long double __lgamma_negl (long double x, int *signgamp) { /* Determine the half-integer region X lies in, handle exact integers and determine the sign of the result. */ int i = __floorl (-2 * x); if ((i & 1) == 0 && i == -2 * x) return 1.0L / 0.0L; long double xn = ((i & 1) == 0 ? -i / 2 : (-i - 1) / 2); i -= 4; *signgamp = ((i & 2) == 0 ? -1 : 1); SET_RESTORE_ROUNDL (FE_TONEAREST); /* Expand around the zero X0 = X0_HI + X0_LO. */ long double x0_hi = lgamma_zeros[i][0], x0_lo = lgamma_zeros[i][1]; long double xdiff = x - x0_hi - x0_lo; /* For arguments in the range -3 to -2, use polynomial approximations to an adjusted version of the gamma function. */ if (i < 2) { int j = __floorl (-8 * x) - 16; long double xm = (-33 - 2 * j) * 0.0625L; long double x_adj = x - xm; size_t deg = poly_deg[j]; size_t end = poly_end[j]; long double g = poly_coeff[end]; for (size_t j = 1; j <= deg; j++) g = g * x_adj + poly_coeff[end - j]; return __log1pl (g * xdiff / (x - xn)); } /* The result we want is log (sinpi (X0) / sinpi (X)) + log (gamma (1 - X0) / gamma (1 - X)). */ long double x_idiff = fabsl (xn - x), x0_idiff = fabsl (xn - x0_hi - x0_lo); long double log_sinpi_ratio; if (x0_idiff < x_idiff * 0.5L) /* Use log not log1p to avoid inaccuracy from log1p of arguments close to -1. */ log_sinpi_ratio = __ieee754_logl (lg_sinpi (x0_idiff) / lg_sinpi (x_idiff)); else { /* Use log1p not log to avoid inaccuracy from log of arguments close to 1. X0DIFF2 has positive sign if X0 is further from XN than X is from XN, negative sign otherwise. */ long double x0diff2 = ((i & 1) == 0 ? xdiff : -xdiff) * 0.5L; long double sx0d2 = lg_sinpi (x0diff2); long double cx0d2 = lg_cospi (x0diff2); log_sinpi_ratio = __log1pl (2 * sx0d2 * (-sx0d2 + cx0d2 * lg_cotpi (x_idiff))); } long double log_gamma_ratio; long double y0 = 1 - x0_hi; long double y0_eps = -x0_hi + (1 - y0) - x0_lo; long double y = 1 - x; long double y_eps = -x + (1 - y); /* We now wish to compute LOG_GAMMA_RATIO = log (gamma (Y0 + Y0_EPS) / gamma (Y + Y_EPS)). XDIFF accurately approximates the difference Y0 + Y0_EPS - Y - Y_EPS. Use Stirling's approximation. First, we may need to adjust into the range where Stirling's approximation is sufficiently accurate. */ long double log_gamma_adj = 0; if (i < 8) { int n_up = (9 - i) / 2; long double ny0, ny0_eps, ny, ny_eps; ny0 = y0 + n_up; ny0_eps = y0 - (ny0 - n_up) + y0_eps; y0 = ny0; y0_eps = ny0_eps; ny = y + n_up; ny_eps = y - (ny - n_up) + y_eps; y = ny; y_eps = ny_eps; long double prodm1 = __lgamma_productl (xdiff, y - n_up, y_eps, n_up); log_gamma_adj = -__log1pl (prodm1); } long double log_gamma_high = (xdiff * __log1pl ((y0 - e_hi - e_lo + y0_eps) / e_hi) + (y - 0.5L + y_eps) * __log1pl (xdiff / y) + log_gamma_adj); /* Compute the sum of (B_2k / 2k(2k-1))(Y0^-(2k-1) - Y^-(2k-1)). */ long double y0r = 1 / y0, yr = 1 / y; long double y0r2 = y0r * y0r, yr2 = yr * yr; long double rdiff = -xdiff / (y * y0); long double bterm[NCOEFF]; long double dlast = rdiff, elast = rdiff * yr * (yr + y0r); bterm[0] = dlast * lgamma_coeff[0]; for (size_t j = 1; j < NCOEFF; j++) { long double dnext = dlast * y0r2 + elast; long double enext = elast * yr2; bterm[j] = dnext * lgamma_coeff[j]; dlast = dnext; elast = enext; } long double log_gamma_low = 0; for (size_t j = 0; j < NCOEFF; j++) log_gamma_low += bterm[NCOEFF - 1 - j]; log_gamma_ratio = log_gamma_high + log_gamma_low; return log_sinpi_ratio + log_gamma_ratio; }
long double __expm1l (long double x) { long double px, qx, xx; int32_t ix, sign; ieee854_long_double_shape_type u; int k; /* Detect infinity and NaN. */ u.value = x; ix = u.parts32.w0; sign = ix & 0x80000000; ix &= 0x7fffffff; if (ix >= 0x7fff0000) { /* Infinity. */ if (((ix & 0xffff) | u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0) { if (sign) return -1.0L; else return x; } /* NaN. No invalid exception. */ return x; } /* expm1(+- 0) = +- 0. */ if ((ix == 0) && (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0) return x; /* Overflow. */ if (x > maxlog) return (big * big); /* Minimum value. */ if (x < minarg) return (4.0/big - 1.0L); /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */ xx = C1 + C2; /* ln 2. */ px = __floorl (0.5 + x / xx); k = px; /* remainder times ln 2 */ x -= px * C1; x -= px * C2; /* Approximate exp(remainder ln 2). */ px = (((((((P7 * x + P6) * x + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x; qx = (((((((x + Q7) * x + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0; xx = x * x; qx = x + (0.5 * xx + xx * px / qx); /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2). We have qx = exp(remainder ln 2) - 1, so exp(x) - 1 = 2^k (qx + 1) - 1 = 2^k qx + 2^k - 1. */ px = ldexpl (1.0L, k); x = px * qx + (px - 1.0); return x; }