Exemplo n.º 1
0
void gblas_quantizer::quantization(const double* input, double* output, int rows, int cols)
{
  std::cerr << "Deprecated method: gblas_quantizer::quantization()" << std::endl;
  exit(0);
  
  //  for (int i=0; i < rows; i++)
  //  {
  //    for (int j=0; j < cols; j++)
  //    {
  //      output[i*cols + j] = quantize_sample(&input[i*cols + j]);
  //    }
  //  }
  
  //  for (int i=0; i < rows*cols; i++)
  //  {
  //    output[i] = (int)(input[i]/gblas_status.q_step + ZERO_DOT_FIVE); //quantize_sample(&input[i]);
  //  }
  __m128d curr;
  __m128d inv_q_step  = _mm_div_pd(_mm_set1_pd(1.0), _mm_set1_pd(q_step));
  const double* in_p  = input;
  double* out_p = output;
  
  for (int i=((rows*cols) >> 1); i > 0; i--)
  {
    curr = _mm_load_pd(in_p); in_p += 2;
    curr = _mm_mul_pd(curr, inv_q_step);    
    curr = _mm_add_pd(curr, _MM_ZERO_DOT_FIVE_D);
    curr = _mm_cvtepi32_pd(_mm_cvttpd_epi32(curr));
    _mm_store_pd(out_p, curr);  out_p += 2;
  }
}
Exemplo n.º 2
0
__m128i test_mm_cvttpd_epi32(__m128d A) {
  // DAG-LABEL: test_mm_cvttpd_epi32
  // DAG: call <4 x i32> @llvm.x86.sse2.cvttpd2dq
  //
  // ASM-LABEL: test_mm_cvttpd_epi32
  // ASM: cvttpd2dq
  return _mm_cvttpd_epi32(A);
}
    SIMDValue SIMDInt32x4Operation::OpFromFloat64x2(const SIMDValue& value)
    {
        X86SIMDValue x86Result;
        X86SIMDValue v = X86SIMDValue::ToX86SIMDValue(value);

        // Converts the 2 double-precision, floating-point values to 32-bit signed integers
        // using truncate. using truncate one instead of _mm_cvtpd_epi32
        x86Result.m128i_value = _mm_cvttpd_epi32(v.m128d_value);

        return X86SIMDValue::ToSIMDValue(x86Result);
    }
Exemplo n.º 4
0
/* vms_expma:
 *   Compute the component-wise exponential minus <a>:
 *       r[i] <-- e^x[i] - a
 *
 *   The following comments apply to the SSE2 version of this code:
 *
 *   Computation is done four doubles as a time by doing computation in paralell
 *   on two vectors of two doubles using SSE2 intrisics.  If size is not a
 *   multiple of 4, the remaining elements are computed using the stdlib exp().
 *
 *   The computation is done by first doing a range reduction of the argument of
 *   the type e^x = 2^k * e^f choosing k and f so that f is in [-0.5, 0.5].
 *   Then 2^k can be computed exactly using bit operations to build the double
 *   result and e^f can be efficiently computed with enough precision using a
 *   polynomial approximation.
 *
 *   The polynomial approximation is done with 11th order polynomial computed by
 *   Remez algorithm with the Solya suite, instead of the more classical Pade
 *   polynomial form cause it is better suited to parallel execution. In order
 *   to achieve the same precision, a Pade form seems to require three less
 *   multiplications but need a very costly division, so it will be less
 *   efficient.
 *
 *   The maximum error is less than 1lsb and special cases are correctly
 *   handled:
 *     +inf or +oor  -->   return +inf
 *     -inf or -oor  -->   return  0.0
 *     qNaN or sNaN  -->   return qNaN
 *
 *   This code is copyright 2004-2012 Thomas Lavergne and licenced under the
 *   BSD licence like the remaining of Wapiti.
 */
void xvm_expma(double r[], const double x[], double a, uint64_t N) {
#if defined(__SSE2__) && !defined(XVM_ANSI)
  #define xvm_vconst(v) (_mm_castsi128_pd(_mm_set1_epi64x((v))))
	assert(r != NULL && ((uintptr_t)r % 16) == 0);
	assert(x != NULL && ((uintptr_t)x % 16) == 0);
	const __m128i vl  = _mm_set1_epi64x(0x3ff0000000000000ULL);
	const __m128d ehi = xvm_vconst(0x4086232bdd7abcd2ULL);
	const __m128d elo = xvm_vconst(0xc086232bdd7abcd2ULL);
	const __m128d l2e = xvm_vconst(0x3ff71547652b82feULL);
	const __m128d hal = xvm_vconst(0x3fe0000000000000ULL);
	const __m128d nan = xvm_vconst(0xfff8000000000000ULL);
	const __m128d inf = xvm_vconst(0x7ff0000000000000ULL);
	const __m128d c1  = xvm_vconst(0x3fe62e4000000000ULL);
	const __m128d c2  = xvm_vconst(0x3eb7f7d1cf79abcaULL);
	const __m128d p0  = xvm_vconst(0x3feffffffffffffeULL);
	const __m128d p1  = xvm_vconst(0x3ff000000000000bULL);
	const __m128d p2  = xvm_vconst(0x3fe0000000000256ULL);
	const __m128d p3  = xvm_vconst(0x3fc5555555553a2aULL);
	const __m128d p4  = xvm_vconst(0x3fa55555554e57d3ULL);
	const __m128d p5  = xvm_vconst(0x3f81111111362f4fULL);
	const __m128d p6  = xvm_vconst(0x3f56c16c25f3bae1ULL);
	const __m128d p7  = xvm_vconst(0x3f2a019fc9310c33ULL);
	const __m128d p8  = xvm_vconst(0x3efa01825f3cb28bULL);
	const __m128d p9  = xvm_vconst(0x3ec71e2bd880fdd8ULL);
	const __m128d p10 = xvm_vconst(0x3e9299068168ac8fULL);
	const __m128d p11 = xvm_vconst(0x3e5ac52350b60b19ULL);
	const __m128d va  = _mm_set1_pd(a);
	for (uint64_t n = 0; n < N; n += 4) {
		__m128d mn1, mn2, mi1, mi2;
		__m128d t1,  t2,  d1,  d2;
		__m128d v1,  v2,  w1,  w2;
		__m128i k1,  k2;
		__m128d f1,  f2;
		// Load the next four values
		__m128d x1 = _mm_load_pd(x + n    );
		__m128d x2 = _mm_load_pd(x + n + 2);
		// Check for out of ranges, infinites and NaN
		mn1 = _mm_cmpneq_pd(x1, x1);	mn2 = _mm_cmpneq_pd(x2, x2);
		mi1 = _mm_cmpgt_pd(x1, ehi);	mi2 = _mm_cmpgt_pd(x2, ehi);
		x1  = _mm_max_pd(x1, elo);	x2  = _mm_max_pd(x2, elo);
		// Range reduction: we search k and f such that e^x = 2^k * e^f
		// with f in [-0.5, 0.5]
		t1  = _mm_mul_pd(x1, l2e);	t2  = _mm_mul_pd(x2, l2e);
		t1  = _mm_add_pd(t1, hal);	t2  = _mm_add_pd(t2, hal);
		k1  = _mm_cvttpd_epi32(t1);	k2  = _mm_cvttpd_epi32(t2);
		d1  = _mm_cvtepi32_pd(k1);	d2  = _mm_cvtepi32_pd(k2);
		t1  = _mm_mul_pd(d1, c1);	t2  = _mm_mul_pd(d2, c1);
		f1  = _mm_sub_pd(x1, t1);	f2  = _mm_sub_pd(x2, t2);
		t1  = _mm_mul_pd(d1, c2);	t2  = _mm_mul_pd(d2, c2);
		f1  = _mm_sub_pd(f1, t1);	f2  = _mm_sub_pd(f2, t2);
		// Evaluation of e^f using a 11th order polynom in Horner form
		v1  = _mm_mul_pd(f1, p11);	v2  = _mm_mul_pd(f2, p11);
		v1  = _mm_add_pd(v1, p10);	v2  = _mm_add_pd(v2, p10);
		v1  = _mm_mul_pd(v1, f1);	v2  = _mm_mul_pd(v2, f2);
		v1  = _mm_add_pd(v1, p9);	v2  = _mm_add_pd(v2, p9);
		v1  = _mm_mul_pd(v1, f1);	v2  = _mm_mul_pd(v2, f2);
		v1  = _mm_add_pd(v1, p8);	v2  = _mm_add_pd(v2, p8);
		v1  = _mm_mul_pd(v1, f1);	v2  = _mm_mul_pd(v2, f2);
		v1  = _mm_add_pd(v1, p7);	v2  = _mm_add_pd(v2, p7);
		v1  = _mm_mul_pd(v1, f1);	v2  = _mm_mul_pd(v2, f2);
		v1  = _mm_add_pd(v1, p6);	v2  = _mm_add_pd(v2, p6);
		v1  = _mm_mul_pd(v1, f1);	v2  = _mm_mul_pd(v2, f2);
		v1  = _mm_add_pd(v1, p5);	v2  = _mm_add_pd(v2, p5);
		v1  = _mm_mul_pd(v1, f1);	v2  = _mm_mul_pd(v2, f2);
		v1  = _mm_add_pd(v1, p4);	v2  = _mm_add_pd(v2, p4);
		v1  = _mm_mul_pd(v1, f1);	v2  = _mm_mul_pd(v2, f2);
		v1  = _mm_add_pd(v1, p3);	v2  = _mm_add_pd(v2, p3);
		v1  = _mm_mul_pd(v1, f1);	v2  = _mm_mul_pd(v2, f2);
		v1  = _mm_add_pd(v1, p2);	v2  = _mm_add_pd(v2, p2);
		v1  = _mm_mul_pd(v1, f1);	v2  = _mm_mul_pd(v2, f2);
		v1  = _mm_add_pd(v1, p1);	v2  = _mm_add_pd(v2, p1);
		v1  = _mm_mul_pd(v1, f1);	v2  = _mm_mul_pd(v2, f2);
		v1  = _mm_add_pd(v1, p0);	v2  = _mm_add_pd(v2, p0);
		// Evaluation of 2^k using bitops to achieve exact computation
		k1  = _mm_slli_epi32(k1, 20);	k2  = _mm_slli_epi32(k2, 20);
		k1  = _mm_shuffle_epi32(k1, 0x72);
		k2  = _mm_shuffle_epi32(k2, 0x72);
		k1  = _mm_add_epi32(k1, vl);	k2  = _mm_add_epi32(k2, vl);
		w1  = _mm_castsi128_pd(k1);	w2  = _mm_castsi128_pd(k2);
		// Return to full range to substract <a>
	        v1  = _mm_mul_pd(v1, w1);	v2  = _mm_mul_pd(v2, w2);
		v1  = _mm_sub_pd(v1, va);	v2  = _mm_sub_pd(v2, va);
		// Finally apply infinite and NaN where needed
		v1  = _mm_or_pd(_mm_and_pd(mi1, inf), _mm_andnot_pd(mi1, v1));
		v2  = _mm_or_pd(_mm_and_pd(mi2, inf), _mm_andnot_pd(mi2, v2));
		v1  = _mm_or_pd(_mm_and_pd(mn1, nan), _mm_andnot_pd(mn1, v1));
		v2  = _mm_or_pd(_mm_and_pd(mn2, nan), _mm_andnot_pd(mn2, v2));
		// Store the results
		_mm_store_pd(r + n,     v1);
		_mm_store_pd(r + n + 2, v2);
	}
#else
	for (uint64_t n = 0; n < N; n++)
		r[n] = exp(x[n]) - a;
#endif
}
Exemplo n.º 5
0
void AVXFMA4DNoise(Vector3d& result, const Vector3d& EPoint)
{
    DBL x, y, z;
    int ix, iy, iz;
    int ixiy_hash, ixjy_hash, jxiy_hash, jxjy_hash;

