Exemplo n.º 1
0
/*
 * __wt_compact --
 *	Compact a file.
 */
int
__wt_compact(WT_SESSION_IMPL *session, const char *cfg[])
{
	WT_BM *bm;
	WT_CONFIG_ITEM cval;
	WT_DECL_RET;
	WT_PAGE *page;
	int trigger, skip;

	bm = S2BT(session)->bm;

	WT_DSTAT_INCR(session, session_compact);

	WT_RET(__wt_config_gets(session, cfg, "trigger", &cval));
	trigger = (int)cval.val;

	/* Check if compaction might be useful. */
	WT_RET(bm->compact_skip(bm, session, trigger, &skip));
	if (skip)
		return (0);

	/*
	 * Walk the cache reviewing in-memory pages to see if they need to be
	 * re-written.  This requires looking at page reconciliation results,
	 * which means the page cannot be reconciled at the same time as it's
	 * being reviewed for compaction.  The underlying functions ensure we
	 * don't collide with page eviction, but we need to make sure we don't
	 * collide with checkpoints either, they are the other operation that
	 * can reconcile a page.
	 */
	__wt_spin_lock(session, &S2C(session)->metadata_lock);
	WT_RET(__wt_bt_cache_op(session, NULL, WT_SYNC_COMPACT));
	__wt_spin_unlock(session, &S2C(session)->metadata_lock);

	/*
	 * Walk the tree, reviewing on-disk pages to see if they need to be
	 * re-written.
	 */
	for (page = NULL;;) {
		WT_RET(__wt_tree_walk(session, &page, WT_TREE_COMPACT));
		if (page == NULL)
			break;

		/*
		 * The only pages returned by the tree walk function are pages
		 * we want to re-write; mark the page and tree dirty.
		 */
		if ((ret = __wt_page_modify_init(session, page)) != 0) {
			WT_TRET(__wt_page_release(session, page));
			WT_RET(ret);
		}
		__wt_page_and_tree_modify_set(session, page);

		WT_DSTAT_INCR(session, btree_compact_rewrite);
	}

	return (0);
}
Exemplo n.º 2
0
/*
 * __wt_btcur_next_random --
 *	Move to a random record in the tree.
 */
int
__wt_btcur_next_random(WT_CURSOR_BTREE *cbt)
{
	WT_BTREE *btree;
	WT_DECL_RET;
	WT_SESSION_IMPL *session;

	session = (WT_SESSION_IMPL *)cbt->iface.session;
	btree = cbt->btree;
	WT_DSTAT_INCR(session, cursor_next);

retry:	WT_RET(__cursor_func_init(cbt, 1));
	__cursor_position_clear(cbt);

	/*
	 * Only supports row-store: applications can trivially select a random
	 * value from a column-store, if there were any reason to do so.
	 */
	WT_ERR(btree->type == BTREE_ROW ?
	    __wt_row_random(session, cbt) : ENOTSUP);
	ret = cbt->compare == 0 ?
	    __wt_kv_return(session, cbt) : WT_NOTFOUND;

err:	if (ret == WT_RESTART)
		goto retry;
	WT_TRET(__cursor_func_resolve(cbt, ret));
	return (ret);
}
Exemplo n.º 3
0
/*
 * __hazard_exclusive --
 *	Request exclusive access to a page.
 */
static int
__hazard_exclusive(WT_SESSION_IMPL *session, WT_REF *ref, int top)
{
	/*
	 * Make sure there is space to track exclusive access so we can unlock
	 * to clean up.
	 */
	if (session->excl_next * sizeof(WT_REF *) == session->excl_allocated)
		WT_RET(__wt_realloc(session, &session->excl_allocated,
		    (session->excl_next + 50) * sizeof(WT_REF *),
		    &session->excl));

	/*
	 * Hazard pointers are acquired down the tree, which means we can't
	 * deadlock.
	 *
	 * Request exclusive access to the page.  The top-level page should
	 * already be in the locked state, lock child pages in memory.
	 * If another thread already has this page, give up.
	 */
	if (!top && !WT_ATOMIC_CAS(ref->state, WT_REF_MEM, WT_REF_LOCKED))
		return (EBUSY);	/* We couldn't change the state. */
	WT_ASSERT(session, ref->state == WT_REF_LOCKED);

	session->excl[session->excl_next++] = ref;

	/* Check for a matching hazard pointer. */
	if (__wt_page_hazard_check(session, ref->page) == NULL)
		return (0);

	WT_DSTAT_INCR(session, cache_eviction_hazard);
	WT_CSTAT_INCR(session, cache_eviction_hazard);

	WT_VERBOSE_RET(
	    session, evict, "page %p hazard request failed", ref->page);
	return (EBUSY);
}
Exemplo n.º 4
0
/*
 * __wt_merge_tree --
 *	Attempt to collapse a stack of split-merge pages in memory into a
 *	shallow tree.  If enough keys are found, create a real internal node
 *	that can be evicted (and, if necessary, split further).
 *
 *	This code is designed to deal with workloads that otherwise create
 *	arbitrarily deep (and slow) trees in memory.
 */
int
__wt_merge_tree(WT_SESSION_IMPL *session, WT_PAGE *top)
{
	WT_DECL_RET;
	WT_PAGE *lchild, *newtop, *rchild;
	WT_REF *newref;
	WT_VISIT_STATE visit_state;
	uint32_t refcnt, split;
	int promote;
	u_int levels;
	uint8_t page_type;

