Exemplo n.º 1
0
static inline void _Thread_Create_idle_helper(
  uint32_t name_u32,
  int      cpu
)
{
  Objects_Name    name;
  Thread_Control *idle;

  name.name_u32 = name_u32;

  /*
   *  The entire workspace is zeroed during its initialization.  Thus, all
   *  fields not explicitly assigned were explicitly zeroed by
   *  _Workspace_Initialization.
   */
  idle = _Thread_Internal_allocate();

  /*
   *  This is only called during initialization and we better be sure
   *  that when _Thread_Initialize unnests dispatch that we do not
   *  do anything stupid.
   */
  _Thread_Disable_dispatch();

  _Thread_Initialize(
    &_Thread_Internal_information,
    idle,
    NULL,        /* allocate the stack */
    _Stack_Ensure_minimum( Configuration.idle_task_stack_size ),
    CPU_IDLE_TASK_IS_FP,
    PRIORITY_MAXIMUM,
    true,        /* preemptable */
    THREAD_CPU_BUDGET_ALGORITHM_NONE,
    NULL,        /* no budget algorithm callout */
    0,           /* all interrupts enabled */
    name
  );

  _Thread_Unnest_dispatch();

  /*
   *  WARNING!!! This is necessary to "kick" start the system and
   *             MUST be done before _Thread_Start is invoked.
   */
  _Per_CPU_Information[ cpu ].idle      =
  _Per_CPU_Information[ cpu ].heir      =
  _Per_CPU_Information[ cpu ].executing = idle;

  _Thread_Start(
    idle,
    THREAD_START_NUMERIC,
    Configuration.idle_task,
    NULL,
    0
  );
}
Exemplo n.º 2
0
static void _Thread_Create_idle_for_cpu( Per_CPU_Control *cpu )
{
  Objects_Name             name;
  Thread_Control          *idle;
  const Scheduler_Control *scheduler;

  name.name_u32 = _Objects_Build_name( 'I', 'D', 'L', 'E' );

  /*
   *  The entire workspace is zeroed during its initialization.  Thus, all
   *  fields not explicitly assigned were explicitly zeroed by
   *  _Workspace_Initialization.
   */
  idle = _Thread_Internal_allocate();

  _Thread_Initialize(
    &_Thread_Internal_information,
    idle,
    _Scheduler_Get_by_CPU( cpu ),
    NULL,        /* allocate the stack */
    _Stack_Ensure_minimum( rtems_configuration_get_idle_task_stack_size() ),
    CPU_IDLE_TASK_IS_FP,
    PRIORITY_MAXIMUM,
    true,        /* preemptable */
    THREAD_CPU_BUDGET_ALGORITHM_NONE,
    NULL,        /* no budget algorithm callout */
    0,           /* all interrupts enabled */
    name
  );

  /*
   *  WARNING!!! This is necessary to "kick" start the system and
   *             MUST be done before _Thread_Start is invoked.
   */
  cpu->heir      =
  cpu->executing = idle;

  idle->Start.Entry.adaptor = _Thread_Entry_adaptor_idle;
  idle->Start.Entry.Kinds.Idle.entry = rtems_configuration_get_idle_task();

  _Thread_Load_environment( idle );

  scheduler = _Scheduler_Get_by_CPU( cpu );

#if defined(RTEMS_SMP)
  if (scheduler == NULL) {
    return;
  }
#endif

  idle->current_state = STATES_READY;
  _Scheduler_Start_idle( scheduler, idle, cpu );
  _User_extensions_Thread_start( idle );
}
Exemplo n.º 3
0
void _MPCI_Create_server( void )
{
  Objects_Name name;


  if ( !_System_state_Is_multiprocessing )
    return;

  /*
   *  Initialize the MPCI Receive Server
   */

  _MPCI_Receive_server_tcb = _Thread_Internal_allocate();

  name.name_u32 = _Objects_Build_name( 'M', 'P', 'C', 'I' );
  _Thread_Initialize(
    &_Thread_Internal_information,
    _MPCI_Receive_server_tcb,
    NULL,        /* allocate the stack */
    _Stack_Minimum() +
      CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK +
      _Configuration_MP_table->extra_mpci_receive_server_stack,
    CPU_ALL_TASKS_ARE_FP,
    PRIORITY_MINIMUM,
    false,       /* no preempt */
    THREAD_CPU_BUDGET_ALGORITHM_NONE,
    NULL,        /* no budget algorithm callout */
    0,           /* all interrupts enabled */
    name
  );

  _Thread_Start(
    _MPCI_Receive_server_tcb,
    THREAD_START_NUMERIC,
    (void *) _MPCI_Receive_server,
    NULL,
    0,
    NULL
  );
}
Exemplo n.º 4
0
int pthread_create(
  pthread_t              *thread,
  const pthread_attr_t   *attr,
  void                 *(*start_routine)( void * ),
  void                   *arg
)
{
  const pthread_attr_t               *the_attr;
  Priority_Control                    core_priority;
  Thread_CPU_budget_algorithms        budget_algorithm;
  Thread_CPU_budget_algorithm_callout budget_callout;
  bool                                is_fp;
  bool                                status;
  Thread_Control                     *the_thread;
  POSIX_API_Control                  *api;
  int                                 schedpolicy = SCHED_RR;
  struct sched_param                  schedparam;
  Objects_Name                        name;
  int                                 rc;

  if ( !start_routine )
    return EFAULT;

  the_attr = (attr) ? attr : &_POSIX_Threads_Default_attributes;

  if ( !the_attr->is_initialized )
    return EINVAL;

