Exemplo n.º 1
0
MapBuilder::MapBuilder(std::shared_ptr<Lidar> lidar, std::shared_ptr<BasicPositionTracker> poseTracker)
{
    pcl::PointCloud<pcl::PointXYZ>::Ptr _cloud(new pcl::PointCloud<pcl::PointXYZ>);
    _cloud->height = 1;
    _cloud->width = 1024;
    _cloud->is_dense = false;
    _cloud->points.resize(_cloud->width*_cloud->height);

    if(lidar.get())
    {
        _lidar = lidar;
        connect(_lidar.get(), SIGNAL(onNewData(LidarState)), this, SLOT(onLidarData(LidarState)));
    }

    this->poseTracker = poseTracker;

    cloud = _cloud;
}
void ClusterExtraction::processCloud(float plane_tolerance)
{
	ros::Time stamp = ros::Time::now();

	if(!pcl_data)
	{
		ROS_INFO("No xtion_camera data.");
		sleep(1);
		return;
	}

	//pcl::PointCloud<PoinT>::Ptr _cloud;// (new pcl::PointCloud<PoinT>);
	sensor_msgs::PointCloud2ConstPtr _temp_cloud_ = pcl_data;
	pcl::PointCloud<PoinT>::Ptr _cloud (new pcl::PointCloud<PoinT>);
	pcl::fromROSMsg(*_temp_cloud_, *_cloud);

	pcl::VoxelGrid<PoinT> vg_filter;
	pcl::PointCloud<PoinT>::Ptr cloud_filtered (new pcl::PointCloud<PoinT>);

	vg_filter.setInputCloud (_cloud);
	vg_filter.setLeafSize (0.01f, 0.01f, 0.01f);
	vg_filter.filter (*cloud_filtered);

	_cloud = cloud_filtered;

	/**********************************************
	 * NEW BULL
	 *********************************************/

	//////////////////////////////////////////////////////////////////////
	// Cluster Extraction
	//////////////////////////////////////////////////////////////////////
	// Findout the points that are more than 1.25 m away.
	pcl::PointIndices::Ptr out_of_range_points (new pcl::PointIndices);
	unsigned int i = 0;

	BOOST_FOREACH(const PoinT& pt, _cloud->points)
	{
		if(sqrt( (pt.x*pt.x) + (pt.y*pt.y) + (pt.z*pt.z) ) > 1.5 || isnan (pt.x) || isnan (pt.y) || isnan (pt.z) ||
				  isinf (pt.x) || isinf (pt.y) || isinf (pt.z) )
			out_of_range_points->indices.push_back(i);

		i++;

	}

	pcl::ExtractIndices<PoinT> extract;
	pcl::PointCloud<PoinT>::Ptr cloud (new pcl::PointCloud<PoinT>);

	// Perform the extraction of these points (indices).
	extract.setInputCloud(_cloud);
	extract.setIndices(out_of_range_points);
	extract.setNegative (true);
	extract.filter (*cloud);


	// Prepare plane segmentation.
	pcl::SACSegmentation<PoinT> seg;
	pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
	pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);

	pcl::PointCloud<PoinT>::Ptr cloud_plane; // This door is opened elsewhere.

	pcl::PointCloud<PoinT>::Ptr cloud_f (new pcl::PointCloud<PoinT> ());

	seg.setOptimizeCoefficients (true);
	seg.setModelType (pcl::SACMODEL_PLANE);
	seg.setMethodType (pcl::SAC_RANSAC);
	seg.setMaxIterations (1000);
	seg.setDistanceThreshold (0.02);

	// Remove the planes.
	i = 0;

	int nr_points =  (int) cloud->points.size();
	tf::StampedTransform base_link_to_openni;
	
	try
	{
		tf_listener->waitForTransform("base_link", cloud->header.frame_id, ros::Time(0), ros::Duration(1));
		//tf_listener->transformPoint("base_link", plane_normal, _plane_normal);
		tf_listener->lookupTransform("base_link", cloud->header.frame_id, ros::Time(0), base_link_to_openni);
	}
	catch(tf::TransformException& ex)
	{
	  	ROS_INFO("COCKED UP POINT INFO! Why: %s", ex.what());
	}


	// We do this here so that we can put in an empty cluster, if we see no table in the first place.
	doro_msgs::ClusterArray __clusters;

	while (cloud->points.size () > 0.5 * nr_points)
	{
		seg.setInputCloud (cloud);
		seg.segment (*inliers, *coefficients);

		if (inliers->indices.size () == 0)
		{
		  //std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
		  break;
		}

		// Extract the planar inliers from the input cloud
		extract.setInputCloud (cloud);
		extract.setIndices (inliers);
		extract.setNegative (false);
		extract.filter (*cloud_f);


		// Is this a parallel to ground plane? If yes, save it.
		tf::Vector3 plane_normal (coefficients->values[0], coefficients->values[1], coefficients->values[2]);
		tf::Vector3 _plane_normal = base_link_to_openni*plane_normal;
		
		// What's the angle between this vector and the actual z axis? cos_inverse ( j component )...
		tf::Vector3 normal (_plane_normal.x(), _plane_normal.y(), _plane_normal.z());
		normal = normal.normalized();

