static Rcpp::NumericMatrix refit_model(Rcpp::NumericMatrix X, Rcpp::NumericVector y, Rcpp::NumericMatrix beta_new, Rcpp::IntegerVector nk, int model, double eps, int maxiter) { int K = nk.size(); int p = X.ncol(); int n; Rcpp::NumericMatrix Xtmp(X.nrow(),p); Rcpp::NumericMatrix beta_refit(p,K); Rcpp::NumericVector lasso_result; int idx = 0; for (int k = 0; k < K; k++) { n = nk[k]; for (int i = 0; i < n; i++) { for (int j = 0; j < p; j++) { Xtmp(idx+i,j) = X(idx+i,j) * nz(beta_new(j,k),eps); } } idx += n; } idx = 0; for (int k = 0; k < K; k++) { n = nk[k]; lasso_result = lasso(Xtmp(Rcpp::Range(idx,idx+n-1),Rcpp::_), y[Rcpp::Range(idx,idx+n-1)], 0.0, model, false, eps, maxiter); for(int j = 0; j < p; j++){ beta_refit(j,k) = lasso_result[j]; } idx += n; } return beta_refit; }
int BlockDACG::reSolve(int numEigen, Epetra_MultiVector &Q, double *lambda, int startingEV) { // Computes the smallest eigenvalues and the corresponding eigenvectors // of the generalized eigenvalue problem // // K X = M X Lambda // // using a Block Deflation Accelerated Conjugate Gradient algorithm. // // Note that if M is not specified, then K X = X Lambda is solved. // // Ref: P. Arbenz & R. Lehoucq, "A comparison of algorithms for modal analysis in the // absence of a sparse direct method", SNL, Technical Report SAND2003-1028J // With the notations of this report, the coefficient beta is defined as // diag( H^T_{k} G_{k} ) / diag( H^T_{k-1} G_{k-1} ) // // Input variables: // // numEigen (integer) = Number of eigenmodes requested // // Q (Epetra_MultiVector) = Converged eigenvectors // The number of columns of Q must be equal to numEigen + blockSize. // The rows of Q are distributed across processors. // At exit, the first numEigen columns contain the eigenvectors requested. // // lambda (array of doubles) = Converged eigenvalues // At input, it must be of size numEigen + blockSize. // At exit, the first numEigen locations contain the eigenvalues requested. // // startingEV (integer) = Number of existing converged eigenmodes // // Return information on status of computation // // info >= 0 >> Number of converged eigenpairs at the end of computation // // // Failure due to input arguments // // info = - 1 >> The stiffness matrix K has not been specified. // info = - 2 >> The maps for the matrix K and the matrix M differ. // info = - 3 >> The maps for the matrix K and the preconditioner P differ. // info = - 4 >> The maps for the vectors and the matrix K differ. // info = - 5 >> Q is too small for the number of eigenvalues requested. // info = - 6 >> Q is too small for the computation parameters. // // info = - 10 >> Failure during the mass orthonormalization // // info = - 20 >> Error in LAPACK during the local eigensolve // // info = - 30 >> MEMORY // // Check the input parameters if (numEigen <= startingEV) { return startingEV; } int info = myVerify.inputArguments(numEigen, K, M, Prec, Q, numEigen + blockSize); if (info < 0) return info; int myPid = MyComm.MyPID(); // Get the weight for approximating the M-inverse norm Epetra_Vector *vectWeight = 0; if (normWeight) { vectWeight = new Epetra_Vector(View, Q.Map(), normWeight); } int knownEV = startingEV; int localVerbose = verbose*(myPid==0); // Define local block vectors // // MX = Working vectors (storing M*X if M is specified, else pointing to X) // KX = Working vectors (storing K*X) // // R = Residuals // // H = Preconditioned residuals // // P = Search directions // MP = Working vectors (storing M*P if M is specified, else pointing to P) // KP = Working vectors (storing K*P) int xr = Q.MyLength(); Epetra_MultiVector X(View, Q, numEigen, blockSize); X.Random(); int tmp; tmp = (M == 0) ? 