Exemplo n.º 1
0
/*Converting from double precision to Multi-precision and calculating  e^x */
double
SECTION
__slowexp (double x)
{
#ifndef USE_LONG_DOUBLE_FOR_MP
  double w, z, res, eps = 3.0e-26;
  int p;
  mp_no mpx, mpy, mpz, mpw, mpeps, mpcor;

  /* Use the multiple precision __MPEXP function to compute the exponential
     First at 144 bits and if it is not accurate enough, at 768 bits.  */
  p = 6;
  __dbl_mp (x, &mpx, p);
  __mpexp (&mpx, &mpy, p);
  __dbl_mp (eps, &mpeps, p);
  __mul (&mpeps, &mpy, &mpcor, p);
  __add (&mpy, &mpcor, &mpw, p);
  __sub (&mpy, &mpcor, &mpz, p);
  __mp_dbl (&mpw, &w, p);
  __mp_dbl (&mpz, &z, p);
  if (w == z)
    return w;
  else
    {
      p = 32;
      __dbl_mp (x, &mpx, p);
      __mpexp (&mpx, &mpy, p);
      __mp_dbl (&mpy, &res, p);
      return res;
    }
#else
  return (double) __ieee754_expl((long double)x);
#endif
}
Exemplo n.º 2
0
/* Stage 3: Perform a multi-Precision computation */
static double
SECTION
atan2Mp (double x, double y, const int pr[])
{
  double z1, z2;
  int i, p;
  mp_no mpx, mpy, mpz, mpz1, mpz2, mperr, mpt1;
  for (i = 0; i < MM; i++)
    {
      p = pr[i];
      __dbl_mp (x, &mpx, p);
      __dbl_mp (y, &mpy, p);
      __mpatan2 (&mpy, &mpx, &mpz, p);
      __dbl_mp (ud[i].d, &mpt1, p);
      __mul (&mpz, &mpt1, &mperr, p);
      __add (&mpz, &mperr, &mpz1, p);
      __sub (&mpz, &mperr, &mpz2, p);
      __mp_dbl (&mpz1, &z1, p);
      __mp_dbl (&mpz2, &z2, p);
      if (z1 == z2)
	{
	  LIBC_PROBE (slowatan2, 4, &p, &x, &y, &z1);
	  return z1;
	}
    }
  LIBC_PROBE (slowatan2_inexact, 4, &p, &x, &y, &z1);
  return z1;			/*if impossible to do exact computing */
}
Exemplo n.º 3
0
double __slowpow(double x, double y, double z) {
  double res,res1;
  mp_no mpx, mpy, mpz,mpw,mpp,mpr,mpr1;
  static const mp_no eps = {-3,{1.0,4.0}};
  int p;

  res = __halfulp(x,y);        /* halfulp() returns -10 or x^y             */
  if (res >= 0) return res;  /* if result was really computed by halfulp */
                  /*  else, if result was not really computed by halfulp */
  p = 10;         /*  p=precision   */
  __dbl_mp(x,&mpx,p);
  __dbl_mp(y,&mpy,p);
  __dbl_mp(z,&mpz,p);
  __mplog(&mpx, &mpz, p);     /* log(x) = z   */
  __mul(&mpy,&mpz,&mpw,p);    /*  y * z =w    */
  __mpexp(&mpw, &mpp, p);     /*  e^w =pp     */
  __add(&mpp,&eps,&mpr,p);    /*  pp+eps =r   */
  __mp_dbl(&mpr, &res, p);
  __sub(&mpp,&eps,&mpr1,p);   /*  pp -eps =r1 */
  __mp_dbl(&mpr1, &res1, p);  /*  converting into double precision */
  if (res == res1) return res;

  p = 32;     /* if we get here result wasn't calculated exactly, continue */
  __dbl_mp(x,&mpx,p);                          /* for more exact calculation */
  __dbl_mp(y,&mpy,p);
  __dbl_mp(z,&mpz,p);
  __mplog(&mpx, &mpz, p);   /* log(c)=z  */
  __mul(&mpy,&mpz,&mpw,p);  /* y*z =w    */
  __mpexp(&mpw, &mpp, p);   /* e^w=pp    */
  __mp_dbl(&mpp, &res, p);  /* converting into double precision */
  return res;
}
Exemplo n.º 4
0
void
SECTION
__mpsqrt (mp_no *x, mp_no *y, int p)
{
  int i, m, ey;
  double dx, dy;
  static const mp_no mphalf = {0, {1.0, HALFRAD}};
  static const mp_no mp3halfs = {1, {1.0, 1.0, HALFRAD}};
  mp_no mpxn, mpz, mpu, mpt1, mpt2;

