Exemplo n.º 1
0
static inline cairo_bo_intersect_ordinate_t
round_to_nearest (cairo_quorem64_t d,
		  cairo_int64_t    den)
{
    cairo_bo_intersect_ordinate_t ordinate;
    int32_t quo = d.quo;
    cairo_int64_t drem_2 = _cairo_int64_mul (d.rem, _cairo_int32_to_int64 (2));

    /* assert (! _cairo_int64_negative (den));*/

    if (_cairo_int64_lt (drem_2, _cairo_int64_negate (den))) {
	quo -= 1;
	drem_2 = _cairo_int64_negate (drem_2);
    } else if (_cairo_int64_le (den, drem_2)) {
	quo += 1;
	drem_2 = _cairo_int64_negate (drem_2);
    }

    ordinate.ordinate = quo;
    ordinate.approx = _cairo_int64_is_zero (drem_2) ? EXACT : _cairo_int64_negative (drem_2) ? EXCESS : DEFAULT;

    return ordinate;
}
static cairo_int64_t
distance_from_face (const cairo_stroke_face_t *face,
		    const cairo_point_t *p,
		    cairo_bool_t negate)
{
    int32_t dx = (p->x - face->point.x);
    int32_t dy = (p->y - face->point.y);
    cairo_int64_t d;

    d = _cairo_int64_sub (_cairo_int32x32_64_mul (dx, face->dev_vector.dy),
			  _cairo_int32x32_64_mul (dy, face->dev_vector.dx));
    if (negate)
	d = _cairo_int64_negate (d);
    return d;
}
Exemplo n.º 3
0
/* Compute the intersection of two lines as defined by two edges. The
 * result is provided as a coordinate pair of 128-bit integers.
 *
 * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection or
 * %CAIRO_BO_STATUS_PARALLEL if the two lines are exactly parallel.
 */
static cairo_bool_t
intersect_lines (cairo_bo_edge_t		*a,
		 cairo_bo_edge_t		*b,
		 cairo_bo_intersect_point_t	*intersection)
{
    cairo_int64_t a_det, b_det;

    /* XXX: We're assuming here that dx and dy will still fit in 32
     * bits. That's not true in general as there could be overflow. We
     * should prevent that before the tessellation algorithm begins.
     * What we're doing to mitigate this is to perform clamping in
     * cairo_bo_tessellate_polygon().
     */
    int32_t dx1 = a->edge.line.p1.x - a->edge.line.p2.x;
    int32_t dy1 = a->edge.line.p1.y - a->edge.line.p2.y;

    int32_t dx2 = b->edge.line.p1.x - b->edge.line.p2.x;
    int32_t dy2 = b->edge.line.p1.y - b->edge.line.p2.y;

    cairo_int64_t den_det;
    cairo_int64_t R;
    cairo_quorem64_t qr;

    den_det = det32_64 (dx1, dy1, dx2, dy2);

     /* Q: Can we determine that the lines do not intersect (within range)
      * much more cheaply than computing the intersection point i.e. by
      * avoiding the division?
      *
      *   X = ax + t * adx = bx + s * bdx;
      *   Y = ay + t * ady = by + s * bdy;
      *   ∴ t * (ady*bdx - bdy*adx) = bdx * (by - ay) + bdy * (ax - bx)
      *   => t * L = R
      *
      * Therefore we can reject any intersection (under the criteria for
      * valid intersection events) if:
      *   L^R < 0 => t < 0, or
      *   L<R => t > 1
      *
      * (where top/bottom must at least extend to the line endpoints).
      *
      * A similar substitution can be performed for s, yielding:
      *   s * (ady*bdx - bdy*adx) = ady * (ax - bx) - adx * (ay - by)
      */
    R = det32_64 (dx2, dy2,
		  b->edge.line.p1.x - a->edge.line.p1.x,
		  b->edge.line.p1.y - a->edge.line.p1.y);
    if (_cairo_int64_negative (den_det)) {
	if (_cairo_int64_ge (den_det, R))
	    return FALSE;
    } else {
	if (_cairo_int64_le (den_det, R))
	    return FALSE;
    }

    R = det32_64 (dy1, dx1,
		  a->edge.line.p1.y - b->edge.line.p1.y,
		  a->edge.line.p1.x - b->edge.line.p1.x);
    if (_cairo_int64_negative (den_det)) {
	if (_cairo_int64_ge (den_det, R))
	    return FALSE;
    } else {
	if (_cairo_int64_le (den_det, R))
	    return FALSE;
    }

    /* We now know that the two lines should intersect within range. */

    a_det = det32_64 (a->edge.line.p1.x, a->edge.line.p1.y,
		      a->edge.line.p2.x, a->edge.line.p2.y);
    b_det = det32_64 (b->edge.line.p1.x, b->edge.line.p1.y,
		      b->edge.line.p2.x, b->edge.line.p2.y);

    /* x = det (a_det, dx1, b_det, dx2) / den_det */
    qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dx1,
						       b_det, dx2),
					 den_det);
    if (_cairo_int64_eq (qr.rem, den_det))
	return FALSE;
#if 0
    intersection->x.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
#else
    intersection->x.exactness = EXACT;
    if (! _cairo_int64_is_zero (qr.rem)) {
	if (_cairo_int64_negative (den_det) ^ _cairo_int64_negative (qr.rem))
	    qr.rem = _cairo_int64_negate (qr.rem);
	qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2));
	if (_cairo_int64_ge (qr.rem, den_det)) {
	    qr.quo = _cairo_int64_add (qr.quo,
				       _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
	} else
	    intersection->x.exactness = INEXACT;
    }
#endif
    intersection->x.ordinate = _cairo_int64_to_int32 (qr.quo);

    /* y = det (a_det, dy1, b_det, dy2) / den_det */
    qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dy1,
						       b_det, dy2),
					 den_det);
    if (_cairo_int64_eq (qr.rem, den_det))
	return FALSE;
#if 0
    intersection->y.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
#else
    intersection->y.exactness = EXACT;
    if (! _cairo_int64_is_zero (qr.rem)) {
	if (_cairo_int64_negative (den_det) ^ _cairo_int64_negative (qr.rem))
	    qr.rem = _cairo_int64_negate (qr.rem);
	qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2));
	if (_cairo_int64_ge (qr.rem, den_det)) {
	    qr.quo = _cairo_int64_add (qr.quo,
				       _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
	} else
	    intersection->y.exactness = INEXACT;
    }
#endif
    intersection->y.ordinate = _cairo_int64_to_int32 (qr.quo);

    return TRUE;
}