  /*
   *  Core Thread Initialize ensures we get the minimum amount of
   *  stack space if it is allowed to allocate it itself.
   *
   *  NOTE: If the user provides the stack we will let it drop below
   *        twice the minimum.
   */
  if ( the_attr->stackaddr && !_Stack_Is_enough(the_attr->stacksize) )
    return EINVAL;

  #if 0
    int  cputime_clock_allowed;  /* see time.h */
    rtems_set_errno_and_return_minus_one( ENOSYS );
  #endif

  /*
   *  P1003.1c/Draft 10, p. 121.
   *
   *  If inheritsched is set to PTHREAD_INHERIT_SCHED, then this thread
   *  inherits scheduling attributes from the creating thread.   If it is
   *  PTHREAD_EXPLICIT_SCHED, then scheduling parameters come from the
   *  attributes structure.
   */
  switch ( the_attr->inheritsched ) {
    case PTHREAD_INHERIT_SCHED:
      api = _Thread_Executing->API_Extensions[ THREAD_API_POSIX ];
      schedpolicy = api->schedpolicy;
      schedparam  = api->schedparam;
      break;

    case PTHREAD_EXPLICIT_SCHED:
      schedpolicy = the_attr->schedpolicy;
      schedparam  = the_attr->schedparam;
      break;

    default:
      return EINVAL;
  }

  /*
   *  Check the contentionscope since rtems only supports PROCESS wide
   *  contention (i.e. no system wide contention).
   */
  if ( the_attr->contentionscope != PTHREAD_SCOPE_PROCESS )
    return ENOTSUP;

  /*
   *  Interpret the scheduling parameters.
   */
  if ( !_POSIX_Priority_Is_valid( schedparam.sched_priority ) )
    return EINVAL;

  core_priority = _POSIX_Priority_To_core( schedparam.sched_priority );

  /*
   *  Set the core scheduling policy information.
   */
  rc = _POSIX_Thread_Translate_sched_param(
    schedpolicy,
    &schedparam,
    &budget_algorithm,
    &budget_callout
  );
  if ( rc )
    return rc;

  /*
   *  Currently all POSIX threads are floating point if the hardware
   *  supports it.
   */
  #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    is_fp = true;
  #else
    is_fp = false;
  #endif

  /*
   *  Lock the allocator mutex for protection
   */
  _RTEMS_Lock_allocator();

  /*
   *  Allocate the thread control block.
   *
   *  NOTE:  Global threads are not currently supported.
   */
  the_thread = _POSIX_Threads_Allocate();
  if ( !the_thread ) {
    _RTEMS_Unlock_allocator();
    return EAGAIN;
  }

  /*
   *  Initialize the core thread for this task.
   */
  name.name_p = NULL;   /* posix threads don't have a name by default */
  status = _Thread_Initialize(
    &_POSIX_Threads_Information,
    the_thread,
    the_attr->stackaddr,
    _POSIX_Threads_Ensure_minimum_stack(the_attr->stacksize),
    is_fp,
    core_priority,
    true,                 /* preemptible */
    budget_algorithm,
    budget_callout,
    0,                    /* isr level */
    name                  /* posix threads don't have a name */
  );

  if ( !status ) {
    _POSIX_Threads_Free( the_thread );
    _RTEMS_Unlock_allocator();
    return EAGAIN;
  }

  /*
   *  finish initializing the per API structure
   */
  api = the_thread->API_Extensions[ THREAD_API_POSIX ];

  api->Attributes  = *the_attr;
  api->detachstate = the_attr->detachstate;
  api->schedpolicy = schedpolicy;
  api->schedparam  = schedparam;

  /*
   *  This insures we evaluate the process-wide signals pending when we
   *  first run.
   *
   *  NOTE:  Since the thread starts with all unblocked, this is necessary.
   */
  the_thread->do_post_task_switch_extension = true;

  /*
   *  POSIX threads are allocated and started in one operation.
   */
  status = _Thread_Start(
    the_thread,
    THREAD_START_POINTER,
    start_routine,
    arg,
    0                     /* unused */
  );

  #if defined(RTEMS_DEBUG)
    /*
     *  _Thread_Start only fails if the thread was in the incorrect state
     *
     *  NOTE: This can only happen if someone slips in and touches the
     *        thread while we are creating it.
     */
    if ( !status ) {
      _POSIX_Threads_Free( the_thread );
      _RTEMS_Unlock_allocator();
      return EINVAL;
    }
  #endif

  if ( schedpolicy == SCHED_SPORADIC ) {
    _Watchdog_Insert_ticks(
      &api->Sporadic_timer,
      _Timespec_To_ticks( &api->schedparam.sched_ss_repl_period )
    );
  }