	WT_CLEAR(visit_state);
	visit_state.session = session;
	lchild = newtop = rchild = NULL;
	page_type = top->type;

	WT_ASSERT(session, __wt_btree_mergeable(top));
	WT_ASSERT(session, top->ref->state == WT_REF_LOCKED);

	/*
	 * Walk the subtree, count the references at the bottom level and
	 * calculate the maximum depth.
	 */
	WT_RET(__merge_walk(session, top, 1, __merge_count, &visit_state));

	/* If there aren't enough useful levels, give up. */
	if (visit_state.maxdepth < WT_MERGE_STACK_MIN)
		return (EBUSY);

	/*
	 * Don't allow split merges to generate arbitrarily large pages.
	 * Ideally we would choose a size based on the internal_page_max
	 * setting for the btree, but we don't have the correct btree handle
	 * available.
	 */
	if (visit_state.refcnt > WT_MERGE_MAX_REFS)
		return (EBUSY);

	/*
	 * Now we either collapse the internal pages into one split-merge page,
	 * or if there are "enough" keys, we split into two equal internal
	 * pages, each of which can be evicted independently.
	 *
	 * We set a flag (WT_PM_REC_SPLIT_MERGE) on the created page if it
	 * isn't big enough to justify the cost of evicting it.  If splits
	 * continue, it will be merged again until it gets over this limit.
	 */
	promote = 0;
	refcnt = (uint32_t)visit_state.refcnt;
	if (refcnt >= WT_MERGE_FULL_PAGE && visit_state.seen_live) {
		/*
		 * In the normal case where there are live children spread
		 * through the subtree, create two child pages.
		 *
		 * Handle the case where the only live child is first / last
		 * specially: put the live child into the top-level page.
		 *
		 * Set SPLIT_MERGE on the internal pages if there are any live
		 * children: they can't be evicted, so there is no point
		 * permanently deepening the tree.
		 */
		if (visit_state.first_live == visit_state.last_live &&
		    (visit_state.first_live == 0 ||
		    visit_state.first_live == refcnt - 1))
			split = (visit_state.first_live == 0) ? 1 : refcnt - 1;
		else
			split = (refcnt + 1) / 2;

		/* Only promote if we can create a real page. */
		if (split == 1 || split == refcnt - 1)
			promote = 1;
		else if (split >= WT_MERGE_FULL_PAGE &&
		    visit_state.first_live >= split)
			promote = 1;
		else if (refcnt - split >= WT_MERGE_FULL_PAGE &&
		    visit_state.last_live < split)
			promote = 1;
	}

	if (promote) {
		/* Create a new top-level split-merge page with two entries. */
		WT_ERR(__merge_new_page(session, page_type, 2, 1, &newtop));

		visit_state.split = split;

		/* Left split. */
		if (split == 1)
			visit_state.first = newtop;
		else {
			WT_ERR(__merge_new_page(session, page_type, split,
			    visit_state.first_live < split, &lchild));
			visit_state.first = lchild;
		}

		/* Right split. */
		if (split == refcnt - 1) {
			visit_state.second = newtop;
			visit_state.second_ref = &newtop->u.intl.t[1];
		} else {
			WT_ERR(__merge_new_page(session, page_type,
			    refcnt - split, visit_state.last_live >= split,
			    &rchild));
			visit_state.second = rchild;
			visit_state.second_ref =
			    &visit_state.second->u.intl.t[0];
		}
	} else {
		/*
		 * Create a new split-merge page for small merges, or if the
		 * page above is a split merge page.  When we do a big enough
		 * merge, we create a real page at the top and don't consider
		 * it as a merge candidate again.  Over time with an insert
		 * workload the tree will grow deeper, but that's inevitable,
		 * and this keeps individual merges small.
		 */
		WT_ERR(__merge_new_page(session, page_type, refcnt,
		    refcnt < WT_MERGE_FULL_PAGE ||
		    __wt_btree_mergeable(top->parent),
		    &newtop));

		visit_state.first = newtop;
	}

	/*
	 * Copy the references into the new tree, but don't update anything in
	 * the locked tree in case there is an error and we need to back out.
	 * We do this in a separate pass so that we can figure out the key for
	 * the split point: that allocates memory and so it could still fail.
	 */
	visit_state.page = visit_state.first;
	visit_state.ref = visit_state.page->u.intl.t;
	visit_state.refcnt = 0;
	WT_ERR(__merge_walk(session, top, 0, __merge_copy_ref, &visit_state));

	if (promote) {
		/* Promote keys into the top-level page. */
		if (lchild != NULL) {
			newref = &newtop->u.intl.t[0];
			WT_LINK_PAGE(newtop, newref, lchild);
			newref->state = WT_REF_MEM;
			WT_ERR(__merge_promote_key(session, newref));
		}

		if (rchild != NULL) {
			newref = &newtop->u.intl.t[1];
			WT_LINK_PAGE(newtop, newref, rchild);
			newref->state = WT_REF_MEM;
			WT_ERR(__merge_promote_key(session, newref));
		}
	}

