Exemplo n.º 1
0
static void test_static_and_dynamic_initialization(void)
{
  #if (__SIZEOF_INT__ == 2)
    #define UINT_CONSTANT 0xc0feU
  #else
    #define UINT_CONSTANT 0xc01dc0feU
  #endif

  static Atomic_Uint static_uint   = ATOMIC_INITIALIZER_UINT(UINT_CONSTANT);
  static Atomic_Ulong static_ulong = ATOMIC_INITIALIZER_ULONG(0xdeadbeefUL);
  static Atomic_Uintptr static_uintptr =
    ATOMIC_INITIALIZER_UINTPTR((uintptr_t) &static_uintptr);
  static Atomic_Flag static_flag  = ATOMIC_INITIALIZER_FLAG;

  Atomic_Uint stack_uint;
  Atomic_Ulong stack_ulong;
  Atomic_Uintptr stack_uintptr;
  Atomic_Flag stack_flag;

  puts("=== static and dynamic initialization test case ===");

  _Atomic_Init_uint(&stack_uint, UINT_CONSTANT);
  _Atomic_Init_ulong(&stack_ulong, 0xdeadbeefUL);
  _Atomic_Init_uintptr(&stack_uintptr, (uintptr_t) &static_uintptr);
  _Atomic_Flag_clear(&stack_flag, ATOMIC_ORDER_RELAXED);

  rtems_test_assert(
    memcmp(&stack_uint, &static_uint, sizeof(stack_uint)) == 0
  );
  rtems_test_assert(
    memcmp(&stack_ulong, &static_ulong, sizeof(stack_ulong)) == 0
  );
  rtems_test_assert(
    memcmp(&stack_uintptr, &static_uintptr, sizeof(stack_uintptr)) == 0
  );
  rtems_test_assert(
    memcmp(&stack_flag, &static_flag, sizeof(stack_flag)) == 0
  );

  rtems_test_assert(
    _Atomic_Load_uint(&stack_uint, ATOMIC_ORDER_RELAXED) == 0xc01dc0feU
  );
  rtems_test_assert(
    _Atomic_Load_ulong(&stack_ulong, ATOMIC_ORDER_RELAXED) == 0xdeadbeefUL
  );
  rtems_test_assert(
    _Atomic_Load_uintptr(&stack_uintptr, ATOMIC_ORDER_RELAXED)
      == (uintptr_t) &static_uintptr
  );
  rtems_test_assert(
    !_Atomic_Flag_test_and_set(&stack_flag, ATOMIC_ORDER_RELAXED)
  );
}
Exemplo n.º 2
0
bool _Thread_Initialize(
    Objects_Information                  *information,
    Thread_Control                       *the_thread,
    const Scheduler_Control              *scheduler,
    void                                 *stack_area,
    size_t                                stack_size,
    bool                                  is_fp,
    Priority_Control                      priority,
    bool                                  is_preemptible,
    Thread_CPU_budget_algorithms          budget_algorithm,
    Thread_CPU_budget_algorithm_callout   budget_callout,
    uint32_t                              isr_level,
    Objects_Name                          name
)
{
    uintptr_t                tls_size = _TLS_Get_size();
    size_t                   actual_stack_size = 0;
    void                    *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    void                  *fp_area = NULL;
#endif
    bool                     extension_status;
    size_t                   i;
    bool                     scheduler_node_initialized = false;
    Per_CPU_Control         *cpu = _Per_CPU_Get_by_index( 0 );

#if defined( RTEMS_SMP )
    if ( rtems_configuration_is_smp_enabled() && !is_preemptible ) {
        return false;
    }
#endif

    for ( i = 0 ; i < _Thread_Control_add_on_count ; ++i ) {
        const Thread_Control_add_on *add_on = &_Thread_Control_add_ons[ i ];

        *(void **) ( (char *) the_thread + add_on->destination_offset ) =
            (char *) the_thread + add_on->source_offset;
    }

    /*
     *  Initialize the Ada self pointer
     */
#if __RTEMS_ADA__
    the_thread->rtems_ada_self = NULL;
#endif

    the_thread->Start.tls_area = NULL;

    /*
     *  Allocate and Initialize the stack for this thread.
     */
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
    actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
    if ( !actual_stack_size || actual_stack_size < stack_size )
        return false;                     /* stack allocation failed */

    stack = the_thread->Start.stack;
#else
    if ( !stack_area ) {
        actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
        if ( !actual_stack_size || actual_stack_size < stack_size )
            return false;                     /* stack allocation failed */

        stack = the_thread->Start.stack;
        the_thread->Start.core_allocated_stack = true;
    } else {
        stack = stack_area;
        actual_stack_size = stack_size;
        the_thread->Start.core_allocated_stack = false;
    }
#endif

    _Stack_Initialize(
        &the_thread->Start.Initial_stack,
        stack,
        actual_stack_size
    );

    /* Thread-local storage (TLS) area allocation */
    if ( tls_size > 0 ) {
        uintptr_t tls_align = _TLS_Heap_align_up( (uintptr_t) _TLS_Alignment );
        uintptr_t tls_alloc = _TLS_Get_allocation_size( tls_size, tls_align );

        the_thread->Start.tls_area =
            _Workspace_Allocate_aligned( tls_alloc, tls_align );

        if ( the_thread->Start.tls_area == NULL ) {
            goto failed;
        }
    }

