list = List->n_values;
			size_list = G_realloc(size_list, alloc_size_list * sizeof(BOX_SIZE));
		    }

		    k = 0;
		    for (j = 0; j < List->n_values; j++) {
			area = List->id[j];

			if (!Vect_get_area_centroid(&In, area))
			    continue;

			if (field > 0) {
			    if (Vect_get_area_cats(&In, area, Cats))
				continue;

			    if (!Vect_cats_in_constraint(Cats, field, cat_list)) {
				continue;
			    }
			}

			List->id[k] = List->id[j];
			List->box[k] = List->box[j];
			size_list[k].i = List->id[k];
			box = List->box[k];
			size_list[k].box = List->box[k];
			size_list[k].size = (box.N - box.S) * (box.E - box.W);
			k++;
		    }
		    List->n_values = k;
		    
		    if (List->n_values == 2) {
			/* simple swap */
			if (size_list[1].size < size_list[0].size) {
			    size_list[0].i = List->id[1];
			    size_list[1].i = List->id[0];
			    size_list[0].box = List->box[1];
			    size_list[1].box = List->box[0];
			}
		    }
		    else if (List->n_values > 2)
			qsort(size_list, List->n_values, sizeof(BOX_SIZE), sort_by_size);

		    for (j = 0; j < List->n_values; j++) {
			int ret;

			area = size_list[j].i;
			ret = Vect_point_in_area(x, y, &In, area, &size_list[j].box);

			G_debug(3, "    area = %d Vect_point_in_area() = %d", area, ret);

			if (ret >= 1) {
			    outside = 0;
			    break;
			}
		    }
		    if (outside) {
			x = rng() * (window.west - window.east) + window.east;
			y = rng() * (window.north - window.south) + window.south;
			z = rng() * (zmax - zmin) + zmin;
		    }
		} while (outside);
	    }

	    if (flag.z->answer)
		Vect_append_point(Points, x, y, z);
	    else
		Vect_append_point(Points, x, y, 0.0);

	    if (parm.zcol->answer) {
		sprintf(buf, "insert into %s values ( %d, ", Fi->table, i + 1);
		db_set_string(&sql, buf);
		/* Round random value if column is integer type */
		if (usefloat)
		    sprintf(buf, "%f )", z);
		else
		    sprintf(buf, "%.0f )", z);
		db_append_string(&sql, buf);

		G_debug(3, db_get_string(&sql));
		if (db_execute_immediate(driver, &sql) != DB_OK) {
		    G_fatal_error(_("Cannot insert new row: %s"),
				  db_get_string(&sql));
		}
	    }

	    Vect_cat_set(Cats, 1, i + 1);
	    Vect_write_line(&Out, GV_POINT, Points, Cats);
	}
	G_percent(1, 1, 1);
    }
    
    if (parm.zcol->answer) {
	db_commit_transaction(driver);
	db_close_database_shutdown_driver(driver);
    }

    if (!flag.notopo->answer) {
	Vect_build(&Out);
    }
    Vect_close(&Out);

    exit(EXIT_SUCCESS);
}
Exemplo n.º 7
0
int main(int argc, char *argv[])
{
    int i, j, k;
    int print_as_matrix;	/* only for all */
    int all;			/* calculate from each to each within the threshold */
    struct GModule *module;
    struct Option *from_opt, *to_opt, *from_type_opt, *to_type_opt,
	*from_field_opt, *to_field_opt;
    struct Option *out_opt, *max_opt, *min_opt, *table_opt;
    struct Option *upload_opt, *column_opt, *to_column_opt;
    struct Flag *print_flag, *all_flag;
    struct Map_info From, To, Out, *Outp;
    int from_type, to_type, from_field, to_field;
    double max, min;
    double *max_step;
    int n_max_steps, curr_step;
    struct line_pnts *FPoints, *TPoints;
    struct line_cats *FCats, *TCats;
    NEAR *Near, *near;
    int anear;			/* allocated space, used only for all */
    UPLOAD *Upload;		/* zero terminated */
    int ftype, fcat, tcat, count;
    int nfrom, nto, nfcats, fline, tline, tseg, tarea, area, isle, nisles;
    double tx, ty, tz, dist, talong, tmp_tx, tmp_ty, tmp_tz, tmp_dist,
	tmp_talong;
    struct field_info *Fi, *toFi;
    dbString stmt, dbstr;
    dbDriver *driver, *to_driver;
    int *catexist, ncatexist, *cex;
    char buf1[2000], buf2[2000];
    int update_ok, update_err, update_exist, update_notexist, update_dupl,
	update_notfound;
    struct boxlist *List;
    struct bound_box box;
    dbCatValArray cvarr;
    dbColumn *column;

    all = 0;
    print_as_matrix = 0;
    column = NULL;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("database"));
    G_add_keyword(_("attribute table"));
    module->description =
	_("Finds the nearest element in vector map 'to' for elements in vector map 'from'.");

    from_opt = G_define_standard_option(G_OPT_V_INPUT);
    from_opt->key = "from";
    from_opt->description = _("Name of existing vector map (from)");
    from_opt->guisection = _("From");

    from_field_opt = G_define_standard_option(G_OPT_V_FIELD);
    from_field_opt->key = "from_layer";
    from_field_opt->label = _("Layer number or name (from)");
    from_field_opt->guisection = _("From");

    from_type_opt = G_define_standard_option(G_OPT_V_TYPE);
    from_type_opt->key = "from_type";
    from_type_opt->options = "point,centroid";
    from_type_opt->answer = "point";
    from_type_opt->label = _("Feature type (from)");
    from_type_opt->guisection = _("From");

    to_opt = G_define_standard_option(G_OPT_V_INPUT);
    to_opt->key = "to";
    to_opt->description = _("Name of existing vector map (to)");
    to_opt->guisection = _("To");