	/*
	 * We have copied everything into place and allocated all of the memory
	 * we need.  Now link all pages into the new tree and unlock them.
	 *
	 * The only way this could fail is if a reference state has been
	 * changed by another thread since they were locked.  Panic in that
	 * case: that should never happen.
	 */
	visit_state.page = visit_state.first;
	visit_state.ref = visit_state.page->u.intl.t;
	visit_state.refcnt = 0;
	ret = __merge_walk(session, top, 0, __merge_switch_page, &visit_state);

	if (ret != 0)
		WT_ERR(__wt_illegal_value(session, "__wt_merge_tree"));

	newtop->u.intl.recno = top->u.intl.recno;
	newtop->parent = top->parent;
	newtop->ref = top->ref;

#ifdef HAVE_DIAGNOSTIC
	/*
	 * Before swapping in the new tree, walk the pages we are discarding,
	 * check that everything looks right.
	 */
	__merge_check_discard(session, top);
#endif

	/*
	 * Set up the new top-level page as a split so that it will be swapped
	 * into place by our caller.
	 */
	top->modify->flags = WT_PM_REC_SPLIT;
	top->modify->u.split = newtop;

	WT_VERBOSE_ERR(session, evict,
	    "Successfully %s %" PRIu32
	    " split-merge pages containing %" PRIu32 " keys\n",
	    promote ? "promoted" : "merged", visit_state.maxdepth, refcnt);

	/* Evict new child pages as soon as possible. */
	if (lchild != NULL && !F_ISSET(lchild->modify, WT_PM_REC_SPLIT_MERGE))
		lchild->read_gen = WT_READ_GEN_OLDEST;
	if (rchild != NULL && !F_ISSET(rchild->modify, WT_PM_REC_SPLIT_MERGE))
		rchild->read_gen = WT_READ_GEN_OLDEST;

	/* Update statistics. */
	WT_CSTAT_INCR(session, cache_eviction_merge);
	WT_DSTAT_INCR(session, cache_eviction_merge);

	/* How many levels did we remove? */
	levels = visit_state.maxdepth - (promote ? 2 : 1);
	WT_CSTAT_INCRV(session, cache_eviction_merge_levels, levels);
	WT_DSTAT_INCRV(session, cache_eviction_merge_levels, levels);

	return (0);

err:	WT_VERBOSE_TRET(session, evict,
	    "Failed to merge %" PRIu32
	    " split-merge pages containing %" PRIu32 " keys\n",
	    visit_state.maxdepth, refcnt);

	WT_CSTAT_INCR(session, cache_eviction_merge_fail);
	WT_DSTAT_INCR(session, cache_eviction_merge_fail);

	if (newtop != NULL)
		__wt_page_out(session, &newtop);
	if (lchild != NULL)
		__wt_page_out(session, &lchild);
	if (rchild != NULL)
		__wt_page_out(session, &rchild);
	return (ret);
}
Exemplo n.º 5
0
/*
 * __wt_btcur_prev --
 *	Move to the previous record in the tree.
 */
int
__wt_btcur_prev(WT_CURSOR_BTREE *cbt, int discard)
{
	WT_DECL_RET;
	WT_PAGE *page;
	WT_SESSION_IMPL *session;
	uint32_t flags;
	int newpage;

	session = (WT_SESSION_IMPL *)cbt->iface.session;
	WT_DSTAT_INCR(session, cursor_prev);

	flags = WT_TREE_SKIP_INTL | WT_TREE_PREV;	/* Tree walk flags. */
	if (discard)
		LF_SET(WT_TREE_DISCARD);

retry:	WT_RET(__cursor_func_init(cbt, 0));
	__cursor_position_clear(cbt);

	/*
	 * If we aren't already iterating in the right direction, there's
	 * some setup to do.
	 */
	if (!F_ISSET(cbt, WT_CBT_ITERATE_PREV))
		__wt_btcur_iterate_setup(cbt, 0);

	/*
	 * If this is a modification, we're about to read information from the
	 * page, save the write generation.
	 */
	page = cbt->page;
	if (discard && page != NULL) {
		WT_ERR(__wt_page_modify_init(session, page));
		WT_ORDERED_READ(cbt->write_gen, page->modify->write_gen);
	}

	/*
	 * Walk any page we're holding until the underlying call returns not-
	 * found.  Then, move to the previous page, until we reach the start
	 * of the file.
	 */
	for (newpage = 0;; newpage = 1) {
		if (F_ISSET(cbt, WT_CBT_ITERATE_APPEND)) {
			switch (page->type) {
			case WT_PAGE_COL_FIX:
				ret = __cursor_fix_append_prev(cbt, newpage);
				break;
			case WT_PAGE_COL_VAR:
				ret = __cursor_var_append_prev(cbt, newpage);
				break;
			WT_ILLEGAL_VALUE_ERR(session);
			}
			if (ret == 0)
				break;
			F_CLR(cbt, WT_CBT_ITERATE_APPEND);
			if (ret != WT_NOTFOUND)
				break;
			newpage = 1;
		}
		if (page != NULL) {
			switch (page->type) {
			case WT_PAGE_COL_FIX:
				ret = __cursor_fix_prev(cbt, newpage);
				break;
			case WT_PAGE_COL_VAR:
				ret = __cursor_var_prev(cbt, newpage);
				break;
			case WT_PAGE_ROW_LEAF:
				ret = __cursor_row_prev(cbt, newpage);
				break;
			WT_ILLEGAL_VALUE_ERR(session);
			}
			if (ret != WT_NOTFOUND)
				break;
		}

		cbt->page = NULL;
		WT_ERR(__wt_tree_walk(session, &page, flags));
		WT_ERR_TEST(page == NULL, WT_NOTFOUND);
		WT_ASSERT(session,
		    page->type != WT_PAGE_COL_INT &&
		    page->type != WT_PAGE_ROW_INT);
		cbt->page = page;