5*blockSize*xr : 7*blockSize*xr; double *work1 = new (nothrow) double[tmp]; if (work1 == 0) { if (vectWeight) delete vectWeight; info = -30; return info; } memRequested += sizeof(double)*tmp/(1024.0*1024.0); highMem = (highMem > currentSize()) ? highMem : currentSize(); double *tmpD = work1; Epetra_MultiVector KX(View, Q.Map(), tmpD, xr, blockSize); tmpD = tmpD + xr*blockSize; Epetra_MultiVector MX(View, Q.Map(), (M) ? tmpD : X.Values(), xr, blockSize); tmpD = (M) ? tmpD + xr*blockSize : tmpD; Epetra_MultiVector R(View, Q.Map(), tmpD, xr, blockSize); tmpD = tmpD + xr*blockSize; Epetra_MultiVector H(View, Q.Map(), tmpD, xr, blockSize); tmpD = tmpD + xr*blockSize; Epetra_MultiVector P(View, Q.Map(), tmpD, xr, blockSize); tmpD = tmpD + xr*blockSize; Epetra_MultiVector KP(View, Q.Map(), tmpD, xr, blockSize); tmpD = tmpD + xr*blockSize; Epetra_MultiVector MP(View, Q.Map(), (M) ? tmpD : P.Values(), xr, blockSize); // Define arrays // // theta = Store the local eigenvalues (size: 2*blockSize) // normR = Store the norm of residuals (size: blockSize) // // oldHtR = Store the previous H_i^T*R_i (size: blockSize) // currentHtR = Store the current H_i^T*R_i (size: blockSize) // // MM = Local mass matrix (size: 2*blockSize x 2*blockSize) // KK = Local stiffness matrix (size: 2*blockSize x 2*blockSize) // // S = Local eigenvectors (size: 2*blockSize x 2*blockSize) int lwork2; lwork2 = 5*blockSize + 12*blockSize*blockSize; double *work2 = new (nothrow) double[lwork2]; if (work2 == 0) { if (vectWeight) delete vectWeight; delete[] work1; info = -30; return info; } highMem = (highMem > currentSize()) ? highMem : currentSize(); tmpD = work2; double *theta = tmpD; tmpD = tmpD + 2*blockSize; double *normR = tmpD; tmpD = tmpD + blockSize; double *oldHtR = tmpD; tmpD = tmpD + blockSize; double *currentHtR = tmpD; tmpD = tmpD + blockSize; memset(currentHtR, 0, blockSize*sizeof(double)); double *MM = tmpD; tmpD = tmpD + 4*blockSize*blockSize; double *KK = tmpD; tmpD = tmpD + 4*blockSize*blockSize; double *S = tmpD; memRequested += sizeof(double)*lwork2/(1024.0*1024.0); // Define an array to store the residuals history if (localVerbose > 2) { resHistory = new (nothrow) double[maxIterEigenSolve*blockSize]; if (resHistory == 0) { if (vectWeight) delete vectWeight; delete[] work1; delete[] work2; info = -30; return info; } historyCount = 0; } // Miscellaneous definitions bool reStart = false; numRestart = 0; int localSize; int twoBlocks = 2*blockSize; int nFound = blockSize; int i, j; if (localVerbose > 0) { cout << endl; cout << " *|* Problem: "; if (M) cout << "K*Q = M*Q D "; else cout << "K*Q = Q D "; if (Prec) cout << " with preconditioner"; cout << endl; cout << " *|* Algorithm = DACG (block version)" << endl; cout << " *|* Size of blocks = " << blockSize << endl; cout << " *|* Number of requested eigenvalues = " << numEigen << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); cout << " *|* Tolerance for convergence = " << tolEigenSolve << endl; cout << " *|* Norm used for convergence: "; if (normWeight) cout << "weighted L2-norm with user-provided weights" << endl; else cout << "L^2-norm" << endl; if (startingEV > 0) cout << " *|* Input converged eigenvectors = " << startingEV << endl; cout << "\n -- Start iterations -- \n"; } timeOuterLoop -= MyWatch.WallTime(); for (outerIter = 1; outerIter <= maxIterEigenSolve; ++outerIter) { highMem = (highMem > currentSize()) ? highMem : currentSize(); if ((outerIter == 1) || (reStart == true)) { reStart = false; localSize = blockSize; if (nFound > 0) { Epetra_MultiVector X2(View, X, blockSize-nFound, nFound); Epetra_MultiVector MX2(View, MX, blockSize-nFound, nFound); Epetra_MultiVector KX2(View, KX, blockSize-nFound, nFound); // Apply the mass matrix to X timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(X2, MX2); timeMassOp += MyWatch.WallTime(); massOp += nFound; if (knownEV > 0) { // Orthonormalize X against the known eigenvectors with Gram-Schmidt // Note: Use R as a temporary work space Epetra_MultiVector copyQ(View, Q, 0, knownEV); timeOrtho -= MyWatch.WallTime(); info = modalTool.massOrthonormalize(X, MX, M, copyQ, nFound, 0, R.Values()); timeOrtho += MyWatch.WallTime(); // Exit the code if the