void GxGDEP015OC1::eraseDisplay(bool using_partial_update)
{
  if (_current_page != -1) return;
  if (using_partial_update)
  {
    _using_partial_mode = true; // remember
    _Init_Part(0x01);
    _writeCommand(0x24);
    for (uint32_t i = 0; i < GxGDEP015OC1_BUFFER_SIZE; i++)
    {
      _writeData(0xFF);
    }
    _Update_Part();
    delay(GxGDEP015OC1_PU_DELAY);
    // update erase buffer
    _writeCommand(0x24);
    for (uint32_t i = 0; i < GxGDEP015OC1_BUFFER_SIZE; i++)
    {
      _writeData(0xFF);
    }
    delay(GxGDEP015OC1_PU_DELAY);
  }
  else
  {
    _using_partial_mode = false; // remember
    _Init_Full(0x01);
    _writeCommand(0x24);
    for (uint32_t i = 0; i < GxGDEP015OC1_BUFFER_SIZE; i++)
    {
      _writeData(0xFF);
    }
    _Update_Full();
    _PowerOff();
  }
}
Exemplo n.º 2
0
void GxEPD2_270::writeScreenBufferAgain(uint8_t value)
{
  if (!_using_partial_mode) _Init_Part();
  _setPartialRamArea(0x14, 0, 0, WIDTH, HEIGHT);
  for (uint32_t i = 0; i < uint32_t(WIDTH) * uint32_t(HEIGHT) / 8; i++)
  {
    _writeData(value);
  }
}
Exemplo n.º 3
0
void GxEPD2_270::writeScreenBuffer(uint8_t value)
{
  _initial_write = false; // initial full screen buffer clean done
  if (!_using_partial_mode) _Init_Part();
  _writeCommand(0x13); // set current
  for (uint32_t i = 0; i < uint32_t(WIDTH) * uint32_t(HEIGHT) / 8; i++)
  {
    _writeData(value);
  }
  if (_initial_refresh) writeScreenBufferAgain(value); // init "old data"
}
Exemplo n.º 4
0
void GxEPD2_270::_writeImagePart(uint8_t command, const uint8_t bitmap[], int16_t x_part, int16_t y_part, int16_t w_bitmap, int16_t h_bitmap,
                                 int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
  if (_initial_write) writeScreenBuffer(); // initial full screen buffer clean
  delay(1); // yield() to avoid WDT on ESP8266 and ESP32
  if ((w_bitmap < 0) || (h_bitmap < 0) || (w < 0) || (h < 0)) return;
  if ((x_part < 0) || (x_part >= w_bitmap)) return;
  if ((y_part < 0) || (y_part >= h_bitmap)) return;
  int16_t wb_bitmap = (w_bitmap + 7) / 8; // width bytes, bitmaps are padded
  x_part -= x_part % 8; // byte boundary
  w = w_bitmap - x_part < w ? w_bitmap - x_part : w; // limit
  h = h_bitmap - y_part < h ? h_bitmap - y_part : h; // limit
  x -= x % 8; // byte boundary
  w = 8 * ((w + 7) / 8); // byte boundary, bitmaps are padded
  int16_t x1 = x < 0 ? 0 : x; // limit
  int16_t y1 = y < 0 ? 0 : y; // limit
  int16_t w1 = x + w < int16_t(WIDTH) ? w : int16_t(WIDTH) - x; // limit
  int16_t h1 = y + h < int16_t(HEIGHT) ? h : int16_t(HEIGHT) - y; // limit
  int16_t dx = x1 - x;
  int16_t dy = y1 - y;
  w1 -= dx;
  h1 -= dy;
  if ((w1 <= 0) || (h1 <= 0)) return;
  if (!_using_partial_mode) _Init_Part();
  _setPartialRamArea(command, x1, y1, w1, h1);
  for (int16_t i = 0; i < h1; i++)
  {
    for (int16_t j = 0; j < w1 / 8; j++)
    {
      uint8_t data;
      // use wb_bitmap, h_bitmap of bitmap for index!