		/* Initialize the page's modification information */
		if (discard) {
			WT_ERR(__wt_page_modify_init(session, page));
			WT_ORDERED_READ(
			    cbt->write_gen, page->modify->write_gen);
		}

		/*
		 * The last page in a column-store has appended entries.
		 * We handle it separately from the usual cursor code:
		 * it's only that one page and it's in a simple format.
		 */
		if (page->type != WT_PAGE_ROW_LEAF &&
		    (cbt->ins_head = WT_COL_APPEND(page)) != NULL)
			F_SET(cbt, WT_CBT_ITERATE_APPEND);
	}

err:	if (ret == WT_RESTART)
		goto retry;
	WT_TRET(__cursor_func_resolve(cbt, ret));
	return (ret);
}
Exemplo n.º 6
0
/*
 * __rec_review --
 *	Get exclusive access to the page and review the page and its subtree
 *	for conditions that would block its eviction.
 *
 *	The ref and page arguments may appear to be redundant, because usually
 *	ref->page == page and page->ref == ref.  However, we need both because
 *	(a) there are cases where ref == NULL (e.g., for root page or during
 *	salvage), and (b) we can't safely look at page->ref until we have a
 *	hazard pointer.
 */
static int
__rec_review(WT_SESSION_IMPL *session,
    WT_REF *ref, WT_PAGE *page, int exclusive, int merge, int top)
{
	WT_BTREE *btree;
	WT_DECL_RET;
	WT_PAGE_MODIFY *mod;
	WT_PAGE *t;
	uint32_t i;

	btree = session->btree;

	/*
	 * Get exclusive access to the page if our caller doesn't have the tree
	 * locked down.
	 */
	if (!exclusive)
		WT_RET(__hazard_exclusive(session, ref, top));

	/*
	 * Recurse through the page's subtree: this happens first because we
	 * have to write pages in depth-first order, otherwise we'll dirty
	 * pages after we've written them.
	 */
	if (page->type == WT_PAGE_COL_INT || page->type == WT_PAGE_ROW_INT)
		WT_REF_FOREACH(page, ref, i)
			switch (ref->state) {
			case WT_REF_DISK:		/* On-disk */
			case WT_REF_DELETED:		/* On-disk, deleted */
				break;
			case WT_REF_MEM:		/* In-memory */
				WT_RET(__rec_review(session,
				    ref, ref->page, exclusive, merge, 0));
				break;
			case WT_REF_EVICT_WALK:		/* Walk point */
			case WT_REF_EVICT_FORCE:	/* Forced evict */
			case WT_REF_LOCKED:		/* Being evicted */
			case WT_REF_READING:		/* Being read */
				return (EBUSY);
			}

	/*
	 * If the file is being checkpointed, we cannot evict dirty pages,
	 * because that may free a page that appears on an internal page in the
	 * checkpoint.  Don't rely on new updates being skipped by the
	 * transaction used for transaction reads: (1) there are paths that
	 * dirty pages for artificial reasons; (2) internal pages aren't
	 * transactional; and (3) if an update was skipped during the
	 * checkpoint (leaving the page dirty), then rolled back, we could
	 * still successfully overwrite a page and corrupt the checkpoint.
	 *
	 * Further, even for clean pages, the checkpoint's reconciliation of an
	 * internal page might race with us as we evict a child in the page's
	 * subtree.
	 *
	 * One half of that test is in the reconciliation code: the checkpoint
	 * thread waits for eviction-locked pages to settle before determining
	 * their status.  The other half of the test is here: after acquiring
	 * the exclusive eviction lock on a page, confirm no page in the page's
	 * stack of pages from the root is being reconciled in a checkpoint.
	 * This ensures we either see the checkpoint-walk state here, or the
	 * reconciliation of the internal page sees our exclusive lock on the
	 * child page and waits until we're finished evicting the child page
	 * (or give up if eviction isn't possible).
	 *
	 * We must check the full stack (we might be attempting to evict a leaf
	 * page multiple levels beneath the internal page being reconciled as
	 * part of the checkpoint, and  all of the intermediate nodes are being
	 * merged into the internal page).
	 *
	 * There's no simple test for knowing if a page in our page stack is
	 * involved in a checkpoint.  The internal page's checkpoint-walk flag
	 * is the best test, but it's not set anywhere for the root page, it's
	 * not a complete test.
	 *
	 * Quit for any page that's not a simple, in-memory page.  (Almost the
	 * same as checking for the checkpoint-walk flag.  I don't think there
	 * are code paths that change the page's status from checkpoint-walk,
	 * but these races are hard enough I'm not going to proceed if there's
	 * anything other than a vanilla, in-memory tree stack.)  Climb until
	 * we find a page which can't be merged into its parent, and failing if
	 * we never find such a page.
	 */
	if (btree->checkpointing && !merge && __wt_page_is_modified(page)) {
ckpt:		WT_CSTAT_INCR(session, cache_eviction_checkpoint);
		WT_DSTAT_INCR(session, cache_eviction_checkpoint);
		return (EBUSY);
	}