  ey = EX / 2;
  __cpy (x, &mpxn, p);
  mpxn.e -= (ey + ey);
  __mp_dbl (&mpxn, &dx, p);
  dy = fastiroot (dx);
  __dbl_mp (dy, &mpu, p);
  __mul (&mpxn, &mphalf, &mpz, p);

  m = __mpsqrt_mp[p];
  for (i = 0; i < m; i++)
    {
      __sqr (&mpu, &mpt1, p);
      __mul (&mpt1, &mpz, &mpt2, p);
      __sub (&mp3halfs, &mpt2, &mpt1, p);
      __mul (&mpu, &mpt1, &mpt2, p);
      __cpy (&mpt2, &mpu, p);
    }
  __mul (&mpxn, &mpu, y, p);
  EY += ey;
}
Exemplo n.º 5
0
 /* Final stages. Compute atan(x) by multiple precision arithmetic */
static double
atanMp (double x, const int pr[])
{
  mp_no mpx, mpy, mpy2, mperr, mpt1, mpy1;
  double y1, y2;
  int i, p;

  for (i = 0; i < M; i++)
    {
      p = pr[i];
      __dbl_mp (x, &mpx, p);
      __mpatan (&mpx, &mpy, p);
      __dbl_mp (u9[i].d, &mpt1, p);
      __mul (&mpy, &mpt1, &mperr, p);
      __add (&mpy, &mperr, &mpy1, p);
      __sub (&mpy, &mperr, &mpy2, p);
      __mp_dbl (&mpy1, &y1, p);
      __mp_dbl (&mpy2, &y2, p);
      if (y1 == y2)
	{
	  LIBC_PROBE (slowatan, 3, &p, &x, &y1);
	  return y1;
	}
    }
  LIBC_PROBE (slowatan_inexact, 3, &p, &x, &y1);
  return y1;			/*if impossible to do exact computing */
}
Exemplo n.º 6
0
void __mplog(mp_no *x, mp_no *y, int p) {
#include "mplog.h"
  int i,m;
#if 0
  int j,k,m1,m2,n;
  double a,b;
#endif
  static const int mp[33] = {0,0,0,0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,
                             4,4,4,4,4,4,4,4,4,4,4,4,4,4};
  mp_no mpone = {0,{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
                    0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
                    0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
  mp_no mpt1,mpt2;

  /* Choose m and initiate mpone */
  m = mp[p];  mpone.e = 1;  mpone.d[0]=mpone.d[1]=ONE;

  /* Perform m newton iterations to solve for y: exp(y)-x=0.     */
  /* The iterations formula is:  y(n+1)=y(n)+(x*exp(-y(n))-1).   */
  __cpy(y,&mpt1,p);
  for (i=0; i<m; i++) {
    mpt1.d[0]=-mpt1.d[0];
    __mpexp(&mpt1,&mpt2,p);
    __mul(x,&mpt2,&mpt1,p);
    __sub(&mpt1,&mpone,&mpt2,p);
    __add(y,&mpt2,&mpt1,p);
    __cpy(&mpt1,y,p);
  }
  return;
}
Exemplo n.º 7
0
static
SECTION
void __inv(const mp_no *x, mp_no *y, int p) {
  int i;
#if 0
  int l;
#endif
  double t;
  mp_no z,w;
  static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3,
			    4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
  const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
			 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
			 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
			 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};

