Exemplo n.º 1
0
/* assumes no aliasing of w and p */
void
acb_lambertw_branchpoint_series(acb_t w, const acb_t t, int bound, slong prec)
{
    slong i;
    static const int coeffs[] = {-130636800,130636800,-43545600,19958400,
        -10402560,5813640,-3394560,2042589,-1256320};

    acb_zero(w);

    for (i = 8; i >= 0; i--)
    {
        acb_mul(w, w, t, prec);
        acb_add_si(w, w, coeffs[i], prec);
    }

    acb_div_si(w, w, -coeffs[0], prec);

    if (bound)
    {
        mag_t err;
        mag_init(err);
        acb_get_mag(err, t);
        mag_geom_series(err, err, 9);

        if (acb_is_real(t))
            arb_add_error_mag(acb_realref(w), err);
        else
            acb_add_error_mag(w, err);
        mag_clear(err);
    }
}
Exemplo n.º 2
0
Arquivo: log1p.c Projeto: isuruf/arb
static void
acb_log1p_tiny(acb_t r, const acb_t z, slong prec)
{
    mag_t b, c;
    acb_t t;
    int real;

    mag_init(b);
    mag_init(c);
    acb_init(t);

    real = acb_is_real(z);

    /* if |z| < 1, then |log(1+z) - [z - z^2/2]| <= |z|^3/(1-|z|) */
    acb_get_mag(b, z);
    mag_one(c);
    mag_sub_lower(c, c, b);
    mag_pow_ui(b, b, 3);
    mag_div(b, b, c);

    acb_mul(t, z, z, prec);
    acb_mul_2exp_si(t, t, -1);
    acb_sub(r, z, t, prec);

    if (real && mag_is_finite(b))
        arb_add_error_mag(acb_realref(r), b);
    else
        acb_add_error_mag(r, b);

    mag_clear(b);
    mag_clear(c);
    acb_clear(t);
}
Exemplo n.º 3
0
void
acb_dirichlet_zeta_rs(acb_t res, const acb_t s, slong K, slong prec)
{
    if (acb_is_exact(s))
    {
        acb_dirichlet_zeta_rs_mid(res, s, K, prec);
    }
    else
    {
        acb_t t;
        mag_t rad, err, err2;
        slong acc;

        acc = acb_rel_accuracy_bits(s);
        acc = FLINT_MAX(acc, 0);
        acc = FLINT_MIN(acc, prec);
        prec = FLINT_MIN(prec, acc + 20);

        acb_init(t);
        mag_init(rad);
        mag_init(err);
        mag_init(err2);

        /* rad = rad(s) */
        mag_hypot(rad, arb_radref(acb_realref(s)), arb_radref(acb_imagref(s)));

        /* bound |zeta'(s)| */
        acb_dirichlet_zeta_deriv_bound(err, err2, s);

        /* error <= |zeta'(s)| * rad(s) */
        mag_mul(err, err, rad);

        /* evaluate at midpoint */
        acb_get_mid(t, s);
        acb_dirichlet_zeta_rs_mid(res, t, K, prec);

        acb_add_error_mag(res, err);

        acb_clear(t);
        mag_clear(rad);
        mag_clear(err);
        mag_clear(err2);
    }
}
Exemplo n.º 4
0
void
acb_dirichlet_vec_mellin_arb(acb_ptr res, const dirichlet_group_t G, const dirichlet_char_t chi, slong len, const arb_t t, slong n, slong prec)
{
    slong k;
    arb_t tk, xt, stk, st;
    acb_ptr a;
    mag_t e;
    a = _acb_vec_init(len);
    acb_dirichlet_chi_vec(a, G, chi, len, prec);
    if (dirichlet_parity_char(G, chi))
    {
        for (k = 2; k < len; k++)
            acb_mul_si(a + k, a + k, k, prec);
    }
    arb_init(tk);
    arb_init(xt);
    arb_init(st);
    arb_init(stk);
    mag_init(e);