    /*
     *  Allocate the floating point area for this thread
     */
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    if ( is_fp ) {
        fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
        if ( !fp_area )
            goto failed;
        fp_area = _Context_Fp_start( fp_area, 0 );
    }
    the_thread->fp_context       = fp_area;
    the_thread->Start.fp_context = fp_area;
#endif

    /*
     *  Initialize the thread timer
     */
    _Watchdog_Preinitialize( &the_thread->Timer );

#ifdef __RTEMS_STRICT_ORDER_MUTEX__
    /* Initialize the head of chain of held mutexes */
    _Chain_Initialize_empty(&the_thread->lock_mutex);
#endif

    /*
     * Clear the extensions area so extension users can determine
     * if they are linked to the thread. An extension user may
     * create the extension long after tasks have been created
     * so they cannot rely on the thread create user extension
     * call.  The object index starts with one, so the first extension context is
     * unused.
     */
    for ( i = 1 ; i <= rtems_configuration_get_maximum_extensions() ; ++i )
        the_thread->extensions[ i ] = NULL;

    /*
     *  General initialization
     */

    the_thread->is_fp                  = is_fp;
    the_thread->Start.isr_level        = isr_level;
    the_thread->Start.is_preemptible   = is_preemptible;
    the_thread->Start.budget_algorithm = budget_algorithm;
    the_thread->Start.budget_callout   = budget_callout;

    switch ( budget_algorithm ) {
    case THREAD_CPU_BUDGET_ALGORITHM_NONE:
    case THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE:
        break;
#if defined(RTEMS_SCORE_THREAD_ENABLE_EXHAUST_TIMESLICE)
    case THREAD_CPU_BUDGET_ALGORITHM_EXHAUST_TIMESLICE:
        the_thread->cpu_time_budget =
            rtems_configuration_get_ticks_per_timeslice();
        break;
#endif
#if defined(RTEMS_SCORE_THREAD_ENABLE_SCHEDULER_CALLOUT)
    case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
        break;
#endif
    }

#if defined(RTEMS_SMP)
    the_thread->Scheduler.state = THREAD_SCHEDULER_BLOCKED;
    the_thread->Scheduler.own_control = scheduler;
    the_thread->Scheduler.control = scheduler;
    the_thread->Scheduler.own_node = the_thread->Scheduler.node;
    _Resource_Node_initialize( &the_thread->Resource_node );
    _CPU_Context_Set_is_executing( &the_thread->Registers, false );
    the_thread->Lock.current = &the_thread->Lock.Default;
    _ISR_lock_Initialize( &the_thread->Lock.Default, "Thread Lock Default");
    _Atomic_Init_uint(&the_thread->Lock.generation, 0);
#endif

    _Thread_Debug_set_real_processor( the_thread, cpu );

    /* Initialize the CPU for the non-SMP schedulers */
    _Thread_Set_CPU( the_thread, cpu );

    the_thread->current_state           = STATES_DORMANT;
    the_thread->Wait.queue              = NULL;
    the_thread->Wait.operations         = &_Thread_queue_Operations_default;
    the_thread->resource_count          = 0;
    the_thread->current_priority        = priority;
    the_thread->real_priority           = priority;
    the_thread->priority_generation     = 0;
    the_thread->Start.initial_priority  = priority;

    _Thread_Wait_flags_set( the_thread, THREAD_WAIT_FLAGS_INITIAL );

    _Scheduler_Node_initialize( scheduler, the_thread );
    scheduler_node_initialized = true;

    _Scheduler_Update_priority( the_thread, priority );

    /*
     *  Initialize the CPU usage statistics
     */
    _Timestamp_Set_to_zero( &the_thread->cpu_time_used );

    /*
     * initialize thread's key vaule node chain
     */
    _Chain_Initialize_empty( &the_thread->Key_Chain );

    _Thread_Action_control_initialize( &the_thread->Post_switch_actions );

    _Thread_Action_initialize(
        &the_thread->Life.Action,
        _Thread_Life_action_handler
    );
    the_thread->Life.state = THREAD_LIFE_NORMAL;
    the_thread->Life.terminator = NULL;

    the_thread->Capture.flags = 0;
    the_thread->Capture.control = NULL;

    /*
     *  Open the object
     */
    _Objects_Open( information, &the_thread->Object, name );

    /*
     *  We assume the Allocator Mutex is locked and dispatching is
     *  enabled when we get here.  We want to be able to run the
     *  user extensions with dispatching enabled.  The Allocator
     *  Mutex provides sufficient protection to let the user extensions
     *  run safely.
     */
    extension_status = _User_extensions_Thread_create( the_thread );
    if ( extension_status )
        return true;

failed:

    if ( scheduler_node_initialized ) {
        _Scheduler_Node_destroy( scheduler, the_thread );
    }

    _Workspace_Free( the_thread->Start.tls_area );

#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    _Workspace_Free( fp_area );
#endif

    _Thread_Stack_Free( the_thread );
    return false;
}