orthogonalization did not succeed if (info < 0) { info = -10; delete[] work1; delete[] work2; if (vectWeight) delete vectWeight; return info; } } // Apply the stiffness matrix to X timeStifOp -= MyWatch.WallTime(); K->Apply(X2, KX2); timeStifOp += MyWatch.WallTime(); stifOp += nFound; } // if (nFound > 0) } // if ((outerIter == 1) || (reStart == true)) else { // Apply the preconditioner on the residuals if (Prec != 0) { timePrecOp -= MyWatch.WallTime(); Prec->ApplyInverse(R, H); timePrecOp += MyWatch.WallTime(); precOp += blockSize; } else { memcpy(H.Values(), R.Values(), xr*blockSize*sizeof(double)); } // Compute the product H^T*R timeSearchP -= MyWatch.WallTime(); memcpy(oldHtR, currentHtR, blockSize*sizeof(double)); H.Dot(R, currentHtR); // Define the new search directions if (localSize == blockSize) { P.Scale(-1.0, H); localSize = twoBlocks; } // if (localSize == blockSize) else { bool hasZeroDot = false; for (j = 0; j < blockSize; ++j) { if (oldHtR[j] == 0.0) { hasZeroDot = true; break; } callBLAS.SCAL(xr, currentHtR[j]/oldHtR[j], P.Values() + j*xr); } if (hasZeroDot == true) { // Restart the computation when there is a null dot product if (localVerbose > 0) { cout << endl; cout << " !! Null dot product -- Restart the search space !!\n"; cout << endl; } if (blockSize == 1) { X.Random(); nFound = blockSize; } else { Epetra_MultiVector Xinit(View, X, j, blockSize-j); Xinit.Random(); nFound = blockSize - j; } // if (blockSize == 1) reStart = true; numRestart += 1; info = 0; continue; } callBLAS.AXPY(xr*blockSize, -1.0, H.Values(), P.Values()); } // if (localSize == blockSize) timeSearchP += MyWatch.WallTime(); // Apply the mass matrix on P timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(P, MP); timeMassOp += MyWatch.WallTime(); massOp += blockSize; if (knownEV > 0) { // Orthogonalize P against the known eigenvectors // Note: Use R as a temporary work space Epetra_MultiVector copyQ(View, Q, 0, knownEV); timeOrtho -= MyWatch.WallTime(); modalTool.massOrthonormalize(P, MP, M, copyQ, blockSize, 1, R.Values()); timeOrtho += MyWatch.WallTime(); } // Apply the stiffness matrix to P timeStifOp -= MyWatch.WallTime(); K->Apply(P, KP); timeStifOp += MyWatch.WallTime(); stifOp += blockSize; } // if ((outerIter == 1) || (reStart == true)) // Form "local" mass and stiffness matrices // Note: Use S as a temporary workspace timeLocalProj -= MyWatch.WallTime(); modalTool.localProjection(blockSize, blockSize, xr, X.Values(), xr, KX.Values(), xr, KK, localSize, S); modalTool.localProjection(blockSize, blockSize, xr, X.Values(), xr, MX.Values(), xr, MM, localSize, S); if (localSize > blockSize) { modalTool.localProjection(blockSize, blockSize, xr, X.Values(), xr, KP.Values(), xr, KK + blockSize*localSize, localSize, S); modalTool.localProjection(blockSize, blockSize, xr, P.Values(), xr, KP.Values(), xr, KK + blockSize*localSize + blockSize, localSize, S); modalTool.localProjection(blockSize, blockSize, xr, X.Values(), xr, MP.Values(), xr, MM + blockSize*localSize, localSize, S); modalTool.localProjection(blockSize, blockSize, xr, P.Values(), xr, MP.Values(), xr, MM + blockSize*localSize + blockSize, localSize, S); } // if (localSize > blockSize) timeLocalProj += MyWatch.WallTime(); // Perform a spectral decomposition timeLocalSolve -= MyWatch.WallTime(); int nevLocal = localSize; info = modalTool.directSolver(localSize, KK, localSize, MM, localSize, nevLocal, S, localSize, theta, localVerbose, (blockSize == 1) ? 