  __cpy(x,&z,p);  z.e=0;  __mp_dbl(&z,&t,p);
  t=ONE/t;   __dbl_mp(t,y,p);    EY -= EX;

  for (i=0; i<np1[p]; i++) {
    __cpy(y,&w,p);
    __mul(x,&w,y,p);
    __sub(&mptwo,y,&z,p);
    __mul(&w,&z,y,p);
  }
}
Exemplo n.º 8
0
int
SECTION
__mpranred(double x, mp_no *y, int p)
{
  number v;
  double t,xn;
  int i,k,n;
  static const mp_no one = {1,{1.0,1.0}};
  mp_no a,b,c;

  if (ABS(x) < 2.8e14) {
    t = (x*hpinv.d + toint.d);
    xn = t - toint.d;
    v.d = t;
    n =v.i[LOW_HALF]&3;
    __dbl_mp(xn,&a,p);
    __mul(&a,&hp,&b,p);
    __dbl_mp(x,&c,p);
    __sub(&c,&b,y,p);
    return n;
  }
  else {                      /* if x is very big more precision required */
    __dbl_mp(x,&a,p);
    a.d[0]=1.0;
    k = a.e-5;
    if (k < 0) k=0;
    b.e = -k;
    b.d[0] = 1.0;
    for (i=0;i<p;i++) b.d[i+1] = toverp[i+k];
    __mul(&a,&b,&c,p);
    t = c.d[c.e];
    for (i=1;i<=p-c.e;i++) c.d[i]=c.d[i+c.e];
    for (i=p+1-c.e;i<=p;i++) c.d[i]=0;
    c.e=0;
    if (c.d[1] >=  8388608.0)
    { t +=1.0;
      __sub(&c,&one,&b,p);
      __mul(&b,&hp,y,p);
    }
    else __mul(&c,&hp,y,p);
    n = (int) t;
    if (x < 0) { y->d[0] = - y->d[0]; n = -n; }
    return (n&3);
  }
}
Exemplo n.º 9
0
double __sin32(double x, double res, double res1) {
  int p;
  mp_no a,b,c;
  p=32;
  __dbl_mp(res,&a,p);
  __dbl_mp(0.5*(res1-res),&b,p);
  __add(&a,&b,&c,p);
  if (x>0.8)
  { __sub(&hp,&c,&a,p);
    __c32(&a,&b,&c,p);
  }
  else __c32(&c,&a,&b,p);     /* b=sin(0.5*(res+res1))  */
  __dbl_mp(x,&c,p);           /* c = x                  */
  __sub(&b,&c,&a,p);
  /* if a>0 return min(res,res1), otherwise return max(res,res1) */
  if (a.d[0]>0)  return (res<res1)?res:res1;
  else  return (res>res1)?res:res1;
}
Exemplo n.º 10
0
void __c32(mp_no *x, mp_no *y, mp_no *z, int p) {
  static const mp_no mpt={1,{1.0,2.0}}, one={1,{1.0,1.0}};
  mp_no u,t,t1,t2,c,s;
  int i;
  __cpy(x,&u,p);
  u.e=u.e-1;
  cc32(&u,&c,p);
  ss32(&u,&s,p);
  for (i=0;i<24;i++) {
    __mul(&c,&s,&t,p);
    __sub(&s,&t,&t1,p);
    __add(&t1,&t1,&s,p);
    __sub(&mpt,&c,&t1,p);
    __mul(&t1,&c,&t2,p);
    __add(&t2,&t2,&c,p);
  }
  __sub(&one,&c,y,p);
  __cpy(&s,z,p);
}
Exemplo n.º 11
0
/* Compute cos() of double-length number (X + DX) as Multi Precision number and
   return result as double.  If REDUCE_RANGE is true, X is assumed to be the
   original input and DX is ignored.  */
double
SECTION
__mpcos (double x, double dx, bool reduce_range)
{
  double y;
  mp_no a, b, c, s;
  int n;
  int p = 32;

  if (reduce_range)
    {
      n = __mpranred (x, &a, p);	/* n is 0, 1, 2 or 3.  */
      __c32 (&a, &c, &s, p);
    }
  else
    {
      n = -1;
      __dbl_mp (x, &b, p);
      __dbl_mp (dx, &c, p);
      __add (&b, &c, &a, p);
      if (x > 0.8)
        {
          __sub (&hp, &a, &b, p);
          __c32 (&b, &s, &c, p);
        }
      else
        __c32 (&a, &c, &s, p);	/* a = cos(x+dx)     */
    }

  /* Convert result based on which quarter of unit circle y is in.  */
  switch (n)
    {
    case 1:
      __mp_dbl (&s, &y, p);
      y = -y;
      break;

    case 3:
      __mp_dbl (&s, &y, p);
      break;

    case 2:
      __mp_dbl (&c, &y, p);
      y = -y;
      break;