    to_field_opt = G_define_standard_option(G_OPT_V_FIELD);
    to_field_opt->key = "to_layer";
    to_field_opt->label = _("Layer number or name (to)");
    to_field_opt->guisection = _("To");

    to_type_opt = G_define_standard_option(G_OPT_V_TYPE);
    to_type_opt->key = "to_type";
    to_type_opt->options = "point,line,boundary,centroid,area";
    to_type_opt->answer = "point,line,area";
    to_type_opt->label = _("Feature type (to)");
    to_type_opt->guisection = _("To");

    out_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    out_opt->key = "output";
    out_opt->required = NO;
    out_opt->description = _("Name for output vector map containing lines "
			     "connecting nearest elements");

    max_opt = G_define_option();
    max_opt->key = "dmax";
    max_opt->type = TYPE_DOUBLE;
    max_opt->required = NO;
    max_opt->answer = "-1";
    max_opt->description = _("Maximum distance or -1 for no limit");

    min_opt = G_define_option();
    min_opt->key = "dmin";
    min_opt->type = TYPE_DOUBLE;
    min_opt->required = NO;
    min_opt->answer = "-1";
    min_opt->description = _("Minimum distance or -1 for no limit");

    upload_opt = G_define_option();
    upload_opt->key = "upload";
    upload_opt->type = TYPE_STRING;
    upload_opt->required = YES;
    upload_opt->multiple = YES;
    upload_opt->options = "cat,dist,to_x,to_y,to_along,to_angle,to_attr";
    upload_opt->description =
	_("Values describing the relation between two nearest features");
    upload_opt->descriptions =
	_("cat;category of the nearest feature;"
	  "dist;minimum distance to nearest feature;"
	  "to_x;x coordinate of the nearest point on 'to' feature;"
	  "to_y;y coordinate of the nearest point on 'to' feature;"
	  "to_along;distance between points/centroids in 'from' map and the linear feature's "
	  "start point in 'to' map, along this linear feature;"
	  "to_angle;angle between the linear feature in 'to' map and the positive x axis, at "
	  "the location of point/centroid in 'from' map, counterclockwise, in radians, which "
	  "is between -PI and PI inclusive;"
	  "to_attr;attribute of nearest feature given by to_column option");
    /*  "from_x - x coordinate of the nearest point on 'from' feature;" */
    /*  "from_y - y coordinate of the nearest point on 'from' feature;" */
    /* "from_along - distance to the nearest point on 'from' feature along linear feature;" */

    column_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    column_opt->required = YES;
    column_opt->multiple = YES;
    column_opt->description =
	_("Column name(s) where values specified by 'upload' option will be uploaded");
    column_opt->guisection = _("From_map");

    to_column_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    to_column_opt->key = "to_column";
    to_column_opt->description =
	_("Column name of nearest feature (used with upload=to_attr)");
    to_column_opt->guisection = _("To");
    
    table_opt = G_define_standard_option(G_OPT_DB_TABLE);
    table_opt->gisprompt = "new_dbtable,dbtable,dbtable";
    table_opt->description =
	_("Name of table created for output when the distance to all flag is used");

    print_flag = G_define_flag();
    print_flag->key = 'p';
    print_flag->label =
	_("Print output to stdout, don't update attribute table");
    print_flag->description =
	_("First column is always category of 'from' feature called from_cat");

    all_flag = G_define_flag();
    all_flag->key = 'a';
    all_flag->label =
	_("Calculate distances to all features within the threshold");
    all_flag->description = _("The output is written to stdout but may be uploaded "
                              "to a new table created by this module. "
			      "From categories are may be multiple.");	/* huh? */

    /* GUI dependency */
    from_opt->guidependency = G_store(from_field_opt->key);
    sprintf(buf1, "%s,%s", to_field_opt->key, to_column_opt->key);
    to_opt->guidependency = G_store(buf1);
    to_field_opt->guidependency = G_store(to_column_opt->key);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    from_type = Vect_option_to_types(from_type_opt);
    to_type = Vect_option_to_types(to_type_opt);

    from_field = atoi(from_field_opt->answer);

    max = atof(max_opt->answer);
    min = atof(min_opt->answer);

    if (all_flag->answer)
	all = 1;

    /* Read upload and column options */
    /* count */
    i = 0;
    while (upload_opt->answers[i])
	i++;
    if (strcmp(from_opt->answer, to_opt->answer) == 0 &&
	all && !table_opt->answer && i == 1)
	print_as_matrix = 1;

    /* alloc */
    Upload = (UPLOAD *) G_calloc(i + 1, sizeof(UPLOAD));
    /* read upload */
    i = 0;
    while (upload_opt->answers[i]) {
	if (strcmp(upload_opt->answers[i], "cat") == 0)
	    Upload[i].upload = CAT;
	else if (strcmp(upload_opt->answers[i], "from_x") == 0)
	    Upload[i].upload = FROM_X;
	else if (strcmp(upload_opt->answers[i], "from_y") == 0)
	    Upload[i].upload = FROM_Y;
	else if (strcmp(upload_opt->answers[i], "to_x") == 0)
	    Upload[i].upload = TO_X;
	else if (strcmp(upload_opt->answers[i], "to_y") == 0)
	    Upload[i].upload = TO_Y;
	else if (strcmp(upload_opt->answers[i], "from_along") == 0)
	    Upload[i].upload = FROM_ALONG;
	else if (strcmp(upload_opt->answers[i], "to_along") == 0)
	    Upload[i].upload = TO_ALONG;
	else if (strcmp(upload_opt->answers[i], "dist") == 0)
	    Upload[i].upload = DIST;
	else if (strcmp(upload_opt->answers[i], "to_angle") == 0)
	    Upload[i].upload = TO_ANGLE;
	else if (strcmp(upload_opt->answers[i], "to_attr") == 0) {
	    if (!(to_column_opt->answer)) {
		G_fatal_error(_("to_column option missing"));
	    }
	    Upload[i].upload = TO_ATTR;
	}

	i++;
    }
    Upload[i].upload = END;
    /* read columns */
    i = 0;
    while (column_opt->answers[i]) {
	if (Upload[i].upload == END) {
	    G_warning(_("Too many column names"));
	    break;
	}
	Upload[i].column = G_store(column_opt->answers[i]);
	i++;
    }
    if (Upload[i].upload != END)
	G_fatal_error(_("Not enough column names"));