1: 0); timeLocalSolve += MyWatch.WallTime(); if (info < 0) { // Stop when spectral decomposition has a critical failure break; } // Check for restarting if ((theta[0] < 0.0) || (nevLocal < blockSize)) { if (localVerbose > 0) { cout << " Iteration " << outerIter; cout << "- Failure for spectral decomposition - RESTART with new random search\n"; } if (blockSize == 1) { X.Random(); nFound = blockSize; } else { Epetra_MultiVector Xinit(View, X, 1, blockSize-1); Xinit.Random(); nFound = blockSize - 1; } // if (blockSize == 1) reStart = true; numRestart += 1; info = 0; continue; } // if ((theta[0] < 0.0) || (nevLocal < blockSize)) if ((localSize == twoBlocks) && (nevLocal == blockSize)) { for (j = 0; j < nevLocal; ++j) memcpy(S + j*blockSize, S + j*twoBlocks, blockSize*sizeof(double)); localSize = blockSize; } // Check the direction of eigenvectors // Note: This sign check is important for convergence for (j = 0; j < nevLocal; ++j) { double coeff = S[j + j*localSize]; if (coeff < 0.0) callBLAS.SCAL(localSize, -1.0, S + j*localSize); } // Compute the residuals timeResidual -= MyWatch.WallTime(); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, KX.Values(), xr, S, localSize, 0.0, R.Values(), xr); if (localSize == twoBlocks) { callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, KP.Values(), xr, S + blockSize, localSize, 1.0, R.Values(), xr); } for (j = 0; j < blockSize; ++j) callBLAS.SCAL(localSize, theta[j], S + j*localSize); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, -1.0, MX.Values(), xr, S, localSize, 1.0, R.Values(), xr); if (localSize == twoBlocks) { callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, -1.0, MP.Values(), xr, S + blockSize, localSize, 1.0, R.Values(), xr); } for (j = 0; j < blockSize; ++j) callBLAS.SCAL(localSize, 1.0/theta[j], S + j*localSize); timeResidual += MyWatch.WallTime(); // Compute the norms of the residuals timeNorm -= MyWatch.WallTime(); if (vectWeight) R.NormWeighted(*vectWeight, normR); else R.Norm2(normR); // Scale the norms of residuals with the eigenvalues // Count the converged eigenvectors nFound = 0; for (j = 0; j < blockSize; ++j) { normR[j] = (theta[j] == 0.0) ? normR[j] : normR[j]/theta[j]; if (normR[j] < tolEigenSolve) nFound += 1; } timeNorm += MyWatch.WallTime(); // Store the residual history if (localVerbose > 2) { memcpy(resHistory + historyCount*blockSize, normR, blockSize*sizeof(double)); historyCount += 1; } // Print information on current iteration if (localVerbose > 0) { cout << " Iteration " << outerIter << " - Number of converged eigenvectors "; cout << knownEV + nFound << endl; } if (localVerbose > 1) { cout << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); for (i=0; i<blockSize; ++i) { cout << " Iteration " << outerIter << " - Scaled Norm of Residual " << i; cout << " = " << normR[i] << endl; } cout << endl; cout.precision(2); for (i=0; i<blockSize; ++i) { cout << " Iteration " << outerIter << " - Ritz eigenvalue " << i; cout.setf((fabs(theta[i]) < 0.01) ? ios::scientific : ios::fixed, ios::floatfield); cout << " = " << theta[i] << endl; } cout << endl; } if (nFound == 0) { // Update the spaces // Note: Use H as a temporary work space timeLocalUpdate -= MyWatch.WallTime(); memcpy(H.Values(), X.Values(), xr*blockSize*sizeof(double)); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, H.Values(), xr, S, localSize, 0.0, X.Values(), xr); memcpy(H.Values(), KX.Values(), xr*blockSize*sizeof(double)); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, H.Values(), xr, S, localSize, 0.0, KX.Values(), xr); if (M) { memcpy(H.Values(), MX.Values(), xr*blockSize*sizeof(double)); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, H.Values(), xr, S, localSize, 0.0, MX.Values(), xr); } if (localSize == twoBlocks) { callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, P.Values(), xr, S + blockSize, localSize, 1.0, X.Values(), xr); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, KP.Values(), xr, S + blockSize, localSize, 1.0, KX.Values(), xr); if (M) { callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, MP.Values(), xr, S + blockSize, localSize, 1.0, MX.Values(), xr); } } // if (localSize == twoBlocks) timeLocalUpdate += MyWatch.WallTime(); // When required, monitor some orthogonalities if (verbose > 2) { if (knownEV == 0) { accuracyCheck(&X, &MX, &R, 0, (localSize>blockSize) ? &P : 0); } else { Epetra_MultiVector copyQ(View, Q, 