    // TODO FIXME - global statistics reference
    // Stats[Calls_To_DNoise]++;

    x = EPoint[X];
    y = EPoint[Y];
    z = EPoint[Z];

    /* its equivalent integer lattice point. */
    /*ix = (int)x; iy = (int)y; iz = (int)z;
    x_ix = x - ix; y_iy = y - iy; z_iz = z - iz;*/
                /* JB fix for the range problem */

    __m128d xy = _mm_setr_pd(x, y);
    __m128d zn = _mm_set_sd(z);
    __m128d epsy = _mm_set1_pd(1.0 - EPSILON);
    __m128d xy_e = _mm_sub_pd(xy, epsy);
    __m128d zn_e = _mm_sub_sd(zn, epsy);
    __m128i tmp_xy = _mm_cvttpd_epi32(_mm_blendv_pd(xy, xy_e, xy));
    __m128i tmp_zn = _mm_cvttpd_epi32(_mm_blendv_pd(zn, zn_e, zn));

    __m128i noise_min_xy = _mm_setr_epi32(NOISE_MINX, NOISE_MINY, 0, 0);
    __m128i noise_min_zn = _mm_set1_epi32(NOISE_MINZ);

    __m128d xy_ixy = _mm_sub_pd(xy, _mm_cvtepi32_pd(tmp_xy));
    __m128d zn_izn = _mm_sub_sd(zn, _mm_cvtepi32_pd(tmp_zn));

    const __m128i fff = _mm_set1_epi32(0xfff);
    __m128i i_xy = _mm_and_si128(_mm_sub_epi32(tmp_xy, noise_min_xy), fff);
    __m128i i_zn = _mm_and_si128(_mm_sub_epi32(tmp_zn, noise_min_zn), fff);

    ix = _mm_extract_epi32(i_xy, 0);
    iy = _mm_extract_epi32(i_xy, 1);
    iz = _mm_extract_epi32(i_zn, 0);

    ixiy_hash = Hash2d(ix, iy);
    jxiy_hash = Hash2d(ix + 1, iy);
    ixjy_hash = Hash2d(ix, iy + 1);
    jxjy_hash = Hash2d(ix + 1, iy + 1);

    DBL* mp1 = &RTable[Hash1dRTableIndex(ixiy_hash, iz)];
    DBL* mp2 = &RTable[Hash1dRTableIndex(jxiy_hash, iz)];
    DBL* mp3 = &RTable[Hash1dRTableIndex(jxjy_hash, iz)];
    DBL* mp4 = &RTable[Hash1dRTableIndex(ixjy_hash, iz)];
    DBL* mp5 = &RTable[Hash1dRTableIndex(ixjy_hash, iz + 1)];
    DBL* mp6 = &RTable[Hash1dRTableIndex(jxjy_hash, iz + 1)];
    DBL* mp7 = &RTable[Hash1dRTableIndex(jxiy_hash, iz + 1)];
    DBL* mp8 = &RTable[Hash1dRTableIndex(ixiy_hash, iz + 1)];

    const __m128d three = _mm_set1_pd(3.0);
    const __m128d two = _mm_set1_pd(2.0);
    const __m128d one = _mm_set1_pd(1.0);

    __m128d ix_mm = _mm_unpacklo_pd(xy_ixy, xy_ixy);
    __m128d iy_mm = _mm_unpackhi_pd(xy_ixy, xy_ixy);
    __m128d iz_mm = _mm_unpacklo_pd(zn_izn, zn_izn);

    __m128d jx_mm = _mm_sub_pd(ix_mm, one);
    __m128d jy_mm = _mm_sub_pd(iy_mm, one);
    __m128d jz_mm = _mm_sub_pd(iz_mm, one);

    __m128d mm_sz = _mm_mul_pd(_mm_mul_pd(iz_mm, iz_mm), _mm_nmacc_pd(two, iz_mm, three));

    __m128d mm_tz = _mm_sub_pd(one, mm_sz);

    __m128d mm_sxy = _mm_mul_pd(_mm_mul_pd(xy_ixy, xy_ixy), _mm_nmacc_pd(two, xy_ixy, three));

    __m128d mm_txy = _mm_sub_pd(one, mm_sxy);
    __m128d mm_tysy = _mm_unpackhi_pd(mm_txy, mm_sxy);
    __m128d mm_txty_txsy = _mm_mul_pd(_mm_unpacklo_pd(mm_txy, mm_txy), mm_tysy);
    __m128d mm_sxty_sxsy = _mm_mul_pd(_mm_unpacklo_pd(mm_sxy, mm_sxy), mm_tysy);

    __m128d mm_txty_txsy_tz = _mm_mul_pd(mm_txty_txsy, mm_tz);
    __m128d mm_txty_txsy_sz = _mm_mul_pd(mm_txty_txsy, mm_sz);
    __m128d mm_sxty_sxsy_tz = _mm_mul_pd(mm_sxty_sxsy, mm_tz);
    __m128d mm_sxty_sxsy_sz = _mm_mul_pd(mm_sxty_sxsy, mm_sz);

    __m128d mp_t1, mp_t2, mp1_mm, mp2_mm, mp4_mm, mp6_mm, sum_p;
    __m128d sum_X_Y = _mm_setzero_pd();
    __m128d sum__Z = _mm_setzero_pd();

    __m128d mm_s1 = _mm_unpacklo_pd(mm_txty_txsy_tz, mm_txty_txsy_tz);
    INCRSUMP2(mp1, mp1 + 8, mm_s1, ix_mm, iy_mm, iz_mm, sum_X_Y);

    __m128d mm_s2 = _mm_unpacklo_pd(mm_sxty_sxsy_tz, mm_sxty_sxsy_tz);
    INCRSUMP2(mp2, mp2 + 8, mm_s2, jx_mm, iy_mm, iz_mm, sum_X_Y);

    __m128d mm_s3 = _mm_unpackhi_pd(mm_sxty_sxsy_tz, mm_sxty_sxsy_tz);
    INCRSUMP2(mp3, mp3 + 8, mm_s3, jx_mm, jy_mm, iz_mm, sum_X_Y);

    __m128d mm_s4 = _mm_unpackhi_pd(mm_txty_txsy_tz, mm_txty_txsy_tz);
    INCRSUMP2(mp4, mp4 + 8, mm_s4, ix_mm, jy_mm, iz_mm, sum_X_Y);

    __m128d mm_s5 = _mm_unpackhi_pd(mm_txty_txsy_sz, mm_txty_txsy_sz);
    INCRSUMP2(mp5, mp5 + 8, mm_s5, ix_mm, jy_mm, jz_mm, sum_X_Y);

    __m128d mm_s6 = _mm_unpackhi_pd(mm_sxty_sxsy_sz, mm_sxty_sxsy_sz);
    INCRSUMP2(mp6, mp6 + 8, mm_s6, jx_mm, jy_mm, jz_mm, sum_X_Y);