	if (btree->checkpointing && top)
		for (t = page->parent;; t = t->parent) {
			if (t == NULL || t->ref == NULL)	/* root */
				goto ckpt;
			if (t->ref->state != WT_REF_MEM)	/* scary */
				goto ckpt;
			if (t->modify == NULL ||		/* not merged */
			    !F_ISSET(t->modify, WT_PM_REC_EMPTY |
			    WT_PM_REC_SPLIT | WT_PM_REC_SPLIT_MERGE))
				break;
		}

	/*
	 * If we are merging internal pages, we just need exclusive access, we
	 * don't need to write everything.
	 */
	if (merge)
		return (0);

	/*
	 * Fail if any page in the top-level page's subtree won't be merged into
	 * its parent, the page that cannot be merged must be evicted first.
	 * The test is necessary but should not fire much: the eviction code is
	 * biased for leaf pages, an internal page shouldn't be selected for
	 * eviction until its children have been evicted.
	 *
	 * We have to write dirty pages to know their final state, a page marked
	 * empty may have had records added since reconciliation, a page marked
	 * split may have had records deleted and no longer need to split.
	 * Split-merge pages are the exception: they can never be change into
	 * anything other than a split-merge page and are merged regardless of
	 * being clean or dirty.
	 *
	 * Writing the page is expensive, do a cheap test first: if it doesn't
	 * appear a subtree page can be merged, quit.  It's possible the page
	 * has been emptied since it was last reconciled, and writing it before
	 * testing might be worthwhile, but it's more probable we're attempting
	 * to evict an internal page with live children, and that's a waste of
	 * time.
	 */
	mod = page->modify;
	if (!top && (mod == NULL || !F_ISSET(mod,
	    WT_PM_REC_EMPTY | WT_PM_REC_SPLIT | WT_PM_REC_SPLIT_MERGE)))
		return (EBUSY);

	/*
	 * If the page is dirty and can possibly change state, write it so we
	 * know the final state.
	 */
	if (__wt_page_is_modified(page) &&
	    !F_ISSET(mod, WT_PM_REC_SPLIT_MERGE)) {
		ret = __wt_rec_write(session, page,
		    NULL, WT_EVICTION_SERVER_LOCKED | WT_SKIP_UPDATE_QUIT);

		/*
		 * Update the page's modification reference, reconciliation
		 * might have changed it.
		 */
		mod = page->modify;

		/* If there are unwritten changes on the page, give up. */
		if (ret == EBUSY) {
			WT_VERBOSE_RET(session, evict,
			    "eviction failed, reconciled page not clean");

			/* 
			 * We may be able to discard any "update" memory the
			 * page no longer needs.
			 */
			switch (page->type) {
			case WT_PAGE_COL_FIX:
			case WT_PAGE_COL_VAR:
				__wt_col_leaf_obsolete(session, page);
				break;
			case WT_PAGE_ROW_LEAF:
				__wt_row_leaf_obsolete(session, page);
				break;
			}
		}
		WT_RET(ret);

		WT_ASSERT(session, __wt_page_is_modified(page) == 0);
	}

	/*
	 * Repeat the test: fail if any page in the top-level page's subtree
	 * won't be merged into its parent.
	 */
	if (!top && (mod == NULL || !F_ISSET(mod,
	    WT_PM_REC_EMPTY | WT_PM_REC_SPLIT | WT_PM_REC_SPLIT_MERGE)))
		return (EBUSY);
	return (0);
}
Exemplo n.º 7
0
/*
 * __wt_rec_evict --
 *	Reconciliation plus eviction.
 */
int
__wt_rec_evict(WT_SESSION_IMPL *session, WT_PAGE *page, int exclusive)
{
	WT_DECL_RET;
	WT_PAGE_MODIFY *mod;
	int merge;

	WT_VERBOSE_RET(session, evict,
	    "page %p (%s)", page, __wt_page_type_string(page->type));

	WT_ASSERT(session, session->excl_next == 0);

	/*
	 * If we get a split-merge page during normal eviction, try to collapse
	 * it.  During close, it will be merged into its parent.
	 */
	mod = page->modify;
	merge = __wt_btree_mergeable(page);
	if (merge && exclusive)
		return (EBUSY);

	WT_ASSERT(session, merge || mod == NULL ||
	    !F_ISSET(mod, WT_PM_REC_SPLIT_MERGE));

	/*
	 * Get exclusive access to the page and review the page and its subtree
	 * for conditions that would block our eviction of the page.  If the
	 * check fails (for example, we find a child page that can't be merged),
	 * we're done.  We have to make this check for clean pages, too: while
	 * unlikely eviction would choose an internal page with children, it's
	 * not disallowed anywhere.
	 *
	 * Note that page->ref may be NULL in some cases (e.g., for root pages
	 * or during salvage).  That's OK if exclusive is set: we won't check
	 * hazard pointers in that case.
	 */
	WT_ERR(__rec_review(session, page->ref, page, exclusive, merge, 1));