    /* Open 'from' vector */
    Vect_set_open_level(2);
    Vect_open_old(&From, from_opt->answer, G_mapset());

    /* Open 'to' vector */
    Vect_set_open_level(2);
    Vect_open_old2(&To, to_opt->answer, "", to_field_opt->answer);

    to_field = Vect_get_field_number(&To, to_field_opt->answer);

    /* Open output vector */
    if (out_opt->answer) {
	Vect_open_new(&Out, out_opt->answer, WITHOUT_Z);
	Vect_hist_command(&Out);
	Outp = &Out;
    }
    else {
	Outp = NULL;
    }

    /* TODO: add maxdist = -1 to Vect_select_ !!! */
    /* Calc maxdist */
    n_max_steps = 1;
    if (max != 0) {
	struct bound_box fbox, tbox;
	double dx, dy, dz, tmp_max;
	int n_features = 0;

	Vect_get_map_box(&From, &fbox);
	Vect_get_map_box(&To, &tbox);

	Vect_box_extend(&fbox, &tbox);

	dx = fbox.E - fbox.W;
	dy = fbox.N - fbox.S;
	if (Vect_is_3d(&From))
	    dz = fbox.T - fbox.B;
	else
	    dz = 0.0;

	tmp_max = sqrt(dx * dx + dy * dy + dz * dz);
	if (max < 0)
	    max = tmp_max;

	/* how to determine a reasonable number of steps to increase the search box? */
	/* with max > 0 but max <<< tmp_max, 2 steps are sufficient, first 0 then max
	 * a reasonable number of steps also depends on the number of features in To
	 * e.g. only one area in To, no need to step */
	nto = Vect_get_num_lines(&To);
	for (tline = 1; tline <= nto; tline++) {
	    /* TODO: Vect_get_line_type() */
	    n_features += ((to_type & To.plus.Line[tline]->type) != 0);
	}
	if (to_type & GV_AREA) {
	    if (Vect_get_num_areas(&To) > n_features)
		n_features = Vect_get_num_areas(&To);
	}
	if (n_features == 0)
	    G_fatal_error(_("No features of selected type in To vector <%s>"),
			    to_opt->answer);
	n_max_steps = sqrt(n_features) * max / tmp_max;
	/* max 9 steps from testing */
	if (n_max_steps > 9)
	    n_max_steps = 9;
	if (n_max_steps < 2)
	    n_max_steps = 2;
	if (n_max_steps > n_features)
	    n_max_steps = n_features;

	G_debug(2, "max = %f", max);
	G_debug(2, "maximum reasonable search distance = %f", tmp_max);
	G_debug(2, "n_features = %d", n_features);
	G_debug(2, "n_max_steps = %d", n_max_steps);
    }

    if (min > max)
	G_fatal_error("dmin can not be larger than dmax");

    if (n_max_steps > 1) {
	/* set up steps to increase search box */
	max_step = G_malloc(n_max_steps * sizeof(double));
	/* first step always 0 */
	max_step[0] = 0;

	for (curr_step = 1; curr_step < n_max_steps - 1; curr_step++) {
	    /* for 9 steps, this would be max / [128, 64, 32, 16, 8, 4, 2] */
	    max_step[curr_step] = max / (2 << (n_max_steps - 1 - curr_step));
	}
	/* last step always max */
	max_step[n_max_steps - 1] = max;
    }
    else {
	max_step = G_malloc(sizeof(double));
	max_step[0] = max;
    }

    /* Open database driver */
    db_init_string(&stmt);
    db_init_string(&dbstr);
    driver = NULL;
    if (!print_flag->answer) {

	if (!all) {
	    Fi = Vect_get_field(&From, from_field);
	    if (Fi == NULL)
		G_fatal_error(_("Database connection not defined for layer %d"),
			      from_field);

	    driver = db_start_driver_open_database(Fi->driver, Fi->database);
	    if (driver == NULL)
		G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
			      Fi->database, Fi->driver);

	    /* check if column exists */
	    i = 0;
	    while (column_opt->answers[i]) {
		db_get_column(driver, Fi->table, column_opt->answers[i],
			      &column);
		if (column) {
		    db_free_column(column);
		    column = NULL;
		}
		else {
		    G_fatal_error(_("Column <%s> not found in table <%s>"),
				  column_opt->answers[i], Fi->table);
		}
		i++;
	    }
	}
	else {
	    driver = db_start_driver_open_database(NULL, NULL);
	    if (driver == NULL)
		G_fatal_error(_("Unable to open default database"));
	}
    }

    to_driver = NULL;
    if (to_column_opt->answer) {
	toFi = Vect_get_field(&To, to_field);
	if (toFi == NULL)
	    G_fatal_error(_("Database connection not defined for layer %d"),
			  to_field);

	to_driver =
	    db_start_driver_open_database(toFi->driver, toFi->database);
	if (to_driver == NULL)
	    G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
			  toFi->database, toFi->driver);