    __m128d mm_s7 = _mm_unpacklo_pd(mm_sxty_sxsy_sz, mm_sxty_sxsy_sz);
    INCRSUMP2(mp7, mp7 + 8, mm_s7, jx_mm, iy_mm, jz_mm, sum_X_Y);

    __m128d mm_s8 = _mm_unpacklo_pd(mm_txty_txsy_sz, mm_txty_txsy_sz);
    INCRSUMP2(mp8, mp8 + 8, mm_s8, ix_mm, iy_mm, jz_mm, sum_X_Y);

    __m128d iy_jy = _mm_unpacklo_pd(iy_mm, jy_mm);
    INCRSUMP2(mp1 + 16, mp4 + 16, mm_txty_txsy_tz, ix_mm, iy_jy, iz_mm, sum__Z);
    INCRSUMP2(mp8 + 16, mp5 + 16, mm_txty_txsy_sz, ix_mm, iy_jy, jz_mm, sum__Z);
    INCRSUMP2(mp2 + 16, mp3 + 16, mm_sxty_sxsy_tz, jx_mm, iy_jy, iz_mm, sum__Z);
    INCRSUMP2(mp7 + 16, mp6 + 16, mm_sxty_sxsy_sz, jx_mm, iy_jy, jz_mm, sum__Z);

    sum__Z = _mm_hadd_pd(sum__Z, sum__Z);

    _mm_storeu_pd(*result, sum_X_Y);
    _mm_store_sd(&result[Z], sum__Z);
}
Exemplo n.º 6
0
DBL AVXFMA4Noise(const Vector3d& EPoint, int noise_generator)
{
    DBL x, y, z;
    DBL *mp;
    int ix, iy, iz;
    int ixiy_hash, ixjy_hash, jxiy_hash, jxjy_hash;
    DBL sum;

    // TODO FIXME - global statistics reference
    // Stats[Calls_To_Noise]++;

    if (noise_generator==kNoiseGen_Perlin)
    {
        // The 1.59 and 0.985 are to correct for some biasing problems with
        // the random # generator used to create the noise tables.  Final
        // range of values is about 5.0e-4 below 0.0 and above 1.0.  Mean
        // value is 0.49 (ideally it would be 0.5).
        sum = 0.5 * (1.59 * SolidNoise(EPoint) + 0.985);

        // Clamp final value to 0-1 range
            if (sum < 0.0) sum = 0.0;
            if (sum > 1.0) sum = 1.0;

        return sum;
    }

    x = EPoint[X];
    y = EPoint[Y];
    z = EPoint[Z];

    /* its equivalent integer lattice point. */
    /* ix = (int)x; iy = (int)y; iz = (long)z; */
    /* JB fix for the range problem */

    __m128d xy = _mm_setr_pd(x, y);
    __m128d zn = _mm_set_sd(z);
    __m128d epsy = _mm_set1_pd(1.0 - EPSILON);
    __m128d xy_e = _mm_sub_pd(xy, epsy);
    __m128d zn_e = _mm_sub_sd(zn, epsy);
    __m128i tmp_xy = _mm_cvttpd_epi32(_mm_blendv_pd(xy, xy_e, xy));
    __m128i tmp_zn = _mm_cvttpd_epi32(_mm_blendv_pd(zn, zn_e, zn));

    __m128i noise_min_xy = _mm_setr_epi32(NOISE_MINX, NOISE_MINY, 0, 0);
    __m128i noise_min_zn = _mm_set1_epi32(NOISE_MINZ);

    __m128d xy_ixy = _mm_sub_pd(xy, _mm_cvtepi32_pd(tmp_xy));
    __m128d zn_izn = _mm_sub_sd(zn, _mm_cvtepi32_pd(tmp_zn));

    const __m128i fff = _mm_set1_epi32(0xfff);
    __m128i i_xy = _mm_and_si128(_mm_sub_epi32(tmp_xy, noise_min_xy), fff);
    __m128i i_zn = _mm_and_si128(_mm_sub_epi32(tmp_zn, noise_min_zn), fff);

    ix = _mm_extract_epi32(i_xy, 0);
    iy = _mm_extract_epi32(i_xy, 1);
    iz = _mm_extract_epi32(i_zn, 0);

    ixiy_hash = Hash2d(ix, iy);
    jxiy_hash = Hash2d(ix + 1, iy);
    ixjy_hash = Hash2d(ix, iy + 1);
    jxjy_hash = Hash2d(ix + 1, iy + 1);

    mp = &RTable[Hash1dRTableIndex(ixiy_hash, iz)];
    DBL *mp2 = &RTable[Hash1dRTableIndex(ixjy_hash, iz)];
    DBL *mp3 = &RTable[Hash1dRTableIndex(ixiy_hash, iz + 1)];
    DBL *mp4 = &RTable[Hash1dRTableIndex(ixjy_hash, iz + 1)];
    DBL *mp5 = &RTable[Hash1dRTableIndex(jxiy_hash, iz)];
    DBL *mp6 = &RTable[Hash1dRTableIndex(jxjy_hash, iz)];
    DBL *mp7 = &RTable[Hash1dRTableIndex(jxiy_hash, iz + 1)];
    DBL *mp8 = &RTable[Hash1dRTableIndex(jxjy_hash, iz + 1)];

    const __m128d three = _mm_set1_pd(3.0);
    const __m128d two = _mm_set1_pd(2.0);
    const __m128d one = _mm_set1_pd(1.0);

    __m128d ix_mm = _mm_unpacklo_pd(xy_ixy, xy_ixy);
    __m128d iy_mm = _mm_unpackhi_pd(xy_ixy, xy_ixy);
    __m128d iz_mm = _mm_unpacklo_pd(zn_izn, zn_izn);

    __m128d jx_mm = _mm_sub_pd(ix_mm, one);
    __m128d jy_mm = _mm_sub_pd(iy_mm, one);
    __m128d jz_mm = _mm_sub_pd(iz_mm, one);

    __m128d mm_sxy = _mm_mul_pd(_mm_mul_pd(xy_ixy, xy_ixy), _mm_nmacc_pd(two, xy_ixy, three));
    __m128d mm_sz = _mm_mul_pd(_mm_mul_pd(iz_mm, iz_mm), _mm_nmacc_pd(two, iz_mm, three));

    __m128d mm_tz = _mm_sub_pd(one, mm_sz);
    __m128d mm_txy = _mm_sub_pd(one, mm_sxy);
    __m128d mm_tysy = _mm_unpackhi_pd(mm_txy, mm_sxy);
    __m128d mm_txty_txsy = _mm_mul_pd(_mm_unpacklo_pd(mm_txy, mm_txy), mm_tysy);
    __m128d mm_sxty_sxsy = _mm_mul_pd(_mm_unpacklo_pd(mm_sxy, mm_sxy), mm_tysy);

    __m128d y_mm = _mm_unpacklo_pd(iy_mm, jy_mm);

    __m128d mp_t1, mp_t2, mp1_mm, mp2_mm, mp4_mm, mp6_mm, sum_p, s_mm;
    __m128d int_sum1 = _mm_setzero_pd();

    s_mm = _mm_mul_pd(mm_txty_txsy, mm_tz);
    INCRSUMP2(mp, mp2, s_mm, ix_mm, y_mm, iz_mm, int_sum1);

    s_mm = _mm_mul_pd(mm_txty_txsy, mm_sz);
    INCRSUMP2(mp3, mp4, s_mm, ix_mm, y_mm, jz_mm, int_sum1);

    s_mm = _mm_mul_pd(mm_sxty_sxsy, mm_tz);
    INCRSUMP2(mp5, mp6, s_mm, jx_mm, y_mm, iz_mm, int_sum1);

    s_mm = _mm_mul_pd(mm_sxty_sxsy, mm_sz);
    INCRSUMP2(mp7, mp8, s_mm, jx_mm, y_mm, jz_mm, int_sum1);

    int_sum1 = _mm_hadd_pd(int_sum1, int_sum1);

    if(noise_generator==kNoiseGen_RangeCorrected)
    {
        /* details of range here:
        Min, max: -1.05242, 0.988997
        Mean: -0.0191481, Median: -0.535493, Std Dev: 0.256828

        We want to change it to as close to [0,1] as possible.
        */
        const __m128d r2 = _mm_set_sd(0.48985582);
        const __m128d r1r2 = _mm_set_sd(1.05242*0.48985582);
        int_sum1 = _mm_macc_sd(int_sum1, r2, r1r2);
    }
    else
    {
        int_sum1 = _mm_add_sd(int_sum1, _mm_set_sd(0.5));
    }

    int_sum1 = _mm_min_sd(one, int_sum1);
    int_sum1 = _mm_max_sd(_mm_setzero_pd(), int_sum1);
    _mm_store_sd(&sum, int_sum1);

    return (sum);
}
Exemplo n.º 7
0
static inline __m128d
my_invrsq_pd(__m128d x)
{
	const __m128d three = (const __m128d) {3.0f, 3.0f};
	const __m128d half  = (const __m128d) {0.5f, 0.5f};
	
	__m128  t  = _mm_rsqrt_ps(_mm_cvtpd_ps(x)); /* Convert to single precision and do _mm_rsqrt_ps() */
	__m128d t1 = _mm_cvtps_pd(t); /* Convert back to double precision */
	
