Exemplo n.º 1
0
inline __m256i avx2_uv_to_ringid(const __m256i u, const __m256i v)
{
  // return static_cast<unsigned>(std::max({std::abs(u), std::abs(v),
  //           std::abs(u+v)}));
  __m256i ringid = _mm256_abs_epi32(u);
  ringid = _mm256_max_epu32(ringid, _mm256_abs_epi32(v));
  ringid = _mm256_max_epu32(ringid, _mm256_abs_epi32(_mm256_add_epi32(u,v)));
  return ringid;
}
Exemplo n.º 2
0
int vpx_highbd_satd_avx2(const tran_low_t *coeff, int length) {
  __m256i accum = _mm256_setzero_si256();
  int i;

  for (i = 0; i < length; i += 8, coeff += 8) {
    const __m256i src_line = _mm256_loadu_si256((const __m256i *)coeff);
    const __m256i abs = _mm256_abs_epi32(src_line);
    accum = _mm256_add_epi32(accum, abs);
  }

  {  // 32 bit horizontal add
    const __m256i a = _mm256_srli_si256(accum, 8);
    const __m256i b = _mm256_add_epi32(accum, a);
    const __m256i c = _mm256_srli_epi64(b, 32);
    const __m256i d = _mm256_add_epi32(b, c);
    const __m128i accum_128 = _mm_add_epi32(_mm256_castsi256_si128(d),
                                            _mm256_extractf128_si256(d, 1));
    return _mm_cvtsi128_si32(accum_128);
  }
}
Exemplo n.º 3
0
static INLINE void quantize(const __m256i *qp, __m256i *c,
                            const int16_t *iscan_ptr, int log_scale,
                            tran_low_t *qcoeff, tran_low_t *dqcoeff,
                            __m256i *eob) {
  const __m256i abs_coeff = _mm256_abs_epi32(*c);
  __m256i q = _mm256_add_epi32(abs_coeff, qp[0]);

  __m256i q_lo = _mm256_mul_epi32(q, qp[1]);
  __m256i q_hi = _mm256_srli_epi64(q, 32);
  const __m256i qp_hi = _mm256_srli_epi64(qp[1], 32);
  q_hi = _mm256_mul_epi32(q_hi, qp_hi);
  q_lo = _mm256_srli_epi64(q_lo, 16 - log_scale);
  q_hi = _mm256_srli_epi64(q_hi, 16 - log_scale);
  q_hi = _mm256_slli_epi64(q_hi, 32);
  q = _mm256_or_si256(q_lo, q_hi);
  const __m256i abs_s = _mm256_slli_epi32(abs_coeff, 1 + log_scale);
  const __m256i mask = _mm256_cmpgt_epi32(qp[2], abs_s);
  q = _mm256_andnot_si256(mask, q);

  __m256i dq = _mm256_mullo_epi32(q, qp[2]);
  dq = _mm256_srai_epi32(dq, log_scale);
  q = _mm256_sign_epi32(q, *c);
  dq = _mm256_sign_epi32(dq, *c);

  _mm256_storeu_si256((__m256i *)qcoeff, q);
  _mm256_storeu_si256((__m256i *)dqcoeff, dq);

  const __m128i isc = _mm_loadu_si128((const __m128i *)iscan_ptr);
  const __m128i zr = _mm_setzero_si128();
  const __m128i lo = _mm_unpacklo_epi16(isc, zr);
  const __m128i hi = _mm_unpackhi_epi16(isc, zr);
  const __m256i iscan =
      _mm256_insertf128_si256(_mm256_castsi128_si256(lo), hi, 1);

  const __m256i zero = _mm256_setzero_si256();
  const __m256i zc = _mm256_cmpeq_epi32(dq, zero);
  const __m256i nz = _mm256_cmpeq_epi32(zc, zero);
  __m256i cur_eob = _mm256_sub_epi32(iscan, nz);
  cur_eob = _mm256_and_si256(cur_eob, nz);
  *eob = _mm256_max_epi32(cur_eob, *eob);
}
Exemplo n.º 4
0
__m256i test_mm256_abs_epi32(__m256i a) {
  // CHECK: @llvm.x86.avx2.pabs.d
  return _mm256_abs_epi32(a);
}
Exemplo n.º 5
0
__m256i test_mm256_abs_epi32(__m256i a) {
  // CHECK-LABEL: test_mm256_abs_epi32
  // CHECK: call <8 x i32> @llvm.x86.avx2.pabs.d(<8 x i32> %{{.*}})
  return _mm256_abs_epi32(a);
}
Exemplo n.º 6
0
void extern
avx2_test (void)
{
  x = _mm256_abs_epi32 (x);
}
Exemplo n.º 7
0
void FLAC__precompute_partition_info_sums_intrin_avx2(const FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[],
		uint32_t residual_samples, uint32_t predictor_order, uint32_t min_partition_order, uint32_t max_partition_order, uint32_t bps)
{
	const uint32_t default_partition_samples = (residual_samples + predictor_order) >> max_partition_order;
	uint32_t partitions = 1u << max_partition_order;