    arb_sqrt(st, t, prec);
    arb_one(tk);
    arb_one(stk);
    for (k = 0; k < n; k++)
    {
        _acb_dirichlet_theta_argument_at_arb(xt, G->q, tk, prec);
        mag_tail_kexpk2_arb(e, xt, len);
        arb_neg(xt, xt);
        arb_exp(xt, xt, prec);
        /* TODO: reduce len */
        acb_dirichlet_qseries_arb(res + k, a, xt, len, prec);
        acb_add_error_mag(res + k, e);
        acb_mul_arb(res + k, res + k, stk, prec);
        arb_mul(tk, tk, t, prec);
        arb_mul(stk, stk, st, prec);
    }
    mag_clear(e);
    arb_clear(xt);
    arb_clear(tk);
    arb_clear(stk);
    arb_clear(st);
    _acb_vec_clear(a, len);
}
Exemplo n.º 5
0
void
acb_lambertw_cleared_cut(acb_t res, const acb_t z, const fmpz_t k, int flags, slong prec)
{
    acb_t ez1;
    acb_init(ez1);

    /* compute e*z + 1 */
    arb_const_e(acb_realref(ez1), prec);
    acb_mul(ez1, ez1, z, prec);
    acb_add_ui(ez1, ez1, 1, prec);

    if (acb_is_exact(z))
    {
        acb_lambertw_main(res, z, ez1, k, flags, prec);
    }
    else
    {
        acb_t zz;
        mag_t err, rad;

        mag_init(err);
        mag_init(rad);
        acb_init(zz);

        acb_lambertw_bound_deriv(err, z, ez1, k);
        mag_hypot(rad, arb_radref(acb_realref(z)), arb_radref(acb_imagref(z)));
        mag_mul(err, err, rad);

        acb_set(zz, z);
        mag_zero(arb_radref(acb_realref(zz)));
        mag_zero(arb_radref(acb_imagref(zz)));  /* todo: recompute ez1? */

        acb_lambertw_main(res, zz, ez1, k, flags, prec);
        acb_add_error_mag(res, err);

        mag_clear(err);
        mag_clear(rad);
        acb_clear(zz);
    }

    acb_clear(ez1);
}
Exemplo n.º 6
0
/* todo: use log(1-z) when this is better? would also need to
   adjust strategy in the main function */
void
acb_hypgeom_dilog_bernoulli(acb_t res, const acb_t z, slong prec)
{
    acb_t s, w, w2;
    slong n, k;
    fmpz_t c, d;
    mag_t m, err;
    double lm;
    int real;

    acb_init(s);
    acb_init(w);
    acb_init(w2);
    fmpz_init(c);
    fmpz_init(d);
    mag_init(m);
    mag_init(err);

    real = 0;
    if (acb_is_real(z))
    {
        arb_sub_ui(acb_realref(w), acb_realref(z), 1, 30);
        real = arb_is_nonpositive(acb_realref(w));
    }

    acb_log(w, z, prec);
    acb_get_mag(m, w);

    /* for k >= 4, the terms are bounded by  (|w| / (2 pi))^k */
    mag_set_ui_2exp_si(err, 2670177, -24);  /* upper bound for 1/(2pi) */
    mag_mul(err, err, m);
    lm = mag_get_d_log2_approx(err);

    if (lm < -0.25)
    {
        n = prec / (-lm) + 1;
        n = FLINT_MAX(n, 4);
        mag_geom_series(err, err, n);

        BERNOULLI_ENSURE_CACHED(n)

        acb_mul(w2, w, w, prec);

        for (k = n - (n % 2 == 0); k >= 3; k -= 2)
        {
            fmpz_mul_ui(c, fmpq_denref(bernoulli_cache + k - 1), k - 1);
            fmpz_mul_ui(d, c, (k + 1) * (k + 2));
            acb_mul(s, s, w2, prec);
            acb_mul_fmpz(s, s, c, prec);
            fmpz_mul_ui(c, fmpq_numref(bernoulli_cache + k - 1), (k + 1) * (k + 2));
            acb_sub_fmpz(s, s, c, prec);
            acb_div_fmpz(s, s, d, prec);
        }

        acb_mul(s, s, w, prec);
        acb_mul_2exp_si(s, s, 1);
        acb_sub_ui(s, s, 3, prec);
        acb_mul(s, s, w2, prec);
        acb_mul_2exp_si(s, s, -1);
        acb_const_pi(w2, prec);
        acb_addmul(s, w2, w2, prec);
        acb_div_ui(s, s, 6, prec);