      int16_t idx = mirror_y ? x_part / 8 + j + dx / 8 + ((h_bitmap - 1 - (y_part + i + dy))) * wb_bitmap : x_part / 8 + j + dx / 8 + (y_part + i + dy) * wb_bitmap;
      if (pgm)
      {
#if defined(__AVR) || defined(ESP8266) || defined(ESP32)
        data = pgm_read_byte(&bitmap[idx]);
#else
        data = bitmap[idx];
#endif
      }
      else
      {
        data = bitmap[idx];
      }
      if (invert) data = ~data;
      _writeData(data);
    }
  }
  delay(1); // yield() to avoid WDT on ESP8266 and ESP32
}
Exemplo n.º 5
0
void GxEPD2_213c::refresh(int16_t x, int16_t y, int16_t w, int16_t h)
{
  x -= x % 8; // byte boundary
  w -= x % 8; // byte boundary
  int16_t x1 = x < 0 ? 0 : x; // limit
  int16_t y1 = y < 0 ? 0 : y; // limit
  int16_t w1 = x + w < int16_t(WIDTH) ? w : int16_t(WIDTH) - x; // limit
  int16_t h1 = y + h < int16_t(HEIGHT) ? h : int16_t(HEIGHT) - y; // limit
  w1 -= x1 - x;
  h1 -= y1 - y;
  _Init_Part();
  _setPartialRamArea(x1, y1, w1, h1);
  _Update_Part();
}
Exemplo n.º 6
0
void GxEPD2_213c::writeScreenBuffer(uint8_t black_value, uint8_t color_value)
{
  _initial_write = false; // initial full screen buffer clean done
  _Init_Part();
  _writeCommand(0x91); // partial in
  _setPartialRamArea(0, 0, WIDTH, HEIGHT);
  _writeCommand(0x10);
  for (uint32_t i = 0; i < uint32_t(WIDTH) * uint32_t(HEIGHT) / 8; i++)
  {
    _writeData(black_value);
  }
  _writeCommand(0x13);
  for (uint32_t i = 0; i < uint32_t(WIDTH) * uint32_t(HEIGHT) / 8; i++)
  {
    _writeData(color_value);
  }
  _writeCommand(0x92); // partial out
}
void GxGDEP015OC1::drawPagedToWindow(void (*drawCallback)(const void*, const void*), uint16_t x, uint16_t y, uint16_t w, uint16_t h, const void* p1, const void* p2)
{
  if (_current_page != -1) return;
  _rotate(x, y, w, h);
  if (!_using_partial_mode)
  {
    eraseDisplay(false);
    eraseDisplay(true);
  }
  _using_partial_mode = true;
  _Init_Part(0x03);
  for (_current_page = 0; _current_page < GxGDEP015OC1_PAGES; _current_page++)
  {
    uint16_t yds = max(y, _current_page * GxGDEP015OC1_PAGE_HEIGHT);
    uint16_t yde = min(y + h, (_current_page + 1) * GxGDEP015OC1_PAGE_HEIGHT);
    if (yde > yds)
    {
      fillScreen(GxEPD_WHITE);
      drawCallback(p1, p2);
      uint16_t ys = yds % GxGDEP015OC1_PAGE_HEIGHT;
      _writeToWindow(x, ys, x, yds, w, yde - yds);
    }
  }
  _Update_Part();
  delay(GxGDEP015OC1_PU_DELAY);
  // update erase buffer
  for (_current_page = 0; _current_page < GxGDEP015OC1_PAGES; _current_page++)
  {
    uint16_t yds = max(y, _current_page * GxGDEP015OC1_PAGE_HEIGHT);
    uint16_t yde = min(y + h, (_current_page + 1) * GxGDEP015OC1_PAGE_HEIGHT);
    if (yde > yds)
    {
      fillScreen(GxEPD_WHITE);
      drawCallback(p1, p2);
      uint16_t ys = yds % GxGDEP015OC1_PAGE_HEIGHT;
      _writeToWindow(x, ys, x, yds, w, yde - yds);
    }
  }
  delay(GxGDEP015OC1_PU_DELAY);
  _current_page = -1;
  _PowerOff();
}
void GxGDEP015OC1::updateWindow(uint16_t x, uint16_t y, uint16_t w, uint16_t h, bool using_rotation)
{
  if (_current_page != -1) return;
  if (using_rotation) _rotate(x, y, w, h);
  if (x >= GxGDEP015OC1_WIDTH) return;
  if (y >= GxGDEP015OC1_HEIGHT) return;