	/* check if to_column exists */
	db_get_column(to_driver, toFi->table, to_column_opt->answer, &column);
	if (column) {
	    db_free_column(column);
	    column = NULL;
	}
	else {
	    G_fatal_error(_("Column <%s> not found in table <%s>"),
			  to_column_opt->answer, toFi->table);
	}

	/* Check column types */
	if (!print_flag->answer && !all) {
	    char *fcname = NULL;
	    int fctype, tctype;

	    i = 0;
	    while (column_opt->answers[i]) {
		if (Upload[i].upload == TO_ATTR) {
		    fcname = column_opt->answers[i];
		    break;
		}
		i++;
	    }

	    if (fcname) {
		fctype = db_column_Ctype(driver, Fi->table, fcname);
		tctype =
		    db_column_Ctype(to_driver, toFi->table,
				    to_column_opt->answer);

		if (((tctype == DB_C_TYPE_STRING ||
		      tctype == DB_C_TYPE_DATETIME)
		     && (fctype == DB_C_TYPE_INT ||
			 fctype == DB_C_TYPE_DOUBLE)) ||
		    ((tctype == DB_C_TYPE_INT || tctype == DB_C_TYPE_DOUBLE)
		     && (fctype == DB_C_TYPE_STRING ||
			 fctype == DB_C_TYPE_DATETIME))
		    ) {
		    G_fatal_error(_("Incompatible column types"));
		}
	    }
	}
    }

    FPoints = Vect_new_line_struct();
    TPoints = Vect_new_line_struct();
    FCats = Vect_new_cats_struct();
    TCats = Vect_new_cats_struct();
    List = Vect_new_boxlist(1);

    /* Allocate space ( may be more than needed (duplicate cats and elements without cats) ) */
    nfrom = Vect_get_num_lines(&From);
    nto = Vect_get_num_lines(&To);
    if (all) {
	/* Attention with space for all, it can easily run out of memory */
	anear = 2 * nfrom;
	Near = (NEAR *) G_calloc(anear, sizeof(NEAR));
    }
    else {
	Near = (NEAR *) G_calloc(nfrom, sizeof(NEAR));
    }

    /* Read all cats from 'from' */
    if (!all) {
	nfcats = 0;
	for (i = 1; i <= nfrom; i++) {
	    ftype = Vect_read_line(&From, NULL, FCats, i);

	    /* This keeps also categories of areas for future (if area s in from_type) */
	    if (!(ftype & from_type) &&
		(ftype != GV_CENTROID || !(from_type & GV_AREA)))
		continue;

	    Vect_cat_get(FCats, from_field, &fcat);
	    if (fcat < 0)
		continue;
	    Near[nfcats].from_cat = fcat;
	    nfcats++;
	}
	G_debug(1, "%d cats loaded from vector (including duplicates)",
		nfcats);
	/* Sort by cats and remove duplicates */
	qsort((void *)Near, nfcats, sizeof(NEAR), cmp_near);

	/* remove duplicates */
	for (i = 1; i < nfcats; i++) {
	    if (Near[i].from_cat == Near[i - 1].from_cat) {
		for (j = i; j < nfcats - 1; j++) {
		    Near[j].from_cat = Near[j + 1].from_cat;
		}
		nfcats--;
	    }
	}

	G_debug(1, "%d cats loaded from vector (unique)", nfcats);
    }

    /* Go through all lines in 'from' and find nearest in 'to' for each */
    /* Note: as from_type is restricted to GV_POINTS (for now) everything is simple */

    count = 0;			/* count of distances in 'all' mode */
    /* Find nearest lines */
    if (to_type & (GV_POINTS | GV_LINES)) {
	struct line_pnts *LLPoints;

	if (G_projection() == PROJECTION_LL) {
	    LLPoints = Vect_new_line_struct();
	}
	else {
	    LLPoints = NULL;
	}
	G_message(_("Finding nearest feature..."));
	for (fline = 1; fline <= nfrom; fline++) {
	    int tmp_tcat;
	    double tmp_tangle, tangle;
	    double tmp_min = (min < 0 ? 0 : min);
	    double box_edge = 0;
	    int done = 0;

	    curr_step = 0;

	    G_debug(3, "fline = %d", fline);
	    G_percent(fline, nfrom, 2);
	    ftype = Vect_read_line(&From, FPoints, FCats, fline);
	    if (!(ftype & from_type))
		continue;

	    Vect_cat_get(FCats, from_field, &fcat);
	    if (fcat < 0 && !all)
		continue;

	    while (!done) {
		done = 1;

		if (!all) {
		    /* enlarge search box until we get a hit */
		    /* the objective is to enlarge the search box
		     * in the first iterations just a little bit
		     * to keep the number of hits low */
		    Vect_reset_boxlist(List);
		    while (curr_step < n_max_steps) {
			box_edge = max_step[curr_step];

			if (box_edge < tmp_min)
			    continue;
			
			box.E = FPoints->x[0] + box_edge;
			box.W = FPoints->x[0] - box_edge;
			box.N = FPoints->y[0] + box_edge;
			box.S = FPoints->y[0] - box_edge;
			box.T = PORT_DOUBLE_MAX;
			box.B = -PORT_DOUBLE_MAX;

			Vect_select_lines_by_box(&To, &box, to_type, List);

			curr_step++;
			if (List->n_values > 0)
			    break;
		    }
		}
		else {
		    box.E = FPoints->x[0] + max;
		    box.W = FPoints->x[0] - max;
		    box.N = FPoints->y[0] + max;
		    box.S = FPoints->y[0] - max;
		    box.T = PORT_DOUBLE_MAX;
		    box.B = -PORT_DOUBLE_MAX;