	FLAC__ASSERT(default_partition_samples > predictor_order);

	/* first do max_partition_order */
	{
		const uint32_t threshold = 32 - FLAC__bitmath_ilog2(default_partition_samples);
		uint32_t partition, residual_sample, end = (uint32_t)(-(int32_t)predictor_order);

		if(bps + FLAC__MAX_EXTRA_RESIDUAL_BPS < threshold) {
			for(partition = residual_sample = 0; partition < partitions; partition++) {
				__m256i sum256 = _mm256_setzero_si256();
				__m128i sum128;
				end += default_partition_samples;

				for( ; (int)residual_sample < (int)end-7; residual_sample+=8) {
					__m256i res256 = _mm256_abs_epi32(_mm256_loadu_si256((const __m256i*)(residual+residual_sample)));
					sum256 = _mm256_add_epi32(sum256, res256);
				}

				sum128 = _mm_add_epi32(_mm256_extracti128_si256(sum256, 1), _mm256_castsi256_si128(sum256));

				for( ; (int)residual_sample < (int)end-3; residual_sample+=4) {
					__m128i res128 = _mm_abs_epi32(_mm_loadu_si128((const __m128i*)(residual+residual_sample)));
					sum128 = _mm_add_epi32(sum128, res128);
				}

				for( ; residual_sample < end; residual_sample++) {
					__m128i res128 = _mm_abs_epi32(_mm_cvtsi32_si128(residual[residual_sample]));
					sum128 = _mm_add_epi32(sum128, res128);
				}

				sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_SHUFFLE(1,0,3,2)));
				sum128 = _mm_add_epi32(sum128, _mm_shufflelo_epi16(sum128, _MM_SHUFFLE(1,0,3,2)));
				abs_residual_partition_sums[partition] = (FLAC__uint32)_mm_cvtsi128_si32(sum128);
/* workaround for MSVC bugs (at least versions 2015 and 2017 are affected) */
#if (defined _MSC_VER) && (defined FLAC__CPU_X86_64)
				abs_residual_partition_sums[partition] &= 0xFFFFFFFF; /**/
#endif
			}
		}
		else { /* have to pessimistically use 64 bits for accumulator */
			for(partition = residual_sample = 0; partition < partitions; partition++) {
				__m256i sum256 = _mm256_setzero_si256();
				__m128i sum128;
				end += default_partition_samples;

				for( ; (int)residual_sample < (int)end-3; residual_sample+=4) {
					__m128i res128 = _mm_abs_epi32(_mm_loadu_si128((const __m128i*)(residual+residual_sample)));
					__m256i res256 = _mm256_cvtepu32_epi64(res128);
					sum256 = _mm256_add_epi64(sum256, res256);
				}

				sum128 = _mm_add_epi64(_mm256_extracti128_si256(sum256, 1), _mm256_castsi256_si128(sum256));

				for( ; (int)residual_sample < (int)end-1; residual_sample+=2) {
					__m128i res128 = _mm_abs_epi32(_mm_loadl_epi64((const __m128i*)(residual+residual_sample)));
					res128 = _mm_cvtepu32_epi64(res128);
					sum128 = _mm_add_epi64(sum128, res128);
				}

				for( ; residual_sample < end; residual_sample++) {
					__m128i res128 = _mm_abs_epi32(_mm_cvtsi32_si128(residual[residual_sample]));
					sum128 = _mm_add_epi64(sum128, res128);
				}

				sum128 = _mm_add_epi64(sum128, _mm_srli_si128(sum128, 8));
				_mm_storel_epi64((__m128i*)(abs_residual_partition_sums+partition), sum128);
			}
		}
	}

	/* now merge partitions for lower orders */
	{
		uint32_t from_partition = 0, to_partition = partitions;
		int partition_order;
		for(partition_order = (int)max_partition_order - 1; partition_order >= (int)min_partition_order; partition_order--) {
			uint32_t i;
			partitions >>= 1;
			for(i = 0; i < partitions; i++) {
				abs_residual_partition_sums[to_partition++] =
					abs_residual_partition_sums[from_partition  ] +
					abs_residual_partition_sums[from_partition+1];
				from_partition += 2;
			}
		}
	}
	_mm256_zeroupper();
}
Exemplo n.º 8
0
void FLAC__precompute_partition_info_sums_intrin_avx2(const FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[],
		uint32_t residual_samples, uint32_t predictor_order, uint32_t min_partition_order, uint32_t max_partition_order, uint32_t bps)
{
	const uint32_t default_partition_samples = (residual_samples + predictor_order) >> max_partition_order;
	uint32_t partitions = 1u << max_partition_order;