	/* First Newton-Rapson step, accuracy is now 24 bits */
	__m128d t2 = _mm_mul_pd(half,_mm_mul_pd(t1,_mm_sub_pd(three,_mm_mul_pd(x,_mm_mul_pd(t1,t1)))));
	
	/* Return second Newton-Rapson step, accuracy 48 bits */
	return (__m128d) _mm_mul_pd(half,_mm_mul_pd(t2,_mm_sub_pd(three,_mm_mul_pd(x,_mm_mul_pd(t2,t2)))));
}

/* to extract single integers from a __m128i datatype */
#define _mm_extract_epi64(x, imm) \
    _mm_cvtsi128_si32(_mm_srli_si128((x), 4 * (imm)))
	
void nb_kernel400_x86_64_sse2(int *           p_nri,
                    int *           iinr,
                    int *           jindex,
                    int *           jjnr,
                    int *           shift,
                    double *         shiftvec,
                    double *         fshift,
                    int *           gid,
                    double *         pos,
                    double *         faction,
                    double *         charge,
                    double *         p_facel,
                    double *         p_krf,
                    double *         p_crf,
                    double *         Vc,
                    int *           type,
                    int *           p_ntype,
                    double *         vdwparam,
                    double *         Vvdw,
                    double *         p_tabscale,
                    double *         VFtab,
                    double *         invsqrta,
                    double *         dvda,
                    double *         p_gbtabscale,
                    double *         GBtab,
                    int *           p_nthreads,
                    int *           count,
                    void *          mtx,
                    int *           outeriter,
                    int *           inneriter,
                    double *         work)
{
	int           nri,ntype,nthreads,offset;
	int           n,ii,is3,ii3,k,nj0,nj1,jnr1,jnr2,j13,j23,ggid;
	double        facel,krf,crf,tabscl,gbtabscl,vct,vgbt;
	double        shX,shY,shZ,isai_d,dva;
	gmx_gbdata_t *gbdata;
	float *        gpol;

	__m128d       ix,iy,iz,jx,jy,jz;
	__m128d		  dx,dy,dz,t1,t2,t3;
	__m128d		  fix,fiy,fiz,rsq11,rinv,r,fscal,rt,eps,eps2;
	__m128d		  q,iq,qq,isai,isaj,isaprod,vcoul,gbscale,dvdai,dvdaj;
	__m128d       Y,F,G,H,Fp,VV,FF,vgb,fijC,dvdatmp,dvdasum,vctot,vgbtot,n0d;
	__m128d		  xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7,xmm8;
	__m128d       fac,tabscale,gbtabscale;
	__m128i       n0,nnn;
	
	const __m128d neg    = {-1.0f,-1.0f};
	const __m128d zero   = {0.0f,0.0f};
	const __m128d half   = {0.5f,0.5f};
	const __m128d two    = {2.0f,2.0f};
	const __m128d three  = {3.0f,3.0f};
	
	gbdata     = (gmx_gbdata_t *)work;
	gpol       = gbdata->gpol;

	nri        = *p_nri;
	ntype      = *p_ntype;
	nthreads   = *p_nthreads; 
    facel      = (*p_facel) * (1.0 - (1.0/gbdata->gb_epsilon_solvent));       
	krf        = *p_krf;
	crf        = *p_crf;
	tabscl     = *p_tabscale;
	gbtabscl   = *p_gbtabscale;
	nj1        = 0;
	
	/* Splat variables */
	fac        = _mm_load1_pd(&facel);
	tabscale   = _mm_load1_pd(&tabscl);
	gbtabscale = _mm_load1_pd(&gbtabscl);
		
	/* Keep compiler happy */
	dvdatmp = _mm_setzero_pd();
	vgb     = _mm_setzero_pd();
	dvdaj   = _mm_setzero_pd();
	isaj    = _mm_setzero_pd();
	vcoul   = _mm_setzero_pd();
	t1      = _mm_setzero_pd();
	t2      = _mm_setzero_pd();
	t3      = _mm_setzero_pd();

	jnr1=jnr2=0;
	j13=j23=0;
	
	for(n=0;n<nri;n++)
	{
		is3     = 3*shift[n];
		shX     = shiftvec[is3];
		shY     = shiftvec[is3+1];
		shZ     = shiftvec[is3+2];
		
		nj0     = jindex[n];      
        nj1     = jindex[n+1];  
		offset  = (nj1-nj0)%2;
		
		ii      = iinr[n];
		ii3     = ii*3;
		
		ix      = _mm_set1_pd(shX+pos[ii3+0]);
		iy      = _mm_set1_pd(shX+pos[ii3+1]);
		iz      = _mm_set1_pd(shX+pos[ii3+2]); 
		q       = _mm_set1_pd(charge[ii]);
		
		iq      = _mm_mul_pd(fac,q); 
		isai_d  = invsqrta[ii];
		isai    = _mm_load1_pd(&isai_d);
		
		fix     = _mm_setzero_pd();
		fiy     = _mm_setzero_pd();
		fiz     = _mm_setzero_pd();
		dvdasum = _mm_setzero_pd();
		vctot   = _mm_setzero_pd();
		vgbtot  = _mm_setzero_pd();
		
		for(k=nj0;k<nj1-offset; k+=2)
		{
			jnr1    = jjnr[k];
			jnr2    = jjnr[k+1];
						
			j13     = jnr1 * 3;
			j23     = jnr2 * 3;
			
			/* Load coordinates */
			xmm1    = _mm_loadu_pd(pos+j13); /* x1 y1 */
			xmm2    = _mm_loadu_pd(pos+j23); /* x2 y2 */
			
			xmm5    = _mm_load_sd(pos+j13+2); /* z1 - */
			xmm6    = _mm_load_sd(pos+j23+2); /* z2 - */
			
			/* transpose */
			jx      = _mm_shuffle_pd(xmm1,xmm2,_MM_SHUFFLE2(0,0)); 
			jy      = _mm_shuffle_pd(xmm1,xmm2,_MM_SHUFFLE2(1,1)); 
			jz      = _mm_shuffle_pd(xmm5,xmm6,_MM_SHUFFLE2(0,0)); 
			
			/* distances */
			dx      = _mm_sub_pd(ix,jx);
			dy		= _mm_sub_pd(iy,jy);
			dz		= _mm_sub_pd(iz,jz);
			
			rsq11   = _mm_add_pd( _mm_add_pd( _mm_mul_pd(dx,dx) , _mm_mul_pd(dy,dy) ) , _mm_mul_pd(dz,dz) );
			rinv    = my_invrsq_pd(rsq11);
						
			/* Load invsqrta */
			isaj	= _mm_loadl_pd(isaj,invsqrta+jnr1);
			isaj	= _mm_loadh_pd(isaj,invsqrta+jnr2);
			isaprod = _mm_mul_pd(isai,isaj);
			
			/* Load charges */
			q		= _mm_loadl_pd(q,charge+jnr1);
			q		= _mm_loadh_pd(q,charge+jnr2);
			qq		= _mm_mul_pd(iq,q);
			
			vcoul	= _mm_mul_pd(qq,rinv);
			fscal	= _mm_mul_pd(vcoul,rinv);
			qq		= _mm_mul_pd(isaprod,qq);
			qq		= _mm_mul_pd(qq,neg);
			gbscale	= _mm_mul_pd(isaprod,gbtabscale);
			
			/* Load dvdaj */
			dvdaj	= _mm_loadl_pd(dvdaj, dvda+jnr1);
			dvdaj	= _mm_loadh_pd(dvdaj, dvda+jnr2);
			
			r		= _mm_mul_pd(rsq11,rinv);
			rt		= _mm_mul_pd(r,gbscale);
			n0		= _mm_cvttpd_epi32(rt);
			n0d		= _mm_cvtepi32_pd(n0);
			eps		= _mm_sub_pd(rt,n0d);
			eps2	= _mm_mul_pd(eps,eps);
			
			nnn		= _mm_slli_epi64(n0,2);
			
			xmm1	= _mm_load_pd(GBtab+(_mm_extract_epi64(nnn,0)));   /* Y1 F1 */
			xmm2	= _mm_load_pd(GBtab+(_mm_extract_epi64(nnn,1)));   /* Y2 F2 */
			xmm3	= _mm_load_pd(GBtab+(_mm_extract_epi64(nnn,0))+2); /* G1 H1 */
			xmm4	= _mm_load_pd(GBtab+(_mm_extract_epi64(nnn,1))+2); /* G2 H2 */
			
			Y		= _mm_shuffle_pd(xmm1,xmm2,_MM_SHUFFLE2(0,0)); /* Y1 Y2 */
			F		= _mm_shuffle_pd(xmm1,xmm2,_MM_SHUFFLE2(1,1)); /* F1 F2 */
			G		= _mm_shuffle_pd(xmm3,xmm4,_MM_SHUFFLE2(0,0)); /* G1 G2 */
			H		= _mm_shuffle_pd(xmm3,xmm4,_MM_SHUFFLE2(1,1)); /* H1 H2 */
			