		    Vect_select_lines_by_box(&To, &box, to_type, List);
		}

		G_debug(3, "  %d lines in box", List->n_values);

		tline = 0;
		dist = PORT_DOUBLE_MAX;
		for (i = 0; i < List->n_values; i++) {
		    tmp_tcat = -1;
		    Vect_read_line(&To, TPoints, TCats, List->id[i]);

		    tseg =
			Vect_line_distance(TPoints, FPoints->x[0], FPoints->y[0],
					   FPoints->z[0], (Vect_is_3d(&From) &&
							   Vect_is_3d(&To)) ?
					   WITH_Z : WITHOUT_Z, &tmp_tx, &tmp_ty,
					   &tmp_tz, &tmp_dist, NULL, &tmp_talong);

		    Vect_point_on_line(TPoints, tmp_talong, NULL, NULL, NULL,
				       &tmp_tangle, NULL);

		    if (tmp_dist > max || tmp_dist < min)
			continue;	/* not in threshold */

		    /* TODO: more cats of the same field */
		    Vect_cat_get(TCats, to_field, &tmp_tcat);
		    if (G_projection() == PROJECTION_LL) {
			/* calculate distances in meters not degrees (only 2D) */
			Vect_reset_line(LLPoints);
			Vect_append_point(LLPoints, FPoints->x[0], FPoints->y[0],
					  FPoints->z[0]);
			Vect_append_point(LLPoints, tmp_tx, tmp_ty, tmp_tz);
			tmp_dist = Vect_line_geodesic_length(LLPoints);
			Vect_reset_line(LLPoints);
			for (k = 0; k < tseg; k++)
			    Vect_append_point(LLPoints, TPoints->x[k],
					      TPoints->y[k], TPoints->z[k]);
			Vect_append_point(LLPoints, tmp_tx, tmp_ty, tmp_tz);
			tmp_talong = Vect_line_geodesic_length(LLPoints);
		    }

		    G_debug(4, "  tmp_dist = %f tmp_tcat = %d", tmp_dist,
			    tmp_tcat);

		    if (all) {
			if (anear <= count) {
			    anear += 10 + nfrom / 10;
			    Near = (NEAR *) G_realloc(Near, anear * sizeof(NEAR));
			}
			near = &(Near[count]);

			/* store info about relation */
			near->from_cat = fcat;
			near->to_cat = tmp_tcat;	/* -1 is OK */
			near->dist = tmp_dist;
			near->from_x = FPoints->x[0];
			near->from_y = FPoints->y[0];
			near->from_z = FPoints->z[0];
			near->to_x = tmp_tx;
			near->to_y = tmp_ty;
			near->to_z = tmp_tz;
			near->to_along = tmp_talong;	/* 0 for points */
			near->to_angle = tmp_tangle;
			near->count++;
			count++;
		    }
		    else {
			if (tline == 0 || (tmp_dist < dist)) {
			    tline = List->id[i];
			    tcat = tmp_tcat;
			    dist = tmp_dist;
			    tx = tmp_tx;
			    ty = tmp_ty;
			    tz = tmp_tz;
			    talong = tmp_talong;
			    tangle = tmp_tangle;
			}
		    }
		}

		G_debug(4, "  dist = %f", dist);

		if (curr_step < n_max_steps) {
		    /* enlarging the search box is possible */
		    if (tline > 0 && dist > box_edge) {
			/* line found but distance > search edge:
			 * line bbox overlaps with search box, line itself is outside search box */
			done = 0;
		    }
		    else if (tline == 0) {
			/* no line within max dist, but search box can still be enlarged */
			done = 0;
		    }
		}
		if (done && !all && tline > 0) {
		    /* find near by cat */
		    near =
			(NEAR *) bsearch((void *)&fcat, Near, nfcats,
					 sizeof(NEAR), cmp_near);

		    G_debug(4, "  near.from_cat = %d near.count = %d",
			    near->from_cat, near->count);
		    /* store info about relation */
		    if (near->count == 0 || near->dist > dist) {
			near->to_cat = tcat;	/* -1 is OK */
			near->dist = dist;
			near->from_x = FPoints->x[0];
			near->from_y = FPoints->y[0];
			near->from_z = FPoints->z[0];
			near->to_x = tx;
			near->to_y = ty;
			near->to_z = tz;
			near->to_along = talong;	/* 0 for points */
			near->to_angle = tangle;
		    }
		    near->count++;
		}
	    } /* done */
	} /* next feature */
	if (LLPoints) {
	    Vect_destroy_line_struct(LLPoints);
	}
    }

    /* Find nearest areas */
    if (to_type & GV_AREA) {
	
	G_message(_("Finding nearest areas..."));
	for (fline = 1; fline <= nfrom; fline++) {
	    double tmp_min = (min < 0 ? 0 : min);
	    double box_edge = 0;
	    int done = 0;
	    
	    curr_step = 0;

	    G_debug(3, "fline = %d", fline);
	    G_percent(fline, nfrom, 2);
	    ftype = Vect_read_line(&From, FPoints, FCats, fline);
	    if (!(ftype & from_type))
		continue;

	    Vect_cat_get(FCats, from_field, &fcat);
	    if (fcat < 0 && !all)
		continue;

	    while (!done) {
		done = 1;

		if (!all) {
		    /* enlarge search box until we get a hit */
		    /* the objective is to enlarge the search box
		     * in the first iterations just a little bit
		     * to keep the number of hits low */
		    Vect_reset_boxlist(List);
		    while (curr_step < n_max_steps) {
			box_edge = max_step[curr_step];

			if (box_edge < tmp_min)
			    continue;
			
			box.E = FPoints->x[0] + box_edge;
			box.W = FPoints->x[0] - box_edge;
			box.N = FPoints->y[0] + box_edge;
			box.S = FPoints->y[0] - box_edge;
			box.T = PORT_DOUBLE_MAX;
			box.B = -PORT_DOUBLE_MAX;