	FLAC__ASSERT(default_partition_samples > predictor_order);

	/* first do max_partition_order */
	{
		const uint32_t threshold = 32 - FLAC__bitmath_ilog2(default_partition_samples);
		uint32_t partition, residual_sample, end = (uint32_t)(-(int32_t)predictor_order);

		if(bps + FLAC__MAX_EXTRA_RESIDUAL_BPS < threshold) {
			for(partition = residual_sample = 0; partition < partitions; partition++) {
				__m256i sum256 = _mm256_setzero_si256();
				__m128i sum128;
				end += default_partition_samples;

				for( ; (int)residual_sample < (int)end-7; residual_sample+=8) {
					__m256i res256 = _mm256_abs_epi32(_mm256_loadu_si256((const __m256i*)(residual+residual_sample)));
					sum256 = _mm256_add_epi32(sum256, res256);
				}

				sum128 = _mm_add_epi32(_mm256_extracti128_si256(sum256, 1), _mm256_castsi256_si128(sum256));

				for( ; (int)residual_sample < (int)end-3; residual_sample+=4) {
					__m128i res128 = _mm_abs_epi32(_mm_loadu_si128((const __m128i*)(residual+residual_sample)));
					sum128 = _mm_add_epi32(sum128, res128);
				}

				for( ; residual_sample < end; residual_sample++) {
					__m128i res128 = _mm_abs_epi32(_mm_cvtsi32_si128(residual[residual_sample]));
					sum128 = _mm_add_epi32(sum128, res128);
				}

				sum128 = _mm_hadd_epi32(sum128, sum128);
				sum128 = _mm_hadd_epi32(sum128, sum128);
				abs_residual_partition_sums[partition] = (FLAC__uint32)_mm_cvtsi128_si32(sum128);
/* workaround for a bug in MSVC2015U2 - see https://connect.microsoft.com/VisualStudio/feedback/details/2659191/incorrect-code-generation-for-x86-64 */
#if (defined _MSC_VER) && (_MSC_FULL_VER == 190023918) && (defined FLAC__CPU_X86_64)
				abs_residual_partition_sums[partition] &= 0xFFFFFFFF; /**/
#endif
			}
		}
		else { /* have to pessimistically use 64 bits for accumulator */
			for(partition = residual_sample = 0; partition < partitions; partition++) {
				__m256i sum256 = _mm256_setzero_si256();
				__m128i sum128;
				end += default_partition_samples;

				for( ; (int)residual_sample < (int)end-3; residual_sample+=4) {
					__m128i res128 = _mm_abs_epi32(_mm_loadu_si128((const __m128i*)(residual+residual_sample)));
					__m256i res256 = _mm256_cvtepu32_epi64(res128);
					sum256 = _mm256_add_epi64(sum256, res256);
				}

				sum128 = _mm_add_epi64(_mm256_extracti128_si256(sum256, 1), _mm256_castsi256_si128(sum256));

				for( ; (int)residual_sample < (int)end-1; residual_sample+=2) {
					__m128i res128 = _mm_abs_epi32(_mm_loadl_epi64((const __m128i*)(residual+residual_sample)));
					res128 = _mm_cvtepu32_epi64(res128);
					sum128 = _mm_add_epi64(sum128, res128);
				}

				for( ; residual_sample < end; residual_sample++) {
					__m128i res128 = _mm_abs_epi32(_mm_cvtsi32_si128(residual[residual_sample]));
					sum128 = _mm_add_epi64(sum128, res128);
				}

				sum128 = _mm_add_epi64(sum128, _mm_srli_si128(sum128, 8));
				_mm_storel_epi64((__m128i*)(abs_residual_partition_sums+partition), sum128);
			}
		}
	}

	/* now merge partitions for lower orders */
	{
		uint32_t from_partition = 0, to_partition = partitions;
		int partition_order;
		for(partition_order = (int)max_partition_order - 1; partition_order >= (int)min_partition_order; partition_order--) {
			uint32_t i;
			partitions >>= 1;
			for(i = 0; i < partitions; i++) {
				abs_residual_partition_sums[to_partition++] =
					abs_residual_partition_sums[from_partition  ] +
					abs_residual_partition_sums[from_partition+1];
				from_partition += 2;
			}
		}
	}
	_mm256_zeroupper();
}