			G		= _mm_mul_pd(G,eps);
			H		= _mm_mul_pd(H,eps2);
			Fp		= _mm_add_pd(F,G);
			Fp		= _mm_add_pd(Fp,H);
			VV		= _mm_mul_pd(Fp,eps);
			VV		= _mm_add_pd(Y,VV);
			H		= _mm_mul_pd(two,H);
			FF		= _mm_add_pd(Fp,G);
			FF		= _mm_add_pd(FF,H);
			vgb		= _mm_mul_pd(qq,VV);
			fijC	= _mm_mul_pd(qq,FF);
			fijC	= _mm_mul_pd(fijC,gbscale);
			
			dvdatmp = _mm_mul_pd(fijC,r);
			dvdatmp	= _mm_add_pd(vgb,dvdatmp);
			dvdatmp = _mm_mul_pd(dvdatmp,neg);
			dvdatmp = _mm_mul_pd(dvdatmp,half);
			dvdasum	= _mm_add_pd(dvdasum,dvdatmp);
			
			xmm1	= _mm_mul_pd(dvdatmp,isaj);
			xmm1	= _mm_mul_pd(xmm1,isaj);
			dvdaj	= _mm_add_pd(dvdaj,xmm1);
			
			/* store dvda */
			_mm_storel_pd(dvda+jnr1,dvdaj);
			_mm_storeh_pd(dvda+jnr2,dvdaj);
			
			vctot	= _mm_add_pd(vctot,vcoul);
			vgbtot  = _mm_add_pd(vgbtot,vgb);
					
			fscal	= _mm_sub_pd(fijC,fscal);
			fscal	= _mm_mul_pd(fscal,neg);
			fscal	= _mm_mul_pd(fscal,rinv);
						
			/* calculate partial force terms */
			t1		= _mm_mul_pd(fscal,dx);
			t2		= _mm_mul_pd(fscal,dy);
			t3		= _mm_mul_pd(fscal,dz);
			
			/* update the i force */
			fix		= _mm_add_pd(fix,t1);
			fiy		= _mm_add_pd(fiy,t2);
			fiz		= _mm_add_pd(fiz,t3);
			
			/* accumulate forces from memory */
			xmm1	= _mm_loadu_pd(faction+j13); /* fx1 fy1 */
			xmm2	= _mm_loadu_pd(faction+j23); /* fx2 fy2 */
			
			xmm5	= _mm_load1_pd(faction+j13+2); /* fz1 fz1 */
			xmm6	= _mm_load1_pd(faction+j23+2); /* fz2 fz2 */
			
			/* transpose */
			xmm7	= _mm_shuffle_pd(xmm5,xmm6,_MM_SHUFFLE2(0,0)); /* fz1 fz2 */
			xmm5	= _mm_shuffle_pd(xmm1,xmm2,_MM_SHUFFLE2(0,0)); /* fx1 fx2 */
			xmm6	= _mm_shuffle_pd(xmm1,xmm2,_MM_SHUFFLE2(1,1)); /* fy1 fy2 */
			
			/* subtract partial forces */
			xmm5	= _mm_sub_pd(xmm5,t1);
			xmm6	= _mm_sub_pd(xmm6,t2);
			xmm7	= _mm_sub_pd(xmm7,t3);
			
			xmm1	= _mm_shuffle_pd(xmm5,xmm6,_MM_SHUFFLE2(0,0)); /* fx1 fy1 */
			xmm2	= _mm_shuffle_pd(xmm5,xmm6,_MM_SHUFFLE2(1,1)); /* fy1 fy2 */
			
			/* store fx and fy */
			_mm_storeu_pd(faction+j13,xmm1);
			_mm_storeu_pd(faction+j23,xmm2);
			
			/* .. then fz */
			_mm_storel_pd(faction+j13+2,xmm7);
			_mm_storel_pd(faction+j23+2,xmm7);
		}

		/* In double precision, offset can only be either 0 or 1 */
		if(offset!=0)
		{
			jnr1	= jjnr[k];
			j13		= jnr1*3;
			
			jx      = _mm_load_sd(pos+j13);
			jy      = _mm_load_sd(pos+j13+1);
			jz      = _mm_load_sd(pos+j13+2);
						
			isaj	= _mm_load_sd(invsqrta+jnr1);
			isaprod = _mm_mul_sd(isai,isaj);
			dvdaj	= _mm_load_sd(dvda+jnr1);
			q		= _mm_load_sd(charge+jnr1);
			qq      = _mm_mul_sd(iq,q);
			
			dx      = _mm_sub_sd(ix,jx);
			dy		= _mm_sub_sd(iy,jy);
			dz		= _mm_sub_sd(iz,jz);
			
			rsq11   = _mm_add_pd( _mm_add_pd( _mm_mul_pd(dx,dx) , _mm_mul_pd(dy,dy) ) , _mm_mul_pd(dz,dz) );
			rinv    = my_invrsq_pd(rsq11);
						
			vcoul	= _mm_mul_sd(qq,rinv);
			fscal	= _mm_mul_sd(vcoul,rinv);
			qq		= _mm_mul_sd(isaprod,qq);
			qq		= _mm_mul_sd(qq,neg);
			gbscale	= _mm_mul_sd(isaprod,gbtabscale);
			
			r		= _mm_mul_sd(rsq11,rinv);
			rt		= _mm_mul_sd(r,gbscale);
			n0		= _mm_cvttpd_epi32(rt);
			n0d		= _mm_cvtepi32_pd(n0);
			eps		= _mm_sub_sd(rt,n0d);
			eps2	= _mm_mul_sd(eps,eps);
			
			nnn		= _mm_slli_epi64(n0,2);
			
			xmm1	= _mm_load_pd(GBtab+(_mm_extract_epi64(nnn,0))); 
			xmm2	= _mm_load_pd(GBtab+(_mm_extract_epi64(nnn,1))); 
			xmm3	= _mm_load_pd(GBtab+(_mm_extract_epi64(nnn,0))+2); 
			xmm4	= _mm_load_pd(GBtab+(_mm_extract_epi64(nnn,1))+2); 
			
			Y		= _mm_shuffle_pd(xmm1,xmm2,_MM_SHUFFLE2(0,0)); 
			F		= _mm_shuffle_pd(xmm1,xmm2,_MM_SHUFFLE2(1,1)); 
			G		= _mm_shuffle_pd(xmm3,xmm4,_MM_SHUFFLE2(0,0)); 
			H		= _mm_shuffle_pd(xmm3,xmm4,_MM_SHUFFLE2(1,1)); 
			
			G		= _mm_mul_sd(G,eps);
			H		= _mm_mul_sd(H,eps2);
			Fp		= _mm_add_sd(F,G);
			Fp		= _mm_add_sd(Fp,H);
			VV		= _mm_mul_sd(Fp,eps);
			VV		= _mm_add_sd(Y,VV);
			H		= _mm_mul_sd(two,H);
			FF		= _mm_add_sd(Fp,G);
			FF		= _mm_add_sd(FF,H);
			vgb		= _mm_mul_sd(qq,VV);
			fijC	= _mm_mul_sd(qq,FF);
			fijC	= _mm_mul_sd(fijC,gbscale);
			
			dvdatmp = _mm_mul_sd(fijC,r);
			dvdatmp	= _mm_add_sd(vgb,dvdatmp);
			dvdatmp = _mm_mul_sd(dvdatmp,neg);
			dvdatmp = _mm_mul_sd(dvdatmp,half);
			dvdasum	= _mm_add_sd(dvdasum,dvdatmp);
			
			xmm1	= _mm_mul_sd(dvdatmp,isaj);
			xmm1	= _mm_mul_sd(xmm1,isaj);
			dvdaj	= _mm_add_sd(dvdaj,xmm1);
			
			/* store dvda */
			_mm_storel_pd(dvda+jnr1,dvdaj);
			
			vctot	= _mm_add_sd(vctot,vcoul);
			vgbtot  = _mm_add_sd(vgbtot,vgb);
						
			fscal	= _mm_sub_sd(fijC,fscal);
			fscal	= _mm_mul_sd(fscal,neg);
			fscal	= _mm_mul_sd(fscal,rinv);
								
			/* calculate partial force terms */
			t1		= _mm_mul_sd(fscal,dx);
			t2		= _mm_mul_sd(fscal,dy);
			t3		= _mm_mul_sd(fscal,dz);
			
			/* update the i force */
			fix		= _mm_add_sd(fix,t1);
			fiy		= _mm_add_sd(fiy,t2);
			fiz		= _mm_add_sd(fiz,t3);
			
			/* accumulate forces from memory */
			xmm5	= _mm_load_sd(faction+j13);   /* fx */
			xmm6    = _mm_load_sd(faction+j13+1); /* fy */
			xmm7    = _mm_load_sd(faction+j13+2); /* fz */
						
			/* subtract partial forces */
			xmm5	= _mm_sub_sd(xmm5,t1);
			xmm6	= _mm_sub_sd(xmm6,t2);
			xmm7	= _mm_sub_sd(xmm7,t3);
			
			/* store forces */
			_mm_store_sd(faction+j13,xmm5);
			_mm_store_sd(faction+j13+1,xmm6);
			_mm_store_sd(faction+j13+2,xmm7);
		}
		
		/* fix/fiy/fiz now contain four partial terms, that all should be
		 * added to the i particle forces
		 */
		t1		 = _mm_unpacklo_pd(t1,fix);
		t2		 = _mm_unpacklo_pd(t2,fiy);
		t3		 = _mm_unpacklo_pd(t3,fiz);
				
		fix		 = _mm_add_pd(fix,t1);
		fiy		 = _mm_add_pd(fiy,t2);
		fiz		 = _mm_add_pd(fiz,t3);
		
		fix      = _mm_shuffle_pd(fix,fix,_MM_SHUFFLE2(1,1));
		fiy      = _mm_shuffle_pd(fiy,fiy,_MM_SHUFFLE2(1,1));
		fiz      = _mm_shuffle_pd(fiz,fiz,_MM_SHUFFLE2(1,1));
		