			Vect_select_areas_by_box(&To, &box, List);

			curr_step++;
			if (List->n_values > 0)
			    break;
		    }
		}
		else {
		    box.E = FPoints->x[0] + max;
		    box.W = FPoints->x[0] - max;
		    box.N = FPoints->y[0] + max;
		    box.S = FPoints->y[0] - max;
		    box.T = PORT_DOUBLE_MAX;
		    box.B = -PORT_DOUBLE_MAX;

		    Vect_select_areas_by_box(&To, &box, List);
		}

		G_debug(4, "%d areas selected by box", List->n_values);

		/* For each area in box check the distance */
		tarea = 0;
		dist = PORT_DOUBLE_MAX;
		for (i = 0; i < List->n_values; i++) {
		    int tmp_tcat;

		    area = List->id[i];
		    G_debug(4, "%d: area %d", i, area);
		    Vect_get_area_points(&To, area, TPoints);

		    /* Find the distance to this area */
		    if (Vect_point_in_area(FPoints->x[0], FPoints->y[0], &To, area, List->box[i])) {	/* in area */
			tmp_dist = 0;
			tmp_tx = FPoints->x[0];
			tmp_ty = FPoints->y[0];
		    }
		    else if (Vect_point_in_poly(FPoints->x[0], FPoints->y[0], TPoints) > 0) {	/* in isle */
			nisles = Vect_get_area_num_isles(&To, area);
			for (j = 0; j < nisles; j++) {
			    double tmp2_dist, tmp2_tx, tmp2_ty;

			    isle = Vect_get_area_isle(&To, area, j);
			    Vect_get_isle_points(&To, isle, TPoints);
			    Vect_line_distance(TPoints, FPoints->x[0],
					       FPoints->y[0], FPoints->z[0],
					       WITHOUT_Z, &tmp2_tx, &tmp2_ty,
					       NULL, &tmp2_dist, NULL, NULL);

			    if (j == 0 || tmp2_dist < tmp_dist) {
				tmp_dist = tmp2_dist;
				tmp_tx = tmp2_tx;
				tmp_ty = tmp2_ty;
			    }
			}
		    }
		    else {		/* outside area */
			Vect_line_distance(TPoints, FPoints->x[0], FPoints->y[0],
					   FPoints->z[0], WITHOUT_Z, &tmp_tx,
					   &tmp_ty, NULL, &tmp_dist, NULL, NULL);

		    }
		    if (tmp_dist > max || tmp_dist < min)
			continue;	/* not in threshold */
		    Vect_get_area_cats(&To, area, TCats);
		    tmp_tcat = -1;
		    /* TODO: all cats of given field ? */
		    for (j = 0; j < TCats->n_cats; j++) {
			if (TCats->field[j] == to_field) {
			    if (tmp_tcat >= 0)
				G_warning(_("More cats found in to_layer (area=%d)"),
					  area);
			    tmp_tcat = TCats->cat[j];
			}
		    }

		    G_debug(4, "  tmp_dist = %f tmp_tcat = %d", tmp_dist,
			    tmp_tcat);

		    if (all) {
			if (anear <= count) {
			    anear += 10 + nfrom / 10;
			    Near = (NEAR *) G_realloc(Near, anear * sizeof(NEAR));
			}
			near = &(Near[count]);

			/* store info about relation */
			near->from_cat = fcat;
			near->to_cat = tmp_tcat;	/* -1 is OK */
			near->dist = tmp_dist;
			near->from_x = FPoints->x[0];
			near->from_y = FPoints->y[0];
			near->to_x = tmp_tx;
			near->to_y = tmp_ty;
			near->to_along = 0;	/* nonsense for areas */
			near->to_angle = 0;	/* not supported for areas */
			near->count++;
			count++;
		    }
		    else if (tarea == 0 || tmp_dist < dist) {
			tarea = area;
			tcat = tmp_tcat;
			dist = tmp_dist;
			tx = tmp_tx;
			ty = tmp_ty;
		    }
		}

		if (curr_step < n_max_steps) {
		    /* enlarging the search box is possible */
		    if (tarea > 0 && dist > box_edge) {
			/* area found but distance > search edge:
			 * area bbox overlaps with search box, area itself is outside search box */
			done = 0;
		    }
		    else if (tarea == 0) {
			/* no area within max dist, but search box can still be enlarged */
			done = 0;
		    }
		}
		if (done && !all && tarea > 0) {
		    /* find near by cat */
		    near =
			(NEAR *) bsearch((void *)&fcat, Near, nfcats,
					 sizeof(NEAR), cmp_near);

		    G_debug(4, "near.from_cat = %d near.count = %d dist = %f",
			    near->from_cat, near->count, near->dist);

		    /* store info about relation */
		    if (near->count == 0 || near->dist > dist) {
			near->to_cat = tcat;	/* -1 is OK */
			near->dist = dist;
			near->from_x = FPoints->x[0];
			near->from_y = FPoints->y[0];
			near->to_x = tx;
			near->to_y = ty;
			near->to_along = 0;	/* nonsense for areas */
			near->to_angle = 0;	/* not supported for areas */
		    }
		    near->count++;
		}
	    } /* done */
	} /* next feature */
    }

    G_debug(3, "count = %d", count);