  uint16_t xe = min(GxGDEP015OC1_WIDTH, x + w) - 1;
  uint16_t ye = min(GxGDEP015OC1_HEIGHT, y + h) - 1;
  uint16_t xs_d8 = x / 8;
  uint16_t xe_d8 = xe / 8;
  _Init_Part(0x03);
  _SetRamArea(xs_d8, xe_d8, y % 256, y / 256, ye % 256, ye / 256); // X-source area,Y-gate area
  _SetRamPointer(xs_d8, y % 256, y / 256); // set ram
  _waitWhileBusy();
  _writeCommand(0x24);
  for (int16_t y1 = y; y1 <= ye; y1++)
  {
    for (int16_t x1 = xs_d8; x1 <= xe_d8; x1++)
    {
      uint16_t idx = y1 * (GxGDEP015OC1_WIDTH / 8) + x1;
      uint8_t data = (idx < sizeof(_buffer)) ? _buffer[idx] : 0x00;
      _writeData(~data);
    }
  }
  _Update_Part();
  delay(GxGDEP015OC1_PU_DELAY);
  // update erase buffer
  _SetRamArea(xs_d8, xe_d8, y % 256, y / 256, ye % 256, ye / 256); // X-source area,Y-gate area
  _SetRamPointer(xs_d8, y % 256, y / 256); // set ram
  _waitWhileBusy();
  _writeCommand(0x24);
  for (int16_t y1 = y; y1 <= ye; y1++)
  {
    for (int16_t x1 = xs_d8; x1 <= xe_d8; x1++)
    {
      uint16_t idx = y1 * (GxGDEP015OC1_WIDTH / 8) + x1;
      uint8_t data = (idx < sizeof(_buffer)) ? _buffer[idx] : 0x00;
      _writeData(~data);
    }
  }
  delay(GxGDEP015OC1_PU_DELAY);
}
void GxGDEP015OC1::updateToWindow(uint16_t xs, uint16_t ys, uint16_t xd, uint16_t yd, uint16_t w, uint16_t h, bool using_rotation)
{
  if (using_rotation)
  {
    switch (getRotation())
    {
      case 1:
        swap(xs, ys);
        swap(xd, yd);
        swap(w, h);
        xs = GxGDEP015OC1_WIDTH - xs - w - 1;
        xd = GxGDEP015OC1_WIDTH - xd - w - 1;
        break;
      case 2:
        xs = GxGDEP015OC1_WIDTH - xs - w - 1;
        ys = GxGDEP015OC1_HEIGHT - ys - h - 1;
        xd = GxGDEP015OC1_WIDTH - xd - w - 1;
        yd = GxGDEP015OC1_HEIGHT - yd - h - 1;
        break;
      case 3:
        swap(xs, ys);
        swap(xd, yd);
        swap(w, h);
        ys = GxGDEP015OC1_HEIGHT - ys  - h - 1;
        yd = GxGDEP015OC1_HEIGHT - yd  - h - 1;
        break;
    }
  }
  _Init_Part(0x03);
  _writeToWindow(xs, ys, xd, yd, w, h);
  _Update_Part();
  delay(GxGDEP015OC1_PU_DELAY);
  // update erase buffer
  _writeToWindow(xs, ys, xd, yd, w, h);
  delay(GxGDEP015OC1_PU_DELAY);
}
Exemplo n.º 10
0
void GxEPD2_213c::writeImage(const uint8_t* black, const uint8_t* color, int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
  if (_initial_write) writeScreenBuffer(); // initial full screen buffer clean
  delay(1); // yield() to avoid WDT on ESP8266 and ESP32
  int16_t wb = (w + 7) / 8; // width bytes, bitmaps are padded
  x -= x % 8; // byte boundary
  w = wb * 8; // byte boundary
  int16_t x1 = x < 0 ? 0 : x; // limit
  int16_t y1 = y < 0 ? 0 : y; // limit
  int16_t w1 = x + w < int16_t(WIDTH) ? w : int16_t(WIDTH) - x; // limit
  int16_t h1 = y + h < int16_t(HEIGHT) ? h : int16_t(HEIGHT) - y; // limit
  int16_t dx = x1 - x;
  int16_t dy = y1 - y;
  w1 -= dx;
  h1 -= dy;
  if ((w1 <= 0) || (h1 <= 0)) return;
  _Init_Part();
  _writeCommand(0x91); // partial in
  _setPartialRamArea(x1, y1, w1, h1);
  _writeCommand(0x10);
  for (int16_t i = 0; i < h1; i++)
  {
    for (int16_t j = 0; j < w1 / 8; j++)
    {
      uint8_t data = 0xFF;
      if (black)
      {
        // use wb, h of bitmap for index!