		/* Load i forces from memory */
		xmm1     = _mm_load_sd(faction+ii3);
		xmm2     = _mm_load_sd(faction+ii3+1);
		xmm3     = _mm_load_sd(faction+ii3+2);
		
		/* Add to i force */
		fix      = _mm_add_sd(fix,xmm1);
		fiy      = _mm_add_sd(fiy,xmm2);
		fiz      = _mm_add_sd(fiz,xmm3);
	
		/* store i forces to memory */
		_mm_store_sd(faction+ii3,fix);
		_mm_store_sd(faction+ii3+1,fiy);
		_mm_store_sd(faction+ii3+2,fiz);
				
		/* now do dvda */
		dvdatmp  = _mm_unpacklo_pd(dvdatmp,dvdasum);
		dvdasum  = _mm_add_pd(dvdasum,dvdatmp);
		_mm_storeh_pd(&dva,dvdasum);
		dvda[ii] = dvda[ii] + dva*isai_d*isai_d;
		
		ggid	 = gid[n];
		
		/* Coulomb potential */
		vcoul	 = _mm_unpacklo_pd(vcoul,vctot);
		vctot	 = _mm_add_pd(vctot,vcoul);
		_mm_storeh_pd(&vct,vctot);
		Vc[ggid] = Vc[ggid] + vct;
		
		/* GB potential */
		vgb  	 = _mm_unpacklo_pd(vgb,vgbtot);
		vgbtot	 = _mm_add_pd(vgbtot,vgb);
		_mm_storeh_pd(&vgbt,vgbtot);
		gpol[ggid] = gpol[ggid] + vgbt;
	}
	
	*outeriter   = nri;            
    *inneriter   = nj1; 
	
}
void nb_kernel430_ia32_sse2(int *           p_nri,
                              int *           iinr,
                              int *           jindex,
                              int *           jjnr,
                              int *           shift,
                              double *         shiftvec,
                              double *         fshift,
                              int *           gid,
                              double *         pos,
                              double *         faction,
                              double *         charge,
                              double *         p_facel,
                              double *         p_krf,
                              double *         p_crf,
                              double *         vc,
                              int *           type,
                              int *           p_ntype,
                              double *         vdwparam,
                              double *         vvdw,
                              double *         p_tabscale,
                              double *         VFtab,
                              double *         invsqrta,
                              double *         dvda,
                              double *         p_gbtabscale,
                              double *         GBtab,
                              int *           p_nthreads,
                              int *           count,
                              void *          mtx,
                              int *           outeriter,
                              int *           inneriter,
                              double *         work)
{
  int           nri,ntype,nthreads;
  int           n,ii,is3,ii3,k,nj0,nj1,ggid;
  double        shX,shY,shZ;
	int			  offset,nti;
  int           jnrA,jnrB;
  int           j3A,j3B;
	int           tjA,tjB;
	gmx_gbdata_t *gbdata;
	double *      gpol;
    
	__m128d  iq,qq,jq,isai;
	__m128d  ix,iy,iz;
	__m128d  jx,jy,jz;
	__m128d  dx,dy,dz;
	__m128d  vctot,vvdwtot,vgbtot,dvdasum,gbfactor;
	__m128d  fix,fiy,fiz,tx,ty,tz,rsq;
	__m128d  rinv,isaj,isaprod;
	__m128d  vcoul,fscal,gbscale,c6,c12;
	__m128d  rinvsq,r,rtab;
	__m128d  eps,Y,F,G,H;
  __m128d  VV,FF,Fp;
	__m128d  vgb,fijGB,dvdatmp;
	__m128d  rinvsix,vvdw6,vvdw12,vvdwtmp;
	__m128d  facel,gbtabscale,dvdaj;
  __m128d  fijD,fijR;
  __m128d  xmm1,tabscale,eps2;
	__m128i  n0, nnn;
    
	
	const __m128d neg        = _mm_set1_pd(-1.0);
	const __m128d zero       = _mm_set1_pd(0.0);
	const __m128d minushalf  = _mm_set1_pd(-0.5);
	const __m128d two        = _mm_set1_pd(2.0);
	
	gbdata     = (gmx_gbdata_t *)work;
	gpol       = gbdata->gpol;
    
	nri        = *p_nri;
	ntype      = *p_ntype;
    
  gbfactor   = _mm_set1_pd( - ((1.0/gbdata->epsilon_r) - (1.0/gbdata->gb_epsilon_solvent)));     
  gbtabscale = _mm_load1_pd(p_gbtabscale);  
  facel      = _mm_load1_pd(p_facel);
  tabscale   = _mm_load1_pd(p_tabscale);
  
  nj1         = 0;
  jnrA = jnrB = 0;
  j3A = j3B   = 0;
  jx          = _mm_setzero_pd();
  jy          = _mm_setzero_pd();
  jz          = _mm_setzero_pd();
  c6          = _mm_setzero_pd();
  c12         = _mm_setzero_pd();
	
	for(n=0;n<nri;n++)
	{
    is3              = 3*shift[n];     
    shX              = shiftvec[is3];  
    shY              = shiftvec[is3+1];
    shZ              = shiftvec[is3+2];
    nj0              = jindex[n];      
    nj1              = jindex[n+1];    
    ii               = iinr[n];        
    ii3              = 3*ii;           
		
		ix               = _mm_set1_pd(shX+pos[ii3+0]);
		iy               = _mm_set1_pd(shY+pos[ii3+1]);
		iz               = _mm_set1_pd(shZ+pos[ii3+2]);
    
		iq               = _mm_load1_pd(charge+ii);
		iq               = _mm_mul_pd(iq,facel);
    
		isai             = _mm_load1_pd(invsqrta+ii);
    
		nti              = 2*ntype*type[ii];
		
		vctot            = _mm_setzero_pd();
		vvdwtot          = _mm_setzero_pd();
		vgbtot           = _mm_setzero_pd();
		dvdasum          = _mm_setzero_pd();
		fix              = _mm_setzero_pd();
		fiy              = _mm_setzero_pd();
		fiz              = _mm_setzero_pd();
        
		for(k=nj0;k<nj1-1; k+=2)
		{
			jnrA    = jjnr[k];
			jnrB    = jjnr[k+1];
			
			j3A     = jnrA * 3;
			j3B     = jnrB * 3;
            
      GMX_MM_LOAD_1RVEC_2POINTERS_PD(pos+j3A,pos+j3B,jx,jy,jz);
            
			dx           = _mm_sub_pd(ix,jx);
			dy           = _mm_sub_pd(iy,jy);
			dz           = _mm_sub_pd(iz,jz);
            
      rsq          = gmx_mm_calc_rsq_pd(dx,dy,dz);
      
      rinv         = gmx_mm_invsqrt_pd(rsq);
 			rinvsq       = _mm_mul_pd(rinv,rinv);
      
			/***********************************/
			/* INTERACTION SECTION STARTS HERE */
			/***********************************/
			GMX_MM_LOAD_2VALUES_PD(charge+jnrA,charge+jnrB,jq);
			GMX_MM_LOAD_2VALUES_PD(invsqrta+jnrA,invsqrta+jnrB,isaj);
            
      /* Lennard-Jones */
      tjA          = nti+2*type[jnrA];
			tjB          = nti+2*type[jnrB];
      
      GMX_MM_LOAD_2PAIRS_PD(vdwparam+tjA,vdwparam+tjB,c6,c12);
			
			isaprod      = _mm_mul_pd(isai,isaj);
			qq           = _mm_mul_pd(iq,jq);            
			vcoul        = _mm_mul_pd(qq,rinv);
			fscal        = _mm_mul_pd(vcoul,rinv);                                 
      vctot        = _mm_add_pd(vctot,vcoul);
      
      /* Polarization interaction */
			qq           = _mm_mul_pd(qq,_mm_mul_pd(isaprod,gbfactor));
			gbscale      = _mm_mul_pd(isaprod,gbtabscale);
      
 			/* Calculate GB table index */
			r            = _mm_mul_pd(rsq,rinv);
			rtab         = _mm_mul_pd(r,gbscale);
			
			n0		     = _mm_cvttpd_epi32(rtab);
			eps	     	 = _mm_sub_pd(rtab,_mm_cvtepi32_pd(n0));
			nnn		     = _mm_slli_epi32(n0,2);
			
      /* the tables are 16-byte aligned, so we can use _mm_load_pd */			
      Y            = _mm_load_pd(GBtab+(gmx_mm_extract_epi32(nnn,0))); 
      F            = _mm_load_pd(GBtab+(gmx_mm_extract_epi32(nnn,1)));
      GMX_MM_TRANSPOSE2_PD(Y,F);
      G            = _mm_load_pd(GBtab+(gmx_mm_extract_epi32(nnn,0))+2); 
      H            = _mm_load_pd(GBtab+(gmx_mm_extract_epi32(nnn,1))+2);
      GMX_MM_TRANSPOSE2_PD(G,H);
      