        acb_neg(w2, w);
        acb_log(w2, w2, prec);
        acb_submul(s, w2, w, prec);
        acb_add(res, s, w, prec);

        acb_add_error_mag(res, err);
        if (real)
            arb_zero(acb_imagref(res));
    }
    else
    {
        acb_indeterminate(res);
    }

    acb_clear(s);
    acb_clear(w);
    acb_clear(w2);
    fmpz_clear(c);
    fmpz_clear(d);
    mag_clear(m);
    mag_clear(err);
}
Exemplo n.º 7
0
/* error propagation based on derivatives */
void
acb_hypgeom_airy_direct_prop(acb_t ai, acb_t aip, acb_t bi, acb_t bip,
    const acb_t z, slong n, slong prec)
{
    mag_t aib, aipb, bib, bipb, zb, rad;
    acb_t zz;
    int real;

    mag_init(aib);
    mag_init(aipb);
    mag_init(bib);
    mag_init(bipb);
    mag_init(zb);
    mag_init(rad);
    acb_init(zz);

    real = acb_is_real(z);
    arf_set(arb_midref(acb_realref(zz)), arb_midref(acb_realref(z))); 
    arf_set(arb_midref(acb_imagref(zz)), arb_midref(acb_imagref(z))); 
    mag_hypot(rad, arb_radref(acb_realref(z)), arb_radref(acb_imagref(z)));
    acb_get_mag(zb, z);

    acb_hypgeom_airy_bound(aib, aipb, bib, bipb, z);
    acb_hypgeom_airy_direct(ai, aip, bi, bip, zz, n, prec);

    if (ai != NULL)
    {
        mag_mul(aipb, aipb, rad);
        if (real)
            arb_add_error_mag(acb_realref(ai), aipb);
        else
            acb_add_error_mag(ai, aipb);
    }

    if (aip != NULL)
    {
        mag_mul(aib, aib, rad);
        mag_mul(aib, aib, zb);  /* |Ai''(z)| = |z Ai(z)| */
        if (real)
            arb_add_error_mag(acb_realref(aip), aib);
        else
            acb_add_error_mag(aip, aib);
    }

    if (bi != NULL)
    {
        mag_mul(bipb, bipb, rad);
        if (real)
            arb_add_error_mag(acb_realref(bi), bipb);
        else
            acb_add_error_mag(bi, bipb);
    }

    if (bip != NULL)
    {
        mag_mul(bib, bib, rad);
        mag_mul(bib, bib, zb);  /* |Bi''(z)| = |z Bi(z)| */
        if (real)
            arb_add_error_mag(acb_realref(bip), bib);
        else
            acb_add_error_mag(bip, bib);
    }

    mag_clear(aib);
    mag_clear(aipb);
    mag_clear(bib);
    mag_clear(bipb);
    mag_clear(zb);
    mag_clear(rad);
    acb_clear(zz);
}
Exemplo n.º 8
0
void
acb_modular_theta_const_sum(acb_t theta2, acb_t theta3, acb_t theta4,
    const acb_t q, long prec)
{
    mag_t qmag, err;
    double log2q_approx;
    int is_real, is_real_or_imag;
    long N;

    mag_init(qmag);
    mag_init(err);

    acb_get_mag(qmag, q);
    log2q_approx = mag_get_log2_d_approx(qmag);

    is_real = arb_is_zero(acb_imagref(q));
    is_real_or_imag = is_real || arb_is_zero(acb_realref(q));

    if (log2q_approx >= 0.0)
    {
        N = 1;
        mag_inf(err);
    }
    else
    {
        N = 0;

        while (0.05 * N * N < prec)
        {
            if (log2q_approx * ((N+2)*(N+2)/4) < -prec - 2)
                break;
            N++;
        }
        N = (N+2)*(N+2)/4;

        mag_geom_series(err, qmag, N);
        mag_mul_2exp_si(err, err, 1); /* each term is taken twice */