    /* Update database / print to stdout / create output map */
    if (print_flag->answer) {	/* print header */
	fprintf(stdout, "from_cat");
	i = 0;
	while (Upload[i].upload != END) {
	    fprintf(stdout, "|%s", Upload[i].column);
	    i++;
	}
	fprintf(stdout, "\n");
    }
    else if (all && table_opt->answer) {	/* create new table */
	db_set_string(&stmt, "create table ");
	db_append_string(&stmt, table_opt->answer);
	db_append_string(&stmt, " (from_cat integer");

	j = 0;
	while (Upload[j].upload != END) {
	    db_append_string(&stmt, ", ");

	    switch (Upload[j].upload) {
	    case CAT:
		sprintf(buf2, "%s integer", Upload[j].column);
		break;
	    case DIST:
	    case FROM_X:
	    case FROM_Y:
	    case TO_X:
	    case TO_Y:
	    case FROM_ALONG:
	    case TO_ALONG:
	    case TO_ANGLE:
		sprintf(buf2, "%s double precision", Upload[j].column);
	    }
	    db_append_string(&stmt, buf2);
	    j++;
	}
	db_append_string(&stmt, " )");
	G_debug(3, "SQL: %s", db_get_string(&stmt));

	if (db_execute_immediate(driver, &stmt) != DB_OK)
	    G_fatal_error(_("Unable to create table: '%s'"),
			  db_get_string(&stmt));

	if (db_grant_on_table(driver, table_opt->answer, DB_PRIV_SELECT,
			      DB_GROUP | DB_PUBLIC) != DB_OK)
	    G_fatal_error(_("Unable to grant privileges on table <%s>"),
			  table_opt->answer);

    }
    else if (!all) {		/* read existing cats from table */
	ncatexist =
	    db_select_int(driver, Fi->table, Fi->key, NULL, &catexist);
	G_debug(1, "%d cats selected from the table", ncatexist);
    }
    update_ok = update_err = update_exist = update_notexist = update_dupl =
	update_notfound = 0;

    if (!all) {
	count = nfcats;
    }
    else if (print_as_matrix) {
	qsort((void *)Near, count, sizeof(NEAR), cmp_near_to);
    }

    if (driver)
	db_begin_transaction(driver);

    /* select 'to' attributes */
    if (to_column_opt->answer) {
	int nrec;

	db_CatValArray_init(&cvarr);
	nrec = db_select_CatValArray(to_driver, toFi->table, toFi->key,
				     to_column_opt->answer, NULL, &cvarr);
	G_debug(3, "selected values = %d", nrec);

	if (cvarr.ctype == DB_C_TYPE_DATETIME) {
	    G_warning(_("DATETIME type not yet supported, no attributes will be uploaded"));
	}
	db_close_database_shutdown_driver(to_driver);
    }

    if (!(print_flag->answer || (all && !table_opt->answer))) /* no printing */
	G_message("Update database...");

    for (i = 0; i < count; i++) {
	dbCatVal *catval = 0;

	if (!(print_flag->answer || (all && !table_opt->answer))) /* no printing */
	    G_percent(i, count, 1);

	/* Write line connecting nearest points */
	if (Outp != NULL) {
	    Vect_reset_line(FPoints);
	    Vect_reset_cats(FCats);

	    Vect_append_point(FPoints, Near[i].from_x, Near[i].from_y, 0);

	    if (Near[i].dist == 0) {
		Vect_write_line(Outp, GV_POINT, FPoints, FCats);
	    }
	    else {
		Vect_append_point(FPoints, Near[i].to_x, Near[i].to_y, 0);
		Vect_write_line(Outp, GV_LINE, FPoints, FCats);
	    }

	}

	if (Near[i].count > 1)
	    update_dupl++;
	if (Near[i].count == 0)
	    update_notfound++;

	if (to_column_opt->answer && Near[i].count > 0) {
	    db_CatValArray_get_value(&cvarr, Near[i].to_cat, &catval);
	}

	if (print_flag->answer || (all && !table_opt->answer)) {	/* print only */
	    /*
	       input and output is the same &&
	       calculate distances &&
	       only one upload option given ->
	       print as a matrix
	     */
	    if (print_as_matrix) {
		if (i == 0) {
		    for (j = 0; j < nfrom; j++) {
			if (j == 0)
			    fprintf(stdout, " ");
			fprintf(stdout, "|%d", Near[j].to_cat);
		    }
		    fprintf(stdout, "\n");
		}
		if (i % nfrom == 0) {
		    fprintf(stdout, "%d", Near[i].from_cat);
		    for (j = 0; j < nfrom; j++) {
			print_upload(Near, Upload, i + j, &cvarr, catval);
		    }
		    fprintf(stdout, "\n");
		}
	    }
	    else {
		fprintf(stdout, "%d", Near[i].from_cat);
		print_upload(Near, Upload, i, &cvarr, catval);
		fprintf(stdout, "\n");
	    }
	}
	else if (all) {		/* insert new record */
	    sprintf(buf1, "insert into %s values ( %d ", table_opt->answer,
		    Near[i].from_cat);
	    db_set_string(&stmt, buf1);

	    j = 0;
	    while (Upload[j].upload != END) {
		db_append_string(&stmt, ",");

		switch (Upload[j].upload) {
		case CAT:
		    sprintf(buf2, " %d", Near[i].to_cat);
		    break;
		case DIST:
		    sprintf(buf2, " %f", Near[i].dist);
		    break;
		case FROM_X:
		    sprintf(buf2, " %f", Near[i].from_x);
		    break;
		case FROM_Y:
		    sprintf(buf2, " %f", Near[i].from_y);
		    break;
		case TO_X:
		    sprintf(buf2, " %f", Near[i].to_x);
		    break;
		case TO_Y:
		    sprintf(buf2, " %f", Near[i].to_y);
		    break;
		case FROM_ALONG:
		    sprintf(buf2, " %f", Near[i].from_along);
		    break;
		case TO_ALONG:
		    sprintf(buf2, " %f", Near[i].to_along);
		    break;
		case TO_ANGLE:
		    sprintf(buf2, " %f", Near[i].to_angle);
		    break;
		case TO_ATTR:
		    if (catval) {
			switch (cvarr.ctype) {
			case DB_C_TYPE_INT:
			    sprintf(buf2, " %d", catval->val.i);
			    break;