    /* Quadrant not set, so the result must be cos (X + DX), which is also
       stored in C.  */
    case 0:
    default:
      __mp_dbl (&c, &y, p);
    }
  LIBC_PROBE (slowcos, 3, &x, &dx, &y);
  return y;
}
Exemplo n.º 12
0
void
SECTION
__c32(mp_no *x, mp_no *y, mp_no *z, int p) {
  mp_no u,t,t1,t2,c,s;
  int i;
  __cpy(x,&u,p);
  u.e=u.e-1;
  cc32(&u,&c,p);
  ss32(&u,&s,p);
  for (i=0;i<24;i++) {
    __mul(&c,&s,&t,p);
    __sub(&s,&t,&t1,p);
    __add(&t1,&t1,&s,p);
    __sub(&mptwo,&c,&t1,p);
    __mul(&t1,&c,&t2,p);
    __add(&t2,&t2,&c,p);
  }
  __sub(&mpone,&c,y,p);
  __cpy(&s,z,p);
}
Exemplo n.º 13
0
double __mpsin(double x, double dx) {
  int p;
  double y;
  mp_no a,b,c;
  p=32;
  __dbl_mp(x,&a,p);
  __dbl_mp(dx,&b,p);
  __add(&a,&b,&c,p);
  if (x>0.8) { __sub(&hp,&c,&a,p); __c32(&a,&b,&c,p); }
  else __c32(&c,&a,&b,p);     /* b = sin(x+dx)     */
  __mp_dbl(&b,&y,p);
  return y;
}
Exemplo n.º 14
0
/* Treat the Denormalized case */
static double
SECTION
normalized (double ax, double ay, double y, double z)
{
  int p;
  mp_no mpx, mpy, mpz, mperr, mpz2, mpt1;
  p = 6;
  __dbl_mp (ax, &mpx, p);
  __dbl_mp (ay, &mpy, p);
  __dvd (&mpy, &mpx, &mpz, p);
  __dbl_mp (ue.d, &mpt1, p);
  __mul (&mpz, &mpt1, &mperr, p);
  __sub (&mpz, &mperr, &mpz2, p);
  __mp_dbl (&mpz2, &z, p);
  return signArctan2 (y, z);
}
Exemplo n.º 15
0
static void __subTest(int only)
{
	if (only && (2 != only)) {
		return;
	}
	std::cout << "\n****************************" << __func__ << "()\n";

	org::yuiwong::times::Datetime t1;
	org::yuiwong::times::Datetime t2;
	for (int i = 0; i < 3; ++i) {
		t1.update();
		std::cout << "Wait ..." << "\n";
		usleep(i * 500 * 1e3);
		usleep(100 * 1e3);
		t2.update();
		__sub(t1, t2);
	}
}
Exemplo n.º 16
0
/*Converting from double precision to Multi-precision and calculating  e^x */
double
SECTION
__slowexp (double x)
{
#ifndef USE_LONG_DOUBLE_FOR_MP
  double w, z, res, eps = 3.0e-26;
  int p;
  mp_no mpx, mpy, mpz, mpw, mpeps, mpcor;

  /* Use the multiple precision __MPEXP function to compute the exponential
     First at 144 bits and if it is not accurate enough, at 768 bits.  */
  p = 6;
  __dbl_mp (x, &mpx, p);
  __mpexp (&mpx, &mpy, p);
  __dbl_mp (eps, &mpeps, p);
  __mul (&mpeps, &mpy, &mpcor, p);
  __add (&mpy, &mpcor, &mpw, p);
  __sub (&mpy, &mpcor, &mpz, p);
  __mp_dbl (&mpw, &w, p);
  __mp_dbl (&mpz, &z, p);
  if (w == z)
    {
      /* Track how often we get to the slow exp code plus
	 its input/output values.  */
      LIBC_PROBE (slowexp_p6, 2, &x, &w);
      return w;
    }
  else
    {
      p = 32;
      __dbl_mp (x, &mpx, p);
      __mpexp (&mpx, &mpy, p);
      __mp_dbl (&mpy, &res, p);

      /* Track how often we get to the uber-slow exp code plus
	 its input/output values.  */
      LIBC_PROBE (slowexp_p32, 2, &x, &res);
      return res;
    }
#else
  return (double) __ieee754_expl((long double)x);
#endif
}
Exemplo n.º 17
0
static void
SECTION
ss32(mp_no *x, mp_no *y, int p) {
  int i;
  double a;
  mp_no mpt1,x2,gor,sum ,mpk={1,{1.0}};
  for (i=1;i<=p;i++) mpk.d[i]=0;

