Exemplo n.º 1
0
/**
  \brief Finds the maximal number of assumptions that can be satisfied.
  An assumption is any formula preceeded with the :assumption keyword.
  "Hard" constraints can be supported by using the :formula keyword.
  
  Input: file in SMT-LIB format, and MaxSAT algorithm to be used: 0 - Naive, 1 - Fu&Malik's algo.
  Output: the maximum number of assumptions that can be satisfied.
*/
int smtlib_maxsat(char * file_name, int approach) 
{
    Z3_context ctx;
    Z3_solver s;
    unsigned num_hard_cnstrs, num_soft_cnstrs;
    Z3_ast * hard_cnstrs, * soft_cnstrs;
    unsigned result = 0;
    ctx = mk_context();
    s = Z3_mk_solver(ctx);
    Z3_parse_smtlib_file(ctx, file_name, 0, 0, 0, 0, 0, 0);
    hard_cnstrs = get_hard_constraints(ctx, &num_hard_cnstrs);
    soft_cnstrs = get_soft_constraints(ctx, &num_soft_cnstrs);
    switch (approach) {
    case NAIVE_MAXSAT: 
        result = naive_maxsat(ctx, s, num_hard_cnstrs, hard_cnstrs, num_soft_cnstrs, soft_cnstrs);
        break;
    case FU_MALIK_MAXSAT:
        result = fu_malik_maxsat(ctx, s, num_hard_cnstrs, hard_cnstrs, num_soft_cnstrs, soft_cnstrs);
        break;
    default:
        /* Exercise: implement your own MaxSAT algorithm.*/
        error("Not implemented yet.");
        break;
    }
    free_cnstr_array(hard_cnstrs);
    free_cnstr_array(soft_cnstrs);
    return result;
}
Exemplo n.º 2
0
int main(){
	Z3_context context;
	Z3_solver solver;
	Z3_sort bvsort1;
	Z3_sort bvsort4;
	Z3_sort memsort;
	Z3_ast x_ast,y_ast,z_ast,u_ast,v_ast,w_ast,test_ast;
	Z3_model model;

	Z3_config config = Z3_mk_config();
	Z3_set_param_value(config,"model","true");
	context = Z3_mk_context_rc(config);
	Z3_set_error_handler(context,error_handler);

	solver = Z3_mk_solver(context);
	Z3_solver_inc_ref(context,solver);

	bvsort1 = Z3_mk_bv_sort(context,8);
	bvsort4 = Z3_mk_bv_sort(context,32);

	memsort = Z3_mk_array_sort(context,bvsort4,bvsort1);
	y_ast = Z3_mk_const(context,Z3_mk_string_symbol(context,"mem"),memsort);
	Z3_inc_ref(context,y_ast);

	u_ast = Z3_mk_unsigned_int64(context,13,bvsort4);
	Z3_inc_ref(context,u_ast);
	v_ast = Z3_mk_select(context,y_ast,u_ast);
	Z3_inc_ref(context,v_ast);

	z_ast = Z3_mk_unsigned_int64(context,7,bvsort1);
	Z3_inc_ref(context,z_ast);
	test_ast = Z3_mk_eq(context,v_ast,z_ast);
	Z3_inc_ref(context,test_ast);
	Z3_solver_assert(context,solver,test_ast);

	w_ast = Z3_mk_const(context,Z3_mk_string_symbol(context,"w"),bvsort1);
	y_ast = Z3_mk_store(context,y_ast,u_ast,w_ast);
	Z3_inc_ref(context,y_ast);

	v_ast = Z3_mk_select(context,y_ast,u_ast);
	Z3_inc_ref(context,v_ast);

	z_ast = Z3_mk_unsigned_int64(context,2,bvsort1);
	Z3_inc_ref(context,z_ast);
	test_ast = Z3_mk_eq(context,v_ast,z_ast);
	Z3_inc_ref(context,test_ast);
	Z3_solver_assert(context,solver,test_ast);

	Z3_solver_check(context,solver);
	model = Z3_solver_get_model(context,solver);
	fprintf(stderr,"%s\n",Z3_model_to_string(context,model));

	fprintf(stderr,"%s\n",Z3_simplify_get_help(context));

	return 0;
}
Exemplo n.º 3
0
Z3Solver::Z3Solver(Z3Ctx Ctx)
    : Z3Object(Ctx)
{
    if (Ctx != Z3Ctx::NullPtr) {
        Solver = Z3_mk_solver(*Ctx);
    } else {
        Solver = nullptr;
    }
    if (Ctx != Z3Ctx::NullPtr && Solver != nullptr) {
        Z3_solver_inc_ref(*Ctx, Solver);
    }
}
void z3_wrapper_init(z3_wrapper *z3) {
  /* init ctx */
  Z3_config cfg = Z3_mk_config();
  Z3_set_param_value(cfg, "model", "true");
  z3->ctx = Z3_mk_context(cfg);

  /* init error handling */
  Z3_set_error_handler(z3->ctx, z3_error_handler);

  /* init solver */
  z3->solver = Z3_mk_solver(z3->ctx);
  Z3_solver_inc_ref(z3->ctx, z3->solver);