		//std::cout<<"x: "<<normal.x()<<"\t";
		//std::cout<<"y: "<<normal.y()<<"\t";
		//std::cout<<"z: "<<normal.z()<<"\t";

		if(acos (normal.z()) < plane_tolerance)
		{
			cloud_plane = pcl::PointCloud<PoinT>::Ptr(new pcl::PointCloud<PoinT>);
			*cloud_plane = *cloud_f;
		}


		extract.setNegative (true);
		extract.filter (*cloud_f);
		*cloud = *cloud_f;
	}

	if(!cloud_plane)
	{
		ROS_INFO("No table or table-like object could be seen. Can't extract...");
		//clusters_pub.publish(__clusters);
		//sleep(1);
		return;
	}

	//ROS_INFO("Table seen.");
	//table_cloud_pub.publish(cloud_plane);

    //////////////////////////////////////////////////////////////////////
    /**
     * COMPUTE THE CENTROID OF THE PLANE AND PUBLISH IT.
     */
    //////////////////////////////////////////////////////////////////////
    Eigen::Vector4f plane_cen;

    // REMOVE COMMENTS WITH REAL ROBOT!!!
    pcl::compute3DCentroid(*cloud_plane, plane_cen);
    //std::cout<< plane_cen;

    tf::Vector3 plane_centroid (plane_cen[0], plane_cen[1], plane_cen[2]);
    tf::Vector3 _plane_centroid = base_link_to_openni*plane_centroid;
    
    geometry_msgs::PointStamped _plane_centroid_ROSMsg;
    _plane_centroid_ROSMsg.header.frame_id = "base_link";
    _plane_centroid_ROSMsg.header.stamp = stamp;
    _plane_centroid_ROSMsg.point.x = _plane_centroid.x();
    _plane_centroid_ROSMsg.point.y = _plane_centroid.y();
    _plane_centroid_ROSMsg.point.z = _plane_centroid.z();

    // Publish the centroid.
    table_position_pub.publish(_plane_centroid_ROSMsg);

    pcl::search::KdTree<PoinT>::Ptr tree (new pcl::search::KdTree<PoinT>);

   	if(cloud->points.size() == 0)
   	{
   		clusters_pub.publish(__clusters);
   		return;
   	}

   	tree->setInputCloud (cloud);

   	std::vector<pcl::PointIndices> cluster_indices;
   	pcl::EuclideanClusterExtraction<PoinT> ec;
   	ec.setClusterTolerance (0.02); // 2cm
   	ec.setMinClusterSize (20);
   	ec.setMaxClusterSize (25000);
   	ec.setSearchMethod (tree);
   	ec.setInputCloud (cloud);

   	ec.extract (cluster_indices);

   	//ROS_INFO("WIDTH: %d, HEIGHT: %d\n", _cloud->width, _cloud->height);

   	//ROS_INFO("GOOD TILL HERE!");

   	int j = 0;


   	for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
   	{
   		pcl::PointCloud<PoinT>::Ptr cloud_cluster (new pcl::PointCloud<PoinT>);

		cloud_cluster->header.frame_id = cloud->header.frame_id;

   		long int color_r, color_g, color_b;
   		uint8_t mean_r, mean_g, mean_b;

   		for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
   		{
   			cloud_cluster->points.push_back (cloud->points[*pit]);
   			/* ***************** */
   			/* COLOR COMPUTATION */
   			/* ***************** */

   			color_r += cloud->points[*pit].r;
   			color_g += cloud->points[*pit].g;
   			color_b += cloud->points[*pit].b;

   		}

   		geometry_msgs::Point a, b;
   		std::vector <double> cluster_dims = getClusterDimensions(cloud_cluster, a, b);

   		mean_r = (uint8_t) (color_r / cloud_cluster->points.size ());
   		mean_g = (uint8_t) (color_g / cloud_cluster->points.size ());
   		mean_b = (uint8_t) (color_b / cloud_cluster->points.size ());

   		cloud_cluster->width = cloud_cluster->points.size ();
   		cloud_cluster->height = 1;
   		cloud_cluster->is_dense = true;
   		cloud_cluster->header.frame_id = cloud->header.frame_id;

   		Eigen::Vector4f cluster_cen;

   		pcl::compute3DCentroid(*cloud_cluster, cluster_cen);

   		tf::Vector3 cluster_centroid (cluster_cen[0], cluster_cen[1], cluster_cen[2]);
   		tf::Vector3 _cluster_centroid = base_link_to_openni*cluster_centroid;

   		geometry_msgs::PointStamped _cluster_centroid_ROSMsg;
   		_cluster_centroid_ROSMsg.header.frame_id = "base_link";
   		_cluster_centroid_ROSMsg.header.stamp = stamp;
   		_cluster_centroid_ROSMsg.point.x = _cluster_centroid.x();
  		_cluster_centroid_ROSMsg.point.y = _cluster_centroid.y();
   		_cluster_centroid_ROSMsg.point.z = _cluster_centroid.z();

   		if(DIST(cluster_centroid,plane_centroid) < 0.6 && _cluster_centroid.z() > _plane_centroid.z())
   		{
   			doro_msgs::Cluster __cluster;
   			__cluster.centroid = _cluster_centroid_ROSMsg;
   			// Push cluster dimentions. Viewed width, breadth and height
   			__cluster.cluster_size = cluster_dims;
   			__cluster.a = a;
   			__cluster.b = b;
   			// Push colors
   			__cluster.color.push_back(mean_r);
   			__cluster.color.push_back(mean_g);
   			__cluster.color.push_back(mean_b);
   			__clusters.clusters.push_back (__cluster);
   			j++;
   		}

   	}

   	clusters_pub.publish(__clusters);

   	/////////////// RUBBISH ENDS ////////////////

    //if(pcl_data)
    //	pcl_data.reset();

}