  __sqr(x,&x2,p);
  __cpy(&oofac27,&gor,p);
  __cpy(&gor,&sum,p);
  for (a=27.0;a>1.0;a-=2.0) {
    mpk.d[1]=a*(a-1.0);
    __mul(&gor,&mpk,&mpt1,p);
    __cpy(&mpt1,&gor,p);
    __mul(&x2,&sum,&mpt1,p);
    __sub(&gor,&mpt1,&sum,p);
  }
  __mul(x,&sum,y,p);
}
Exemplo n.º 18
0
/*Converting from double precision to Multi-precision and calculating  e^x */
double __slowexp(double x) {
  double w,z,res,eps=3.0e-26;
#if 0
  double y;
#endif
  int p;
#if 0
  int orig,i;
#endif
  mp_no mpx, mpy, mpz,mpw,mpeps,mpcor;

  p=6;
  __dbl_mp(x,&mpx,p); /* Convert a double precision number  x               */
                    /* into a multiple precision number mpx with prec. p. */
  __mpexp(&mpx, &mpy, p); /* Multi-Precision exponential function */
  __dbl_mp(eps,&mpeps,p);
  __mul(&mpeps,&mpy,&mpcor,p);
  __add(&mpy,&mpcor,&mpw,p);
  __sub(&mpy,&mpcor,&mpz,p);
  __mp_dbl(&mpw, &w, p);
  __mp_dbl(&mpz, &z, p);
  if (w == z) {
    /* Track how often we get to the slow exp code plus
       its input/output values.  */
    LIBC_PROBE (slowexp_p6, 2, &x, &w);
    return w;
  }
  else  {                   /* if calculating is not exactly   */
    p = 32;
    __dbl_mp(x,&mpx,p);
    __mpexp(&mpx, &mpy, p);
    __mp_dbl(&mpy, &res, p);
 
    /* Track how often we get to the uber-slow exp code plus
       its input/output values.  */
    LIBC_PROBE (slowexp_p32, 2, &x, &res);
    return res;
  }
}
Exemplo n.º 19
0
Arquivo: mpatan.c Projeto: dreal/tai
void
SECTION
__mpatan(mp_no *x, mp_no *y, int p) {

  int i,m,n;
  double dx;
  mp_no
    mpone    = {0,{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
		0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
		0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}},
    mptwo    = {0,{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
		0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
		0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}},
    mptwoim1 = {0,{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
		0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
		0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};

  mp_no mps,mpsm,mpt,mpt1,mpt2,mpt3;

		      /* Choose m and initiate mpone, mptwo & mptwoim1 */
    if      (EX>0) m=7;
    else if (EX<0) m=0;
    else {
      __mp_dbl(x,&dx,p);  dx=ABS(dx);
      for (m=6; m>0; m--)
	{if (dx>__atan_xm[m].d) break;}
    }
    mpone.e    = mptwo.e    = mptwoim1.e = 1;
    mpone.d[0] = mpone.d[1] = mptwo.d[0] = mptwoim1.d[0] = ONE;
    mptwo.d[1] = TWO;

				 /* Reduce x m times */
    __mul(x,x,&mpsm,p);
    if (m==0) __cpy(x,&mps,p);
    else {
      for (i=0; i<m; i++) {
	__add(&mpone,&mpsm,&mpt1,p);
	__mpsqrt(&mpt1,&mpt2,p);
	__add(&mpt2,&mpt2,&mpt1,p);
	__add(&mptwo,&mpsm,&mpt2,p);
	__add(&mpt1,&mpt2,&mpt3,p);
	__dvd(&mpsm,&mpt3,&mpt1,p);
	__cpy(&mpt1,&mpsm,p);
      }
      __mpsqrt(&mpsm,&mps,p);    mps.d[0] = X[0];
    }

		    /* Evaluate a truncated power series for Atan(s) */
    n=__atan_np[p];    mptwoim1.d[1] = __atan_twonm1[p].d;
    __dvd(&mpsm,&mptwoim1,&mpt,p);
    for (i=n-1; i>1; i--) {
      mptwoim1.d[1] -= TWO;
      __dvd(&mpsm,&mptwoim1,&mpt1,p);
      __mul(&mpsm,&mpt,&mpt2,p);
      __sub(&mpt1,&mpt2,&mpt,p);
    }
    __mul(&mps,&mpt,&mpt1,p);
    __sub(&mps,&mpt1,&mpt,p);