	/* Try to merge internal pages. */
	if (merge)
		WT_ERR(__wt_merge_tree(session, page));

	/*
	 * Update the page's modification reference, reconciliation might have
	 * changed it.
	 */
	mod = page->modify;

	/* Count evictions of internal pages during normal operation. */
	if (!exclusive && !merge &&
	    (page->type == WT_PAGE_COL_INT || page->type == WT_PAGE_ROW_INT)) {
		WT_CSTAT_INCR(session, cache_eviction_internal);
		WT_DSTAT_INCR(session, cache_eviction_internal);
	}

	/*
	 * Update the parent and discard the page.
	 */
	if (mod == NULL || !F_ISSET(mod, WT_PM_REC_MASK)) {
		WT_ASSERT(session,
		    exclusive || page->ref->state == WT_REF_LOCKED);

		if (WT_PAGE_IS_ROOT(page))
			__rec_root_update(session);
		else
			__rec_page_clean_update(session, page);

		/* Discard the page. */
		__rec_discard_page(session, page, exclusive);

		WT_CSTAT_INCR(session, cache_eviction_clean);
		WT_DSTAT_INCR(session, cache_eviction_clean);
	} else {
		if (WT_PAGE_IS_ROOT(page))
			__rec_root_update(session);
		else
			WT_ERR(__rec_page_dirty_update(session, page));

		/* Discard the tree rooted in this page. */
		__rec_discard_tree(session, page, exclusive);

		WT_CSTAT_INCR(session, cache_eviction_dirty);
		WT_DSTAT_INCR(session, cache_eviction_dirty);
	}
	if (0) {
err:		/*
		 * If unable to evict this page, release exclusive reference(s)
		 * we've acquired.
		 */
		__rec_excl_clear(session);

		WT_CSTAT_INCR(session, cache_eviction_fail);
		WT_DSTAT_INCR(session, cache_eviction_fail);
	}
	session->excl_next = 0;

	return (ret);
}
Exemplo n.º 8
0
/*
 * __wt_bt_read --
 *	Read a cookie referenced block into a buffer.
 */
int
__wt_bt_read(WT_SESSION_IMPL *session,
    WT_ITEM *buf, const uint8_t *addr, uint32_t addr_size)
{
	WT_BM *bm;
	WT_BTREE *btree;
	WT_DECL_ITEM(tmp);
	WT_DECL_RET;
	WT_PAGE_HEADER *dsk;
	size_t result_len;

	btree = session->btree;
	bm = btree->bm;

	/*
	 * If anticipating a compressed block, read into a scratch buffer and
	 * decompress into the caller's buffer.  Else, read directly into the
	 * caller's buffer.
	 */
	if (btree->compressor == NULL) {
		WT_RET(bm->read(bm, session, buf, addr, addr_size));
		dsk = buf->mem;
	} else {
		WT_RET(__wt_scr_alloc(session, 0, &tmp));
		WT_ERR(bm->read(bm, session, tmp, addr, addr_size));
		dsk = tmp->mem;
	}

	/*
	 * If the block is compressed, copy the skipped bytes of the original
	 * image into place, then decompress.
	 */
	if (F_ISSET(dsk, WT_PAGE_COMPRESSED)) {
		if (btree->compressor == NULL ||
		    btree->compressor->decompress == NULL)
			WT_ERR_MSG(session, WT_ERROR,
			    "read compressed block where no compression engine "
			    "configured");

		/*
		 * We're allocating the exact number of bytes we're expecting
		 * from decompression.
		 */
		WT_ERR(__wt_buf_init(session, buf, dsk->mem_size));
		buf->size = dsk->mem_size;

		/*
		 * Note the source length is NOT the number of compressed bytes,
		 * it's the length of the block we just read (minus the skipped
		 * bytes).  We don't store the number of compressed bytes: some
		 * compression engines need that length stored externally, they
		 * don't have markers in the stream to signal the end of the
		 * compressed bytes.  Those engines must store the compressed
		 * byte length somehow, see the snappy compression extension for
		 * an example.
		 */
		memcpy(buf->mem, tmp->mem, WT_BLOCK_COMPRESS_SKIP);
		WT_ERR(btree->compressor->decompress(
		    btree->compressor, &session->iface,
		    (uint8_t *)tmp->mem + WT_BLOCK_COMPRESS_SKIP,
		    tmp->size - WT_BLOCK_COMPRESS_SKIP,
		    (uint8_t *)buf->mem + WT_BLOCK_COMPRESS_SKIP,
		    dsk->mem_size - WT_BLOCK_COMPRESS_SKIP,
		    &result_len));