      G       = _mm_mul_pd(G,eps);
      H       = _mm_mul_pd(H, _mm_mul_pd(eps,eps) );
      F       = _mm_add_pd(F, _mm_add_pd( G , H ) );
      Y       = _mm_add_pd(Y, _mm_mul_pd(F, eps));
      F       = _mm_add_pd(F, _mm_add_pd(G , _mm_mul_pd(H,two)));
      vgb     = _mm_mul_pd(Y, qq);           
      fijGB   = _mm_mul_pd(F, _mm_mul_pd(qq,gbscale));
      
      dvdatmp = _mm_mul_pd(_mm_add_pd(vgb, _mm_mul_pd(fijGB,r)) , minushalf);
      
      vgbtot  = _mm_add_pd(vgbtot, vgb);
      
      dvdasum = _mm_add_pd(dvdasum, dvdatmp);
      dvdatmp = _mm_mul_pd(dvdatmp, _mm_mul_pd(isaj,isaj));
      
      GMX_MM_INCREMENT_2VALUES_PD(dvda+jnrA,dvda+jnrB,dvdatmp);
			
      /* Calculate VDW table index */
			rtab    = _mm_mul_pd(r,tabscale);
			n0      = _mm_cvttpd_epi32(rtab);
			eps     = _mm_sub_pd(rtab,_mm_cvtepi32_pd(n0));
			eps2    = _mm_mul_pd(eps,eps);
			nnn     = _mm_slli_epi32(n0,3);
			
      /* Dispersion */
      Y            = _mm_load_pd(VFtab+(gmx_mm_extract_epi32(nnn,0))); 
      F            = _mm_load_pd(VFtab+(gmx_mm_extract_epi32(nnn,1)));
      GMX_MM_TRANSPOSE2_PD(Y,F);
      G            = _mm_load_pd(VFtab+(gmx_mm_extract_epi32(nnn,0))+2); 
      H            = _mm_load_pd(VFtab+(gmx_mm_extract_epi32(nnn,1))+2);
      GMX_MM_TRANSPOSE2_PD(G,H);
      
      G       = _mm_mul_pd(G,eps);
			H       = _mm_mul_pd(H,eps2);
			Fp      = _mm_add_pd(F,G);
			Fp      = _mm_add_pd(Fp,H);
			VV      = _mm_mul_pd(Fp,eps);
			VV      = _mm_add_pd(Y,VV);
			xmm1    = _mm_mul_pd(two,H);
			FF      = _mm_add_pd(Fp,G);
			FF      = _mm_add_pd(FF,xmm1);
			
			vvdw6   = _mm_mul_pd(c6,VV);
			fijD    = _mm_mul_pd(c6,FF);
      
      /* Dispersion */
      Y            = _mm_load_pd(VFtab+(gmx_mm_extract_epi32(nnn,0))+4); 
      F            = _mm_load_pd(VFtab+(gmx_mm_extract_epi32(nnn,1))+4);
      GMX_MM_TRANSPOSE2_PD(Y,F);
      G            = _mm_load_pd(VFtab+(gmx_mm_extract_epi32(nnn,0))+6); 
      H            = _mm_load_pd(VFtab+(gmx_mm_extract_epi32(nnn,1))+6);
      GMX_MM_TRANSPOSE2_PD(G,H);
      
      G       = _mm_mul_pd(G,eps);
			H       = _mm_mul_pd(H,eps2);
			Fp      = _mm_add_pd(F,G);
			Fp      = _mm_add_pd(Fp,H);
			VV      = _mm_mul_pd(Fp,eps);
			VV      = _mm_add_pd(Y,VV);
			xmm1    = _mm_mul_pd(two,H);
			FF      = _mm_add_pd(Fp,G);
			FF      = _mm_add_pd(FF,xmm1);
			
			vvdw12  = _mm_mul_pd(c12,VV);
			fijR    = _mm_mul_pd(c12,FF);
			
			vvdwtmp = _mm_add_pd(vvdw12,vvdw6);
			vvdwtot = _mm_add_pd(vvdwtot,vvdwtmp);
      
			xmm1    = _mm_add_pd(fijD,fijR);
			xmm1    = _mm_mul_pd(xmm1,tabscale);
			xmm1    = _mm_add_pd(xmm1,fijGB);
			xmm1    = _mm_sub_pd(xmm1,fscal);
			fscal   = _mm_mul_pd(xmm1,neg);
			fscal   = _mm_mul_pd(fscal,rinv);
      
      /***********************************/
			/*  INTERACTION SECTION ENDS HERE  */
			/***********************************/
      
      /* Calculate temporary vectorial force */
      tx           = _mm_mul_pd(fscal,dx);
      ty           = _mm_mul_pd(fscal,dy);
      tz           = _mm_mul_pd(fscal,dz);
      
      /* Increment i atom force */
      fix          = _mm_add_pd(fix,tx);
      fiy          = _mm_add_pd(fiy,ty);
      fiz          = _mm_add_pd(fiz,tz);
      
      /* Store j forces back */
			GMX_MM_DECREMENT_1RVEC_2POINTERS_PD(faction+j3A,faction+j3B,tx,ty,tz);
		}
		
		/* In double precision, offset can only be either 0 or 1 */
		if(k<nj1)
		{
			jnrA    = jjnr[k];
			j3A     = jnrA * 3;
      
      GMX_MM_LOAD_1RVEC_1POINTER_PD(pos+j3A,jx,jy,jz);
      
			dx           = _mm_sub_sd(ix,jx);
			dy           = _mm_sub_sd(iy,jy);
			dz           = _mm_sub_sd(iz,jz);
            
      rsq          = gmx_mm_calc_rsq_pd(dx,dy,dz);
      
      rinv         = gmx_mm_invsqrt_pd(rsq);
 			rinvsq       = _mm_mul_sd(rinv,rinv);
      
      /* These reason for zeroing these variables here is for fixing bug 585
       * What happens is that __m128d _mm_add_sd(a,b) gives back r0=a[0]+b[0],
       * and r1=0, but it should be r1=a[1]. 
       * This might be a compiler issue (tested with gcc-4.1.3 and -O3).
       * To work around it, we zero these variables and use _mm_add_pd (**) instead
       * Note that the only variables that get affected are the energies since
       * the total sum needs to be correct 
       */
      vgb          = _mm_setzero_pd();
      vcoul        = _mm_setzero_pd();
      dvdatmp      = _mm_setzero_pd();
      vvdw6        = _mm_setzero_pd();
      vvdw12       = _mm_setzero_pd();

      /***********************************/
			/* INTERACTION SECTION STARTS HERE */
			/***********************************/
			GMX_MM_LOAD_1VALUE_PD(charge+jnrA,jq);
			GMX_MM_LOAD_1VALUE_PD(invsqrta+jnrA,isaj);
            
      /* Lennard-Jones */
      tjA          = nti+2*type[jnrA];
      
      GMX_MM_LOAD_1PAIR_PD(vdwparam+tjA,c6,c12);
			
			isaprod      = _mm_mul_sd(isai,isaj);
			qq           = _mm_mul_sd(jq,iq);            
			vcoul        = _mm_mul_sd(qq,rinv);
			fscal        = _mm_mul_sd(vcoul,rinv);                                 
      vctot        = _mm_add_pd(vctot,vcoul); /* (**) */
      
      /* Polarization interaction */
			qq           = _mm_mul_sd(qq,_mm_mul_sd(isaprod,gbfactor));
			gbscale      = _mm_mul_sd(isaprod,gbtabscale);
      
 			/* Calculate GB table index */
			r            = _mm_mul_sd(rsq,rinv);
			rtab         = _mm_mul_sd(r,gbscale);
			
			n0		     = _mm_cvttpd_epi32(rtab);
			eps	     	 = _mm_sub_sd(rtab,_mm_cvtepi32_pd(n0));
			nnn		     = _mm_slli_epi32(n0,2);
			
      /* the tables are 16-byte aligned, so we can use _mm_load_pd */			
      Y            = _mm_load_pd(GBtab+(gmx_mm_extract_epi32(nnn,0))); 
      F            = _mm_setzero_pd();
      GMX_MM_TRANSPOSE2_PD(Y,F);
      G            = _mm_load_pd(GBtab+(gmx_mm_extract_epi32(nnn,0))+2); 
      H            = _mm_setzero_pd();
      GMX_MM_TRANSPOSE2_PD(G,H);
      
      G       = _mm_mul_sd(G,eps);
      H       = _mm_mul_sd(H, _mm_mul_sd(eps,eps) );
      F       = _mm_add_sd(F, _mm_add_sd( G , H ) );
      Y       = _mm_add_sd(Y, _mm_mul_sd(F, eps));
      F       = _mm_add_sd(F, _mm_add_sd(G , _mm_mul_sd(H,two)));
      vgb     = _mm_mul_sd(Y, qq);           
      fijGB   = _mm_mul_sd(F, _mm_mul_sd(qq,gbscale));
      
      dvdatmp = _mm_mul_sd(_mm_add_sd(vgb, _mm_mul_sd(fijGB,r)) , minushalf);
      
      vgbtot  = _mm_add_pd(vgbtot, vgb); /* (**) */
      
      dvdasum = _mm_add_pd(dvdasum, dvdatmp); /* (**) */
      dvdatmp = _mm_mul_sd(dvdatmp, _mm_mul_sd(isaj,isaj));
      
      GMX_MM_INCREMENT_1VALUE_PD(dvda+jnrA,dvdatmp);
			