			  /* Compute Atan(x) */
    mptwoim1.d[1] = __atan_twom[m].d;
    __mul(&mptwoim1,&mpt,y,p);

  return;
}
Exemplo n.º 20
0
slong _nmod_poly_xgcd_hgcd(mp_ptr G, mp_ptr S, mp_ptr T, 
                          mp_srcptr A, slong lenA, mp_srcptr B, slong lenB, 
                          nmod_t mod)
{
	const slong cutoff = FLINT_BIT_COUNT(mod.n) <= 8 ? 
                        NMOD_POLY_SMALL_GCD_CUTOFF : NMOD_POLY_GCD_CUTOFF;

    slong lenG, lenS, lenT;

    if (lenB == 1)
    {
        G[0] = B[0];
        T[0] = 1;
        lenG = 1;
        lenS = 0;
        lenT = 1;
    }
    else
    {
        mp_ptr q = _nmod_vec_init(lenA + lenB);
        mp_ptr r = q + lenA;

        slong lenq, lenr;

        __divrem(q, lenq, r, lenr, A, lenA, B, lenB);

        if (lenr == 0)
        {
            __set(G, lenG, B, lenB);
            T[0] = 1;
            lenS = 0;
            lenT = 1;
        }
        else
        {
            mp_ptr h, j, v, w, R[4], X;
            slong lenh, lenj, lenv, lenw, lenR[4];
            int sgnR;

            lenh = lenj = lenB;
            lenv = lenw = lenA + lenB - 2;
            lenR[0] = lenR[1] = lenR[2] = lenR[3] = (lenB + 1) / 2;

            X = _nmod_vec_init(2 * lenh + 2 * lenv + 4 * lenR[0]);
            h = X;
            j = h + lenh;
            v = j + lenj;
            w = v + lenv;
            R[0] = w + lenw;
            R[1] = R[0] + lenR[0];
            R[2] = R[1] + lenR[1];
            R[3] = R[2] + lenR[2];

            sgnR = _nmod_poly_hgcd(R, lenR, h, &lenh, j, &lenj, B, lenB, r, lenr, mod);

            if (sgnR > 0)
            {
                _nmod_vec_neg(S, R[1], lenR[1], mod);
                _nmod_vec_set(T, R[0], lenR[0]);
            }
            else
            {
                _nmod_vec_set(S, R[1], lenR[1]);
                _nmod_vec_neg(T, R[0], lenR[0], mod);
            }
            lenS = lenR[1];
            lenT = lenR[0];

            while (lenj != 0)
            {
                __divrem(q, lenq, r, lenr, h, lenh, j, lenj);
                __mul(v, lenv, q, lenq, T, lenT);
                {
                    slong l;
                    _nmod_vec_swap(S, T, FLINT_MAX(lenS, lenT));
                    l = lenS; lenS = lenT; lenT = l;
                }
                __sub(T, lenT, T, lenT, v, lenv);

                if (lenr == 0)
                {
                    __set(G, lenG, j, lenj);

                    goto cofactor;
                }
                if (lenj < cutoff)
                {
                    mp_ptr u0 = R[0], u1 = R[1];
                    slong lenu0 = lenr - 1, lenu1 = lenj - 1;

                    lenG = _nmod_poly_xgcd_euclidean(G, u0, u1, j, lenj, r, lenr, mod);
                    MPN_NORM(u0, lenu0);
                    MPN_NORM(u1, lenu1);

                    __mul(v, lenv, S, lenS, u0, lenu0);
                    __mul(w, lenw, T, lenT, u1, lenu1);
                    __add(S, lenS, v, lenv, w, lenw);

                    goto cofactor;
                }

                sgnR = _nmod_poly_hgcd(R, lenR, h, &lenh, j, &lenj, j,lenj, r, lenr, mod);

                __mul(v, lenv, R[1], lenR[1], T, lenT);
                __mul(w, lenw, R[2], lenR[2], S, lenS);

                __mul(q, lenq, S, lenS, R[3], lenR[3]);
                if (sgnR > 0)
                    __sub(S, lenS, q, lenq, v, lenv);
                else
                    __sub(S, lenS, v, lenv, q, lenq);