		/*
		 * If checksums were turned off because we're depending on the
		 * decompression to fail on any corrupted data, we'll end up
		 * here after corruption happens.  If we're salvaging the file,
		 * it's OK, otherwise it's really, really bad.
		 */
		if (result_len != dsk->mem_size - WT_BLOCK_COMPRESS_SKIP)
			WT_ERR(
			    F_ISSET(session, WT_SESSION_SALVAGE_QUIET_ERR) ?
			    WT_ERROR :
			    __wt_illegal_value(session, btree->name));
	} else
		if (btree->compressor == NULL)
			buf->size = dsk->mem_size;
		else
			/*
			 * We guessed wrong: there was a compressor, but this
			 * block was not compressed, and now the page is in the
			 * wrong buffer and the buffer may be of the wrong size.
			 * This should be rare, but happens with small blocks
			 * that aren't worth compressing.
			 */
			WT_ERR(__wt_buf_set(
			    session, buf, tmp->data, dsk->mem_size));

	/* If the handle is a verify handle, verify the physical page. */
	if (F_ISSET(btree, WT_BTREE_VERIFY)) {
		if (tmp == NULL)
			WT_ERR(__wt_scr_alloc(session, 0, &tmp));
		WT_ERR(bm->addr_string(bm, session, tmp, addr, addr_size));
		WT_ERR(__wt_verify_dsk(session, (const char *)tmp->data, buf));
	}

	WT_CSTAT_INCR(session, cache_read);
	WT_DSTAT_INCR(session, cache_read);
	if (F_ISSET(dsk, WT_PAGE_COMPRESSED))
		WT_DSTAT_INCR(session, compress_read);
	WT_CSTAT_INCRV(session, cache_bytes_read, addr_size);
	WT_DSTAT_INCRV(session, cache_bytes_read, addr_size);

err:	__wt_scr_free(&tmp);
	return (ret);
}
Exemplo n.º 9
0
/*
 * __wt_bt_write --
 *	Write a buffer into a block, returning the block's addr/size and
 * checksum.
 */
int
__wt_bt_write(WT_SESSION_IMPL *session, WT_ITEM *buf,
    uint8_t *addr, uint32_t *addr_size, int checkpoint, int compressed)
{
	WT_BM *bm;
	WT_BTREE *btree;
	WT_ITEM *ip;
	WT_DECL_ITEM(tmp);
	WT_DECL_RET;
	WT_PAGE_HEADER *dsk;
	size_t len, src_len, dst_len, result_len, size;
	int data_cksum, compression_failed;
	uint8_t *src, *dst;

	btree = session->btree;
	bm = btree->bm;

	/* Checkpoint calls are different than standard calls. */
	WT_ASSERT(session,
	    (checkpoint == 0 && addr != NULL && addr_size != NULL) ||
	    (checkpoint == 1 && addr == NULL && addr_size == NULL));

#ifdef HAVE_DIAGNOSTIC
	/*
	 * We're passed a table's disk image.  Decompress if necessary and
	 * verify the image.  Always check the in-memory length for accuracy.
	 */
	dsk = buf->mem;
	if (compressed) {
		WT_ERR(__wt_scr_alloc(session, dsk->mem_size, &tmp));

		memcpy(tmp->mem, buf->data, WT_BLOCK_COMPRESS_SKIP);
		WT_ERR(btree->compressor->decompress(
		    btree->compressor, &session->iface,
		    (uint8_t *)buf->data + WT_BLOCK_COMPRESS_SKIP,
		    buf->size - WT_BLOCK_COMPRESS_SKIP,
		    (uint8_t *)tmp->data + WT_BLOCK_COMPRESS_SKIP,
		    tmp->memsize - WT_BLOCK_COMPRESS_SKIP,
		    &result_len));
		WT_ASSERT(session,
		    dsk->mem_size == result_len + WT_BLOCK_COMPRESS_SKIP);
		tmp->size = (uint32_t)result_len + WT_BLOCK_COMPRESS_SKIP;
		ip = tmp;
	} else {
		WT_ASSERT(session, dsk->mem_size == buf->size);
		ip = buf;
	}
	WT_ERR(__wt_verify_dsk(session, "[write-check]", ip));
	__wt_scr_free(&tmp);
#endif

	/*
	 * Optionally stream-compress the data, but don't compress blocks that
	 * are already as small as they're going to get.
	 */
	if (buf->size <= btree->allocsize ||
	    btree->compressor == NULL ||
	    btree->compressor->compress == NULL || compressed) {
		ip = buf;
		WT_DSTAT_INCR(session, compress_write_too_small);
	} else {
		/* Skip the header bytes of the source data. */
		src = (uint8_t *)buf->mem + WT_BLOCK_COMPRESS_SKIP;
		src_len = buf->size - WT_BLOCK_COMPRESS_SKIP;

		/*
		 * Compute the size needed for the destination buffer.  We only
		 * allocate enough memory for a copy of the original by default,
		 * if any compressed version is bigger than the original, we
		 * won't use it.  However, some compression engines (snappy is
		 * one example), may need more memory because they don't stop
		 * just because there's no more memory into which to compress.
		 */
		if (btree->compressor->pre_size == NULL)
			len = src_len;
		else
			WT_ERR(btree->compressor->pre_size(btree->compressor,
			    &session->iface, src, src_len, &len));

		size = len + WT_BLOCK_COMPRESS_SKIP;
		WT_ERR(bm->write_size(bm, session, &size));
		WT_ERR(__wt_scr_alloc(session, size, &tmp));

		/* Skip the header bytes of the destination data. */
		dst = (uint8_t *)tmp->mem + WT_BLOCK_COMPRESS_SKIP;
		dst_len = len;