0, knownEV); accuracyCheck(&X, &MX, &R, ©Q, (localSize>blockSize) ? &P : 0); } } // if (verbose > 2) continue; } // if (nFound == 0) // Order the Ritz eigenvectors by putting the converged vectors at the beginning int firstIndex = blockSize; for (j = 0; j < blockSize; ++j) { if (normR[j] >= tolEigenSolve) { firstIndex = j; break; } } // for (j = 0; j < blockSize; ++j) while (firstIndex < nFound) { for (j = firstIndex; j < blockSize; ++j) { if (normR[j] < tolEigenSolve) { // Swap the j-th and firstIndex-th position callFortran.SWAP(localSize, S + j*localSize, 1, S + firstIndex*localSize, 1); callFortran.SWAP(1, theta + j, 1, theta + firstIndex, 1); callFortran.SWAP(1, normR + j, 1, normR + firstIndex, 1); break; } } // for (j = firstIndex; j < blockSize; ++j) for (j = 0; j < blockSize; ++j) { if (normR[j] >= tolEigenSolve) { firstIndex = j; break; } } // for (j = 0; j < blockSize; ++j) } // while (firstIndex < nFound) // Copy the converged eigenvalues memcpy(lambda + knownEV, theta, nFound*sizeof(double)); // Convergence test if (knownEV + nFound >= numEigen) { callBLAS.GEMM('N', 'N', xr, nFound, blockSize, 1.0, X.Values(), xr, S, localSize, 0.0, R.Values(), xr); if (localSize > blockSize) { callBLAS.GEMM('N', 'N', xr, nFound, blockSize, 1.0, P.Values(), xr, S + blockSize, localSize, 1.0, R.Values(), xr); } memcpy(Q.Values() + knownEV*xr, R.Values(), nFound*xr*sizeof(double)); knownEV += nFound; if (localVerbose == 1) { cout << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); for (i=0; i<blockSize; ++i) { cout << " Iteration " << outerIter << " - Scaled Norm of Residual " << i; cout << " = " << normR[i] << endl; } cout << endl; } break; } // Store the converged eigenvalues and eigenvectors callBLAS.GEMM('N', 'N', xr, nFound, blockSize, 1.0, X.Values(), xr, S, localSize, 0.0, Q.Values() + knownEV*xr, xr); if (localSize == twoBlocks) { callBLAS.GEMM('N', 'N', xr, nFound, blockSize, 1.0, P.Values(), xr, S + blockSize, localSize, 1.0, Q.Values() + knownEV*xr, xr); } knownEV += nFound; // Define the restarting vectors timeRestart -= MyWatch.WallTime(); int leftOver = (nevLocal < blockSize + nFound) ? nevLocal - nFound : blockSize; double *Snew = S + nFound*localSize; memcpy(H.Values(), X.Values(), blockSize*xr*sizeof(double)); callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, H.Values(), xr, Snew, localSize, 0.0, X.Values(), xr); memcpy(H.Values(), KX.Values(), blockSize*xr*sizeof(double)); callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, H.Values(), xr, Snew, localSize, 0.0, KX.Values(), xr); if (M) { memcpy(H.Values(), MX.Values(), blockSize*xr*sizeof(double)); callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, H.Values(), xr, Snew, localSize, 0.0, MX.Values(), xr); } if (localSize == twoBlocks) { callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, P.Values(), xr, Snew+blockSize, localSize, 1.0, X.Values(), xr); callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, KP.Values(), xr, Snew+blockSize, localSize, 1.0, KX.Values(), xr); if (M) { callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, MP.Values(), xr, Snew+blockSize, localSize, 1.0, MX.Values(), xr); } } // if (localSize == twoBlocks) if (nevLocal < blockSize + nFound) { // Put new random vectors at the end of the block Epetra_MultiVector Xtmp(View, X, leftOver, blockSize - leftOver); Xtmp.Random(); } else { nFound = 0; } // if (nevLocal < blockSize + nFound) reStart = true; timeRestart += MyWatch.WallTime(); } // for (outerIter = 1; outerIter <= maxIterEigenSolve; ++outerIter) timeOuterLoop += MyWatch.WallTime(); highMem = (highMem > currentSize()) ? highMem : currentSize(); // Clean memory delete[] work1; delete[] work2; if (vectWeight) delete vectWeight; // Sort the eigenpairs timePostProce -= MyWatch.WallTime(); if ((info == 0) && (knownEV > 0)) { mySort.sortScalars_Vectors(knownEV, lambda, Q.Values(), Q.MyLength()); } timePostProce += MyWatch.WallTime(); return (info == 0) ? knownEV : info; }