                __mul(q, lenq, T, lenT, R[0], lenR[0]);
                if (sgnR > WORD(0))
                    __sub(T, lenT, q, lenq, w, lenw);
                else
                    __sub(T, lenT, w, lenw, q, lenq);
            }
            __set(G, lenG, h, lenh);

            cofactor:

            __mul(v, lenv, S, lenS, A, lenA);
            __sub(w, lenw, G, lenG, v, lenv);
            __div(T, lenT, w, lenw, B, lenB);

            _nmod_vec_clear(X);
        }
        _nmod_vec_clear(q);
    }
    flint_mpn_zero(S + lenS, lenB - 1 - lenS);
    flint_mpn_zero(T + lenT, lenA - 1 - lenT);

    return lenG;
}
Exemplo n.º 21
0
double
SECTION
__ieee754_log(double x) {
#define M 4
  static const int pr[M]={8,10,18,32};
  int i,j,n,ux,dx,p;
#if 0
  int k;
#endif
  double dbl_n,u,p0,q,r0,w,nln2a,luai,lubi,lvaj,lvbj,
	 sij,ssij,ttij,A,B,B0,y,y1,y2,polI,polII,sa,sb,
	 t1,t2,t7,t8,t,ra,rb,ww,
	 a0,aa0,s1,s2,ss2,s3,ss3,a1,aa1,a,aa,b,bb,c;
#ifndef DLA_FMS
  double t3,t4,t5,t6;
#endif
  number num;
  mp_no mpx,mpy,mpy1,mpy2,mperr;

#include "ulog.tbl"
#include "ulog.h"

  /* Treating special values of x ( x<=0, x=INF, x=NaN etc.). */

  num.d = x;  ux = num.i[HIGH_HALF];  dx = num.i[LOW_HALF];
  n=0;
  if (__builtin_expect(ux < 0x00100000, 0)) {
    if (__builtin_expect(((ux & 0x7fffffff) | dx) == 0, 0))
      return MHALF/ZERO; /* return -INF */
    if (__builtin_expect(ux < 0, 0))
      return (x-x)/ZERO;                         /* return NaN  */
    n -= 54;    x *= two54.d;                              /* scale x     */
    num.d = x;
  }
  if (__builtin_expect(ux >= 0x7ff00000, 0))
    return x+x;                        /* INF or NaN  */

  /* Regular values of x */

  w = x-ONE;
  if (__builtin_expect(ABS(w) > U03, 1)) { goto case_03; }


  /*--- Stage I, the case abs(x-1) < 0.03 */

  t8 = MHALF*w;
  EMULV(t8,w,a,aa,t1,t2,t3,t4,t5)
  EADD(w,a,b,bb)

  /* Evaluate polynomial II */
  polII = (b0.d+w*(b1.d+w*(b2.d+w*(b3.d+w*(b4.d+
	  w*(b5.d+w*(b6.d+w*(b7.d+w*b8.d))))))))*w*w*w;
  c = (aa+bb)+polII;

  /* End stage I, case abs(x-1) < 0.03 */
  if ((y=b+(c+b*E2)) == b+(c-b*E2))  return y;

  /*--- Stage II, the case abs(x-1) < 0.03 */

  a = d11.d+w*(d12.d+w*(d13.d+w*(d14.d+w*(d15.d+w*(d16.d+
	    w*(d17.d+w*(d18.d+w*(d19.d+w*d20.d))))))));
  EMULV(w,a,s2,ss2,t1,t2,t3,t4,t5)
  ADD2(d10.d,dd10.d,s2,ss2,s3,ss3,t1,t2)
  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
  ADD2(d9.d,dd9.d,s2,ss2,s3,ss3,t1,t2)
  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
  ADD2(d8.d,dd8.d,s2,ss2,s3,ss3,t1,t2)
  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
  ADD2(d7.d,dd7.d,s2,ss2,s3,ss3,t1,t2)
  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
  ADD2(d6.d,dd6.d,s2,ss2,s3,ss3,t1,t2)
  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
  ADD2(d5.d,dd5.d,s2,ss2,s3,ss3,t1,t2)
  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
  ADD2(d4.d,dd4.d,s2,ss2,s3,ss3,t1,t2)
  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
  ADD2(d3.d,dd3.d,s2,ss2,s3,ss3,t1,t2)
  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
  ADD2(d2.d,dd2.d,s2,ss2,s3,ss3,t1,t2)
  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
  MUL2(w,ZERO,s2,ss2,s3,ss3,t1,t2,t3,t4,t5,t6,t7,t8)
  ADD2(w,ZERO,    s3,ss3, b, bb,t1,t2)