        int16_t idx = mirror_y ? j + dx / 8 + ((h - 1 - (i + dy))) * wb : j + dx / 8 + (i + dy) * wb;
        if (pgm)
        {
#if defined(__AVR) || defined(ESP8266) || defined(ESP32)
          data = pgm_read_byte(&black[idx]);
#else
          data = black[idx];
#endif
        }
        else
        {
          data = black[idx];
        }
        if (invert) data = ~data;
      }
      _writeData(data);
    }
  }
  _writeCommand(0x13);
  for (int16_t i = 0; i < h1; i++)
  {
    for (int16_t j = 0; j < w1 / 8; j++)
    {
      uint8_t data = 0xFF;
      if (color)
      {
        // use wb, h of bitmap for index!
        int16_t idx = mirror_y ? j + dx / 8 + ((h - 1 - (i + dy))) * wb : j + dx / 8 + (i + dy) * wb;
        if (pgm)
        {
#if defined(__AVR) || defined(ESP8266) || defined(ESP32)
          data = pgm_read_byte(&color[idx]);
#else
          data = color[idx];
#endif
        }
        else
        {
          data = color[idx];
        }
        if (invert) data = ~data;
      }
      _writeData(data);
    }
  }
  _writeCommand(0x92); // partial out
  delay(1); // yield() to avoid WDT on ESP8266 and ESP32
}
Exemplo n.º 11
0
void GxGDEP015OC1::drawBitmap(const uint8_t *bitmap, uint32_t size, int16_t mode)
{
  if (_current_page != -1) return;
  // example bitmaps are made for y-decrement, x-increment, for origin on opposite corner
  // bm_flip_x for normal display (bm_flip_y would be rotated)
  if (mode & bm_default) mode |= bm_flip_x;
  uint8_t ram_entry_mode = 0x03; // y-increment, x-increment for normal mode
  if ((mode & bm_flip_y) && (mode & bm_flip_x)) ram_entry_mode = 0x00; // y-decrement, x-decrement
  else if (mode & bm_flip_y) ram_entry_mode = 0x01; // y-decrement, x-increment
  else if (mode & bm_flip_x) ram_entry_mode = 0x02; // y-increment, x-decrement
  if (mode & bm_partial_update)
  {
    _using_partial_mode = true; // remember
    _Init_Part(ram_entry_mode);
    _writeCommand(0x24);
    for (uint32_t i = 0; i < GxGDEP015OC1_BUFFER_SIZE; i++)
    {
      uint8_t data = 0xFF; // white is 0xFF on device
      if (i < size)
      {
#if defined(__AVR) || defined(ESP8266) || defined(ESP32)
        data = pgm_read_byte(&bitmap[i]);
#else
        data = bitmap[i];
#endif
        if (mode & bm_invert) data = ~data;
      }
      _writeData(data);
    }
    _Update_Part();
    delay(GxGDEP015OC1_PU_DELAY);
    // update erase buffer
    _writeCommand(0x24);
    for (uint32_t i = 0; i < GxGDEP015OC1_BUFFER_SIZE; i++)
    {
      uint8_t data = 0xFF; // white is 0xFF on device
      if (i < size)
      {
#if defined(__AVR) || defined(ESP8266) || defined(ESP32)
        data = pgm_read_byte(&bitmap[i]);
#else
        data = bitmap[i];
#endif
        if (mode & bm_invert) data = ~data;
      }
      _writeData(data);
    }
    delay(GxGDEP015OC1_PU_DELAY);
    _PowerOff();
  }
  else
  {
    _using_partial_mode = false; // remember
    _Init_Full(ram_entry_mode);
    _writeCommand(0x24);
    for (uint32_t i = 0; i < GxGDEP015OC1_BUFFER_SIZE; i++)
    {
      uint8_t data = 0xFF; // white is 0xFF on device
      if (i < size)
      {
#if defined(__AVR) || defined(ESP8266) || defined(ESP32)
        data = pgm_read_byte(&bitmap[i]);
#else
        data = bitmap[i];
#endif
        if (mode & bm_invert) data = ~data;
      }
      _writeData(data);
    }
    _Update_Full();
    _PowerOff();
  }
}