			case DB_C_TYPE_DOUBLE:
			    sprintf(buf2, " %.15e", catval->val.d);
			    break;

			case DB_C_TYPE_STRING:
			    db_set_string(&dbstr,
					  db_get_string(catval->val.s));
			    db_double_quote_string(&dbstr);
			    sprintf(buf2, " '%s'", db_get_string(&dbstr));
			    break;

			case DB_C_TYPE_DATETIME:
			    /* TODO: formating datetime */
			    sprintf(buf2, " null");
			    break;
			}
		    }
		    else {
			sprintf(buf2, " null");
		    }
		    break;
		}
		db_append_string(&stmt, buf2);
		j++;
	    }
	    db_append_string(&stmt, " )");
	    G_debug(3, "SQL: %s", db_get_string(&stmt));
	    if (db_execute_immediate(driver, &stmt) == DB_OK) {
		update_ok++;
	    }
	    else {
		update_err++;
	    }
	}
	else {			/* update table */
	    /* check if exists in table */
	    cex =
		(int *)bsearch((void *)&(Near[i].from_cat), catexist,
			       ncatexist, sizeof(int), cmp_exist);
	    if (cex == NULL) {	/* cat does not exist in DB */
		update_notexist++;
		continue;
	    }
	    update_exist++;

	    sprintf(buf1, "update %s set", Fi->table);
	    db_set_string(&stmt, buf1);

	    j = 0;
	    while (Upload[j].upload != END) {
		if (j > 0)
		    db_append_string(&stmt, ",");

		sprintf(buf2, " %s =", Upload[j].column);
		db_append_string(&stmt, buf2);

		if (Near[i].count == 0) {	/* no nearest found */
		    db_append_string(&stmt, " null");
		}
		else {
		    switch (Upload[j].upload) {
		    case CAT:
			if (Near[i].to_cat > 0)
			    sprintf(buf2, " %d", Near[i].to_cat);
			else
			    sprintf(buf2, " null");
			break;
		    case DIST:
			sprintf(buf2, " %f", Near[i].dist);
			break;
		    case FROM_X:
			sprintf(buf2, " %f", Near[i].from_x);
			break;
		    case FROM_Y:
			sprintf(buf2, " %f", Near[i].from_y);
			break;
		    case TO_X:
			sprintf(buf2, " %f", Near[i].to_x);
			break;
		    case TO_Y:
			sprintf(buf2, " %f", Near[i].to_y);
			break;
		    case FROM_ALONG:
			sprintf(buf2, " %f", Near[i].from_along);
			break;
		    case TO_ALONG:
			sprintf(buf2, " %f", Near[i].to_along);
			break;
		    case TO_ANGLE:
			sprintf(buf2, " %f", Near[i].to_angle);
			break;
		    case TO_ATTR:
			if (catval) {
			    switch (cvarr.ctype) {
			    case DB_C_TYPE_INT:
				sprintf(buf2, " %d", catval->val.i);
				break;

			    case DB_C_TYPE_DOUBLE:
				sprintf(buf2, " %.15e", catval->val.d);
				break;

			    case DB_C_TYPE_STRING:
				db_set_string(&dbstr,
					      db_get_string(catval->val.s));
				db_double_quote_string(&dbstr);
				sprintf(buf2, " '%s'", db_get_string(&dbstr));
				break;

			    case DB_C_TYPE_DATETIME:
				/* TODO: formating datetime */
				sprintf(buf2, " null");
				break;
			    }
			}
			else {
			    sprintf(buf2, " null");
			}
			break;
		    }
		    db_append_string(&stmt, buf2);
		}
		j++;
	    }
	    sprintf(buf2, " where %s = %d", Fi->key, Near[i].from_cat);
	    db_append_string(&stmt, buf2);
	    G_debug(2, "SQL: %s", db_get_string(&stmt));
	    if (db_execute_immediate(driver, &stmt) == DB_OK) {
		update_ok++;
	    }
	    else {
		update_err++;
	    }
	}
    }
    G_percent(count, count, 1);

    if (driver)
	db_commit_transaction(driver);

    /* print stats */
    if (update_dupl > 0)
	G_message(_("%d categories with more than 1 feature in vector map <%s>"),
		  update_dupl, from_opt->answer);
    if (update_notfound > 0)
	G_message(_("%d categories - no nearest feature found"),
		  update_notfound);

    if (!print_flag->answer) {
	db_close_database_shutdown_driver(driver);
	db_free_string(&stmt);

	/* print stats */
	if (all && table_opt->answer) {
	    G_message(_("%d distances calculated"), count);
	    G_message(_("%d records inserted"), update_ok);
	    if (update_err > 0)
		G_message(_("%d insert errors"), update_err);
	}
	else if (!all) {
	    if (nfcats > 0)
		G_message(_("%d categories read from the map"), nfcats);
	    if (ncatexist > 0)
		G_message(_("%d categories exist in the table"), ncatexist);
	    if (update_exist > 0)
		G_message(_("%d categories read from the map exist in the table"),
			  update_exist);
	    if (update_notexist > 0)
		G_message(_("%d categories read from the map don't exist in the table"),
			  update_notexist);
	    G_message(_("%d records updated"), update_ok);
	    if (update_err > 0)
		G_message(_("%d update errors"), update_err);

	    G_free(catexist);
	}

	Vect_set_db_updated(&From);
    }

    Vect_close(&From);
    if (Outp != NULL) {
	Vect_build(Outp);
	Vect_close(Outp);
    }

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}