  Z3_del_config(cfg);

  z3->Ek_consts = NULL;
}
Exemplo n.º 5
0
/**
   \brief Small test for the at-most-one constraint.
*/
void tst_at_most_one() 
{
    Z3_context ctx = mk_context();
    Z3_solver s = Z3_mk_solver(ctx);
    Z3_ast k1      = mk_bool_var(ctx, "k1");
    Z3_ast k2      = mk_bool_var(ctx, "k2");
    Z3_ast k3      = mk_bool_var(ctx, "k3");
    Z3_ast k4      = mk_bool_var(ctx, "k4");
    Z3_ast k5      = mk_bool_var(ctx, "k5");
    Z3_ast k6      = mk_bool_var(ctx, "k6");
    Z3_ast args1[5] = { k1, k2, k3, k4, k5 };
    Z3_ast args2[3] = { k4, k5, k6 };
    Z3_model m      = 0;
    Z3_lbool result;
    printf("testing at-most-one constraint\n");
    assert_at_most_one(ctx, s, 5, args1);
    assert_at_most_one(ctx, s, 3, args2);
    printf("it must be sat...\n");
    result = Z3_solver_check(ctx, s);
    if (result != Z3_L_TRUE)
        error("BUG");
    m = Z3_solver_get_model(ctx, s);
    printf("model:\n%s\n", Z3_model_to_string(ctx, m));
    Z3_solver_assert(ctx, s, mk_binary_or(ctx, k2, k3));
    Z3_solver_assert(ctx, s, mk_binary_or(ctx, k1, k6));
    printf("it must be sat...\n");
    result = Z3_solver_check(ctx, s);
    if (result != Z3_L_TRUE)
        error("BUG");
    m = Z3_solver_get_model(ctx, s);
    printf("model:\n%s\n", Z3_model_to_string(ctx, m));
    Z3_solver_assert(ctx, s, mk_binary_or(ctx, k4, k5));
    printf("it must be unsat...\n");
    result = Z3_solver_check(ctx, s);
    if (result != Z3_L_FALSE)
        error("BUG");
    Z3_del_context(ctx);
}
Exemplo n.º 6
0
Z3_solver mk_solver(Z3_context ctx)
{
    Z3_solver r = Z3_mk_solver(ctx);
    Z3_solver_inc_ref(ctx, r);
    return r;
}
Exemplo n.º 7
0
bool Z3SolverImpl::internalRunSolver(
    const Query &query, const std::vector<const Array *> *objects,
    std::vector<std::vector<unsigned char> > *values, bool &hasSolution) {

  TimerStatIncrementer t(stats::queryTime);
  // NOTE: Z3 will switch to using a slower solver internally if push/pop are
  // used so for now it is likely that creating a new solver each time is the
  // right way to go until Z3 changes its behaviour.
  //
  // TODO: Investigate using a custom tactic as described in
  // https://github.com/klee/klee/issues/653
  Z3_solver theSolver = Z3_mk_solver(builder->ctx);
  Z3_solver_inc_ref(builder->ctx, theSolver);
  Z3_solver_set_params(builder->ctx, theSolver, solverParameters);

  runStatusCode = SOLVER_RUN_STATUS_FAILURE;

  for (ConstraintManager::const_iterator it = query.constraints.begin(),
                                         ie = query.constraints.end();
       it != ie; ++it) {
    Z3_solver_assert(builder->ctx, theSolver, builder->construct(*it));
  }
  ++stats::queries;
  if (objects)
    ++stats::queryCounterexamples;

  Z3ASTHandle z3QueryExpr =
      Z3ASTHandle(builder->construct(query.expr), builder->ctx);

  // KLEE Queries are validity queries i.e.
  // ∀ X Constraints(X) → query(X)
  // but Z3 works in terms of satisfiability so instead we ask the
  // negation of the equivalent i.e.
  // ∃ X Constraints(X) ∧ ¬ query(X)
  Z3_solver_assert(
      builder->ctx, theSolver,
      Z3ASTHandle(Z3_mk_not(builder->ctx, z3QueryExpr), builder->ctx));

  if (dumpedQueriesFile) {
    *dumpedQueriesFile << "; start Z3 query\n";
    *dumpedQueriesFile << Z3_solver_to_string(builder->ctx, theSolver);
    *dumpedQueriesFile << "(check-sat)\n";
    *dumpedQueriesFile << "(reset)\n";
    *dumpedQueriesFile << "; end Z3 query\n\n";
    dumpedQueriesFile->flush();
  }

  ::Z3_lbool satisfiable = Z3_solver_check(builder->ctx, theSolver);
  runStatusCode = handleSolverResponse(theSolver, satisfiable, objects, values,
                                       hasSolution);

  Z3_solver_dec_ref(builder->ctx, theSolver);
  // Clear the builder's cache to prevent memory usage exploding.
  // By using ``autoClearConstructCache=false`` and clearning now
  // we allow Z3_ast expressions to be shared from an entire
  // ``Query`` rather than only sharing within a single call to
  // ``builder->construct()``.
  builder->clearConstructCache();

  if (runStatusCode == SolverImpl::SOLVER_RUN_STATUS_SUCCESS_SOLVABLE ||
      runStatusCode == SolverImpl::SOLVER_RUN_STATUS_SUCCESS_UNSOLVABLE) {
    if (hasSolution) {
      ++stats::queriesInvalid;
    } else {
      ++stats::queriesValid;
    }
    return true; // success
  }
  return false; // failed
}