  /* End stage II, case abs(x-1) < 0.03 */
  if ((y=b+(bb+b*E4)) == b+(bb-b*E4))  return y;
  goto stage_n;

  /*--- Stage I, the case abs(x-1) > 0.03 */
  case_03:

  /* Find n,u such that x = u*2**n,   1/sqrt(2) < u < sqrt(2)  */
  n += (num.i[HIGH_HALF] >> 20) - 1023;
  num.i[HIGH_HALF] = (num.i[HIGH_HALF] & 0x000fffff) | 0x3ff00000;
  if (num.d > SQRT_2) { num.d *= HALF;  n++; }
  u = num.d;  dbl_n = (double) n;

  /* Find i such that ui=1+(i-75)/2**8 is closest to u (i= 0,1,2,...,181) */
  num.d += h1.d;
  i = (num.i[HIGH_HALF] & 0x000fffff) >> 12;

  /* Find j such that vj=1+(j-180)/2**16 is closest to v=u/ui (j= 0,...,361) */
  num.d = u*Iu[i].d + h2.d;
  j = (num.i[HIGH_HALF] & 0x000fffff) >> 4;

  /* Compute w=(u-ui*vj)/(ui*vj) */
  p0=(ONE+(i-75)*DEL_U)*(ONE+(j-180)*DEL_V);
  q=u-p0;   r0=Iu[i].d*Iv[j].d;   w=q*r0;

  /* Evaluate polynomial I */
  polI = w+(a2.d+a3.d*w)*w*w;

  /* Add up everything */
  nln2a = dbl_n*LN2A;
  luai  = Lu[i][0].d;   lubi  = Lu[i][1].d;
  lvaj  = Lv[j][0].d;   lvbj  = Lv[j][1].d;
  EADD(luai,lvaj,sij,ssij)
  EADD(nln2a,sij,A  ,ttij)
  B0 = (((lubi+lvbj)+ssij)+ttij)+dbl_n*LN2B;
  B  = polI+B0;

  /* End stage I, case abs(x-1) >= 0.03 */
  if ((y=A+(B+E1)) == A+(B-E1))  return y;


  /*--- Stage II, the case abs(x-1) > 0.03 */

  /* Improve the accuracy of r0 */
  EMULV(p0,r0,sa,sb,t1,t2,t3,t4,t5)
  t=r0*((ONE-sa)-sb);
  EADD(r0,t,ra,rb)

  /* Compute w */
  MUL2(q,ZERO,ra,rb,w,ww,t1,t2,t3,t4,t5,t6,t7,t8)

  EADD(A,B0,a0,aa0)

  /* Evaluate polynomial III */
  s1 = (c3.d+(c4.d+c5.d*w)*w)*w;
  EADD(c2.d,s1,s2,ss2)
  MUL2(s2,ss2,w,ww,s3,ss3,t1,t2,t3,t4,t5,t6,t7,t8)
  MUL2(s3,ss3,w,ww,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
  ADD2(s2,ss2,w,ww,s3,ss3,t1,t2)
  ADD2(s3,ss3,a0,aa0,a1,aa1,t1,t2)

  /* End stage II, case abs(x-1) >= 0.03 */
  if ((y=a1+(aa1+E3)) == a1+(aa1-E3)) return y;


  /* Final stages. Use multi-precision arithmetic. */
  stage_n:

  for (i=0; i<M; i++) {
    p = pr[i];
    __dbl_mp(x,&mpx,p);  __dbl_mp(y,&mpy,p);
    __mplog(&mpx,&mpy,p);
    __dbl_mp(e[i].d,&mperr,p);
    __add(&mpy,&mperr,&mpy1,p);  __sub(&mpy,&mperr,&mpy2,p);
    __mp_dbl(&mpy1,&y1,p);       __mp_dbl(&mpy2,&y2,p);
    if (y1==y2)   return y1;
  }
  return y1;
}