      /* Calculate VDW table index */
			rtab    = _mm_mul_sd(r,tabscale);
			n0      = _mm_cvttpd_epi32(rtab);
			eps     = _mm_sub_sd(rtab,_mm_cvtepi32_pd(n0));
			eps2    = _mm_mul_sd(eps,eps);
			nnn     = _mm_slli_epi32(n0,3);
			
      /* Dispersion */
      Y            = _mm_load_pd(VFtab+(gmx_mm_extract_epi32(nnn,0))); 
      F            = _mm_setzero_pd();
      GMX_MM_TRANSPOSE2_PD(Y,F);
      G            = _mm_load_pd(VFtab+(gmx_mm_extract_epi32(nnn,0))+2); 
      H            = _mm_setzero_pd();
      GMX_MM_TRANSPOSE2_PD(G,H);
      
      G       = _mm_mul_sd(G,eps);
			H       = _mm_mul_sd(H,eps2);
			Fp      = _mm_add_sd(F,G);
			Fp      = _mm_add_sd(Fp,H);
			VV      = _mm_mul_sd(Fp,eps);
			VV      = _mm_add_sd(Y,VV);
			xmm1    = _mm_mul_sd(two,H);
			FF      = _mm_add_sd(Fp,G);
			FF      = _mm_add_sd(FF,xmm1);
			
			vvdw6   = _mm_mul_sd(c6,VV);
			fijD    = _mm_mul_sd(c6,FF);
      
      /* Dispersion */
      Y            = _mm_load_pd(VFtab+(gmx_mm_extract_epi32(nnn,0))+4); 
      F            = _mm_setzero_pd();
      GMX_MM_TRANSPOSE2_PD(Y,F);
      G            = _mm_load_pd(VFtab+(gmx_mm_extract_epi32(nnn,0))+6); 
      H            = _mm_setzero_pd();
      GMX_MM_TRANSPOSE2_PD(G,H);
      
      G       = _mm_mul_sd(G,eps);
			H       = _mm_mul_sd(H,eps2);
			Fp      = _mm_add_sd(F,G);
			Fp      = _mm_add_sd(Fp,H);
			VV      = _mm_mul_sd(Fp,eps);
			VV      = _mm_add_sd(Y,VV);
			xmm1    = _mm_mul_sd(two,H);
			FF      = _mm_add_sd(Fp,G);
			FF      = _mm_add_sd(FF,xmm1);
			
			vvdw12  = _mm_mul_sd(c12,VV);
			fijR    = _mm_mul_sd(c12,FF);
			
			vvdwtmp = _mm_add_sd(vvdw12,vvdw6);
			vvdwtot = _mm_add_pd(vvdwtot,vvdwtmp); /* (**) */
            
			xmm1    = _mm_add_sd(fijD,fijR);
			xmm1    = _mm_mul_sd(xmm1,tabscale);
			xmm1    = _mm_add_sd(xmm1,fijGB);
			xmm1    = _mm_sub_sd(xmm1,fscal);
			fscal   = _mm_mul_sd(xmm1,neg);
			fscal   = _mm_mul_sd(fscal,rinv);

      /***********************************/
			/*  INTERACTION SECTION ENDS HERE  */
			/***********************************/
      
      /* Calculate temporary vectorial force */
      tx           = _mm_mul_sd(fscal,dx);
      ty           = _mm_mul_sd(fscal,dy);
      tz           = _mm_mul_sd(fscal,dz);
      
      /* Increment i atom force */
      fix          = _mm_add_sd(fix,tx);
      fiy          = _mm_add_sd(fiy,ty);
      fiz          = _mm_add_sd(fiz,tz);
      
      /* Store j forces back */
			GMX_MM_DECREMENT_1RVEC_1POINTER_PD(faction+j3A,tx,ty,tz);
		}
		
    dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai,isai));
    gmx_mm_update_iforce_1atom_pd(&fix,&fiy,&fiz,faction+ii3,fshift+is3);
    
    ggid     = gid[n];         
    
    gmx_mm_update_1pot_pd(vctot,vc+ggid);
    gmx_mm_update_1pot_pd(vgbtot,gpol+ggid);
    gmx_mm_update_1pot_pd(dvdasum,dvda+ii);
    gmx_mm_update_1pot_pd(vvdwtot,vvdw+ggid);
    
	}
  
	*outeriter   = nri;            
  *inneriter   = nj1; 	
}
Exemplo n.º 9
0
// The input must be in domain [-1686629712, 1686629712].
//
// I tried to optimize the double to int conversion by using `magic`, but
// it was actually slower than using `_mm_cvttpd_epi32()` and it didn't
// offer greater domain for `x`.
static SIMD_INLINE __m128d sin_cephes_pd(__m128d x) {
    SIMD_CONST_SQ(sign     , SIMD_UINT64_C(0x8000000000000000));
    SIMD_CONST_SQ(inv_sign , SIMD_UINT64_C(0x7FFFFFFFFFFFFFFF));
    SIMD_CONST_SI(int32_one, 1);
    SIMD_CONST_SD(4_DIV_PI , 1.27323954473516268615107010698);
    SIMD_CONST_SD(DP1      , 7.85398125648498535156e-1);
    SIMD_CONST_SD(DP2      , 3.77489470793079817668e-8);
    SIMD_CONST_SD(DP3      , 2.69515142907905952645e-15);

#define DEFINE_DATA(name, x0, x1, x2, x3, x4, x5, xm, xa, y0, y1, y2, y3, y4, y5, ym, ya) \
  SIMD_ALIGN_VAR(static const double, name[], 16) = { \
    x0, x0, x1, x1, x2, x2, x3, x3, x4, x4, x5, x5, xm, xm, xa, xa, \
    y0, x0, y1, x1, y2, x2, y3, x3, y4, x4, y5, x5, ym, xm, ya, xa, \
    x0, y0, x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, xm, ym, xa, ya, \
    y0, y0, y1, y1, y2, y2, y3, y3, y4, y4, y5, y5, ym, ym, ya, ya  \
  }

    DEFINE_DATA(sincos_coeff,
                1.58962301576546568060e-10,-2.50507477628578072866e-8,
                2.75573136213857245213e-6 ,-1.98412698295895385996e-4,
                8.33333333332211858878e-3 ,-1.66666666666666307295e-1, 1.0, 0.0,

                -1.13585365213876817300e-11, 2.08757008419747316778e-9,
                -2.75573141792967388112e-7 , 2.48015872888517045348e-5,
                -1.38888888888730564116e-3 , 4.16666666666665929218e-2,-0.5, 1.0);

    __m128d y;
    __m128d sign = x;                                        // Sign bit.

    x = _mm_and_pd(x, SIMD_GET_PD(inv_sign));                // Take the absolute value.
    y = _mm_mul_pd(x, SIMD_GET_PD(4_DIV_PI));                // Integer part of `x * 4 / PI`.

    __m128i ival = _mm_cvttpd_epi32(y);                      // Extract the integer part of y.
    __m128i ione = SIMD_GET_PI(int32_one);

    ival = _mm_add_epi32(ival, ione);                        // j += 1.
    ival = _mm_andnot_si128(ione, ival);                     // j &=~1.

    y = _mm_cvtepi32_pd(ival);
    ival = _mm_unpacklo_epi32(ival, ival);

    sign = _mm_xor_pd(sign,                                  // Swap the sign bit if `j & 4`.
                      _mm_castsi128_pd(_mm_slli_epi64(ival, 61)));
    sign = _mm_and_pd(sign, SIMD_GET_PD(sign));              // Keep only the sign bit.

    // Get the polynom selection mask (j & 2):
    //   1. `0x0000000000000000` => `0    <= x <= PI/4`
    //   2. `0xFFFFFFFFFFFFFFFF` => `PI/4 <  x <= PI/2`
    ival = _mm_slli_epi32(ival, 30);
    ival = _mm_srai_epi32(ival, 31);

    // Extended precision modular arithmetic:
    //   x = ((x - y * DP1) - y * DP2) - y * DP3
    x = _mm_sub_pd(x, _mm_mul_pd(y, SIMD_GET_PD(DP1)));
    x = _mm_sub_pd(x, _mm_mul_pd(y, SIMD_GET_PD(DP2)));
    x = _mm_sub_pd(x, _mm_mul_pd(y, SIMD_GET_PD(DP3)));

    // Get the polynom coefficients for each lane (sin/cos).
    __m128d poly_mask = _mm_castsi128_pd(ival);
    const __m128d* coeff = reinterpret_cast<const __m128d*>(sincos_coeff) +
                           static_cast<uintptr_t>(_mm_movemask_pd(poly_mask)) * 8;

    __m128d xx = _mm_mul_pd(x, x);
    y = coeff[0];
    y = Simd128::mad(y, xx, coeff[1]);
    y = Simd128::mad(y, xx, coeff[2]);
    y = Simd128::mad(y, xx, coeff[3]);
    y = Simd128::mad(y, xx, coeff[4]);
    y = Simd128::mad(y, xx, coeff[5]);
    y = _mm_mul_pd(y, xx);

    __m128d x_or_xx = _mm_or_pd(
                          _mm_and_pd(xx, poly_mask),
                          _mm_andnot_pd(poly_mask, x));

    y = _mm_mul_pd(y, x_or_xx);
    y = _mm_add_pd(y, _mm_mul_pd(x_or_xx, coeff[6]));
    y = _mm_add_pd(y, coeff[7]);

    return _mm_xor_pd(y, sign);
}