  /*
   *  Return the id and indicate we successfully created the thread
   */
  *thread = the_thread->Object.id;

  _RTEMS_Unlock_allocator();
  return 0;
}
Exemplo n.º 5
0
rtems_status_code rtems_task_create(
  rtems_name           name,
  rtems_task_priority  initial_priority,
  size_t               stack_size,
  rtems_mode           initial_modes,
  rtems_attribute      attribute_set,
  rtems_id            *id
)
{
  Thread_Control          *the_thread;
  bool                     is_fp;
#if defined(RTEMS_MULTIPROCESSING)
  Objects_MP_Control      *the_global_object = NULL;
  bool                     is_global;
#endif
  bool                     status;
  rtems_attribute          the_attribute_set;
  Priority_Control         core_priority;
  RTEMS_API_Control       *api;
  ASR_Information         *asr;


  if ( !id )
   return RTEMS_INVALID_ADDRESS;

  if ( !rtems_is_name_valid( name ) )
    return RTEMS_INVALID_NAME;

  /*
   *  Core Thread Initialize insures we get the minimum amount of
   *  stack space.
   */

  /*
   *  Fix the attribute set to match the attributes which
   *  this processor (1) requires and (2) is able to support.
   *  First add in the required flags for attribute_set
   *  Typically this might include FP if the platform
   *  or application required all tasks to be fp aware.
   *  Then turn off the requested bits which are not supported.
   */

  the_attribute_set = _Attributes_Set( attribute_set, ATTRIBUTES_REQUIRED );
  the_attribute_set =
    _Attributes_Clear( the_attribute_set, ATTRIBUTES_NOT_SUPPORTED );

  if ( _Attributes_Is_floating_point( the_attribute_set ) )
    is_fp = true;
  else
    is_fp = false;

  /*
   *  Validate the RTEMS API priority and convert it to the core priority range.
   */

  if ( !_Attributes_Is_system_task( the_attribute_set ) ) {
    if ( !_RTEMS_tasks_Priority_is_valid( initial_priority ) )
      return RTEMS_INVALID_PRIORITY;
  }

  core_priority = _RTEMS_tasks_Priority_to_Core( initial_priority );

#if defined(RTEMS_MULTIPROCESSING)
  if ( _Attributes_Is_global( the_attribute_set ) ) {

    is_global = true;

    if ( !_System_state_Is_multiprocessing )
      return RTEMS_MP_NOT_CONFIGURED;

  } else
    is_global = false;
#endif

  /*
   *  Make sure system is MP if this task is global
   */

  /*
   *  Allocate the thread control block and -- if the task is global --
   *  allocate a global object control block.
   *
   *  NOTE:  This routine does not use the combined allocate and open
   *         global object routine because this results in a lack of
   *         control over when memory is allocated and can be freed in
   *         the event of an error.
   */

  the_thread = _RTEMS_tasks_Allocate();

  if ( !the_thread ) {
    _Objects_Allocator_unlock();
    return RTEMS_TOO_MANY;
  }

#if defined(RTEMS_MULTIPROCESSING)
  if ( is_global ) {
    the_global_object = _Objects_MP_Allocate_global_object();

    if ( _Objects_MP_Is_null_global_object( the_global_object ) ) {
      _RTEMS_tasks_Free( the_thread );
      _Objects_Allocator_unlock();
      return RTEMS_TOO_MANY;
    }
  }
#endif

  /*
   *  Initialize the core thread for this task.
   */

  status = _Thread_Initialize(
    &_RTEMS_tasks_Information,
    the_thread,
    _Scheduler_Get_by_CPU_index( _SMP_Get_current_processor() ),
    NULL,
    stack_size,
    is_fp,
    core_priority,
    _Modes_Is_preempt(initial_modes)   ? true : false,
    _Modes_Is_timeslice(initial_modes) ?
      THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE :
      THREAD_CPU_BUDGET_ALGORITHM_NONE,
    NULL,        /* no budget algorithm callout */
    _Modes_Get_interrupt_level(initial_modes),
    (Objects_Name) name
  );

  if ( !status ) {
#if defined(RTEMS_MULTIPROCESSING)
    if ( is_global )
      _Objects_MP_Free_global_object( the_global_object );
#endif
    _RTEMS_tasks_Free( the_thread );
    _Objects_Allocator_unlock();
    return RTEMS_UNSATISFIED;
  }

  api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
  asr = &api->Signal;

  asr->is_enabled = _Modes_Is_asr_disabled(initial_modes) ? false : true;

  *id = the_thread->Object.id;

#if defined(RTEMS_MULTIPROCESSING)
  the_thread->is_global = is_global;
  if ( is_global ) {

    _Objects_MP_Open(
      &_RTEMS_tasks_Information.Objects,
      the_global_object,
      name,
      the_thread->Object.id
    );

    _RTEMS_tasks_MP_Send_process_packet(
      RTEMS_TASKS_MP_ANNOUNCE_CREATE,
      the_thread->Object.id,
      name
    );

   }
#endif

  _Objects_Allocator_unlock();
  return RTEMS_SUCCESSFUL;
}