		/*
		 * If compression fails, fallback to the original version.  This
		 * isn't unexpected: if compression doesn't work for some chunk
		 * of bytes for some reason (noting there's likely additional
		 * format/header information which compressed output requires),
		 * it just means the uncompressed version is as good as it gets,
		 * and that's what we use.
		 */
		compression_failed = 0;
		WT_ERR(btree->compressor->compress(btree->compressor,
		    &session->iface,
		    src, src_len,
		    dst, dst_len,
		    &result_len, &compression_failed));
		if (compression_failed) {
			ip = buf;
			WT_DSTAT_INCR(session, compress_write_fail);
		} else {
			compressed = 1;
			WT_DSTAT_INCR(session, compress_write);

			/*
			 * Copy in the skipped header bytes, set the final data
			 * size.
			 */
			memcpy(tmp->mem, buf->mem, WT_BLOCK_COMPRESS_SKIP);
			tmp->size =
			    (uint32_t)result_len + WT_BLOCK_COMPRESS_SKIP;
			ip = tmp;
		}
	}
	dsk = ip->mem;

	/* If the buffer is compressed, set the flag. */
	if (compressed)
		F_SET(dsk, WT_PAGE_COMPRESSED);

	/*
	 * We increment the block's write generation so it's easy to identify
	 * newer versions of blocks during salvage.  (It's common in WiredTiger,
	 * at least for the default block manager, for multiple blocks to be
	 * internally consistent with identical first and last keys, so we need
	 * a way to know the most recent state of the block.  We could check
	 * which leaf is referenced by a valid internal page, but that implies
	 * salvaging internal pages, which I don't want to do, and it's not
	 * as good anyway, because the internal page may not have been written
	 * after the leaf page was updated.  So, write generations it is.
	 *
	 * Nothing is locked at this point but two versions of a page with the
	 * same generation is pretty unlikely, and if we did, they're going to
	 * be roughly identical for the purposes of salvage, anyway.
	 */
	dsk->write_gen = ++btree->write_gen;

	/*
	 * Checksum the data if the buffer isn't compressed or checksums are
	 * configured.
	 */
	switch (btree->checksum) {
	case CKSUM_ON:
		data_cksum = 1;
		break;
	case CKSUM_OFF:
		data_cksum = 0;
		break;
	case CKSUM_UNCOMPRESSED:
	default:
		data_cksum = !compressed;
		break;
	}

	/* Call the block manager to write the block. */
	WT_ERR(checkpoint ?
	    bm->checkpoint(bm, session, ip, btree->ckpt, data_cksum) :
	    bm->write(bm, session, ip, addr, addr_size, data_cksum));

	WT_CSTAT_INCR(session, cache_write);
	WT_DSTAT_INCR(session, cache_write);
	WT_CSTAT_INCRV(session, cache_bytes_write, ip->size);
	WT_DSTAT_INCRV(session, cache_bytes_write, ip->size);

err:	__wt_scr_free(&tmp);
	return (ret);
}
Exemplo n.º 10
0
/*
 * __wt_compact_evict --
 *	Helper routine to decide if a file's size would benefit from re-writing
 * this page.
 */
int
__wt_compact_evict(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_BM *bm;
	WT_PAGE_MODIFY *mod;
	int skip;
	uint32_t addr_size;
	const uint8_t *addr;

	bm = S2BT(session)->bm;
	mod = page->modify;

	/*
	 * We have to review page reconciliation information as an in-memory
	 * page's original disk addresses might have been fine for compaction
	 * but its replacement addresses might be a problem.  To review page
	 * reconciliation information, we have to lock out both eviction and
	 * checkpoints, as those are the other two operations that can write
	 * a page.
	 *
	 * Ignore the root: it may not have a replacement address, and besides,
	 * if anything else gets written, so will it.
	 */
	if (WT_PAGE_IS_ROOT(page))
		return (0);

	/*
	 * If the page is already dirty, skip some work, it will be written in
	 * any case.
	 */
	if (__wt_page_is_modified(page))
		return (0);

	/*
	 * If the page is clean, test the original addresses.
	 * If the page is a 1-to-1 replacement, test the replacement addresses.
	 * If the page is a split, ignore it, it will be merged into the parent.
	 */
	if (mod == NULL)
		goto disk;

	switch (F_ISSET(mod, WT_PM_REC_MASK)) {
	case 0:
disk:		__wt_get_addr(page->parent, page->ref, &addr, &addr_size);
		if (addr == NULL)
			return (0);
		WT_RET(
		    bm->compact_page_skip(bm, session, addr, addr_size, &skip));
		if (skip)
			return (0);
		break;
	case WT_PM_REC_EMPTY:
		return (0);
	case WT_PM_REC_REPLACE:
		WT_RET(bm->compact_page_skip(bm,
		    session, mod->u.replace.addr, mod->u.replace.size, &skip));
		if (skip)
			return (0);
		break;
	case WT_PM_REC_SPLIT:
	case WT_PM_REC_SPLIT_MERGE:
		return (0);
	}

	/* Mark the page and tree dirty, we want to write this page. */
	WT_RET(__wt_page_modify_init(session, page));
	__wt_page_and_tree_modify_set(session, page);

	WT_DSTAT_INCR(session, btree_compact_rewrite);
	return (0);
}