        if (mag_is_inf(err))
            N = 1;
    }

    if (N < 1800)
        acb_modular_theta_const_sum_basecase(theta2, theta3, theta4, q, N, prec);
    else
        acb_modular_theta_const_sum_rs(theta2, theta3, theta4, q, N, prec);

    if (is_real_or_imag)
        arb_add_error_mag(acb_realref(theta2), err);
    else
        acb_add_error_mag(theta2, err);

    if (is_real)
    {
        arb_add_error_mag(acb_realref(theta3), err);
        arb_add_error_mag(acb_realref(theta4), err);
    }
    else
    {
        acb_add_error_mag(theta3, err);
        acb_add_error_mag(theta4, err);
    }

    mag_clear(qmag);
    mag_clear(err);
}
Exemplo n.º 9
0
void
acb_hypgeom_pfq_sum_rs(acb_t res, acb_t term, acb_srcptr a, slong p,
                                              acb_srcptr b, slong q, const acb_t z, slong n, slong prec)
{
    acb_ptr zpow;
    acb_t s, t, u;
    slong i, j, k, m;
    mag_t B, C;

    if (n == 0)
    {
        acb_zero(res);
        acb_one(term);
        return;
    }

    if (n < 0)
        abort();

    m = n_sqrt(n);
    m = FLINT_MIN(m, 150);

    mag_init(B);
    mag_init(C);
    acb_init(s);
    acb_init(t);
    acb_init(u);
    zpow = _acb_vec_init(m + 1);

    _acb_vec_set_powers(zpow, z, m + 1, prec);

    mag_one(B);

    for (k = n; k >= 0; k--)
    {
        j = k % m;

        if (k < n)
            acb_add(s, s, zpow + j, prec);

        if (k > 0)
        {
            if (p > 0)
            {
                acb_add_ui(u, a, k - 1, prec);

                for (i = 1; i < p; i++)
                {
                    acb_add_ui(t, a + i, k - 1, prec);
                    acb_mul(u, u, t, prec);
                }

                if (k < n)
                    acb_mul(s, s, u, prec);

                acb_get_mag(C, u);
                mag_mul(B, B, C);
            }

            if (q > 0)
            {
                acb_add_ui(u, b, k - 1, prec);

                for (i = 1; i < q; i++)
                {
                    acb_add_ui(t, b + i, k - 1, prec);
                    acb_mul(u, u, t, prec);
                }

                if (k < n)
                    acb_div(s, s, u, prec);

                acb_get_mag_lower(C, u);
                mag_div(B, B, C);
            }

            if (j == 0 && k < n)
            {
                acb_mul(s, s, zpow + m, prec);
            }
        }
    }

    acb_get_mag(C, z);
    mag_pow_ui(C, C, n);
    mag_mul(B, B, C);

    acb_zero(term);
    if (_acb_vec_is_real(a, p) && _acb_vec_is_real(b, q) && acb_is_real(z))
        arb_add_error_mag(acb_realref(term), B);
    else
        acb_add_error_mag(term, B);

    acb_set(res, s);

    mag_clear(B);
    mag_clear(C);
    acb_clear(s);
    acb_clear(t);
    acb_clear(u);
    _acb_vec_clear(zpow, m + 1);
}
Exemplo n.º 10
0
void acb_hypgeom_u_asymp(acb_t res, const acb_t a, const acb_t b,
    const acb_t z, slong n, slong prec)
{
    acb_struct aa[3];
    acb_t s, t, w, winv;
    int R, p, q, is_real, is_terminating;
    slong n_terminating;

    if (!acb_is_finite(a) || !acb_is_finite(b) || !acb_is_finite(z))
    {
        acb_indeterminate(res);
        return;
    }

    acb_init(aa);
    acb_init(aa + 1);
    acb_init(aa + 2);
    acb_init(s);
    acb_init(t);
    acb_init(w);
    acb_init(winv);

    is_terminating = 0;
    n_terminating = WORD_MAX;

    /* special case, for incomplete gamma
      [todo: also when they happen to be exact and with difference 1...] */
    if (a == b)
    {
        acb_set(aa, a);
        p = 1;
        q = 0;
    }
    else
    {
        acb_set(aa, a);
        acb_sub(aa + 1, a, b, prec);
        acb_add_ui(aa + 1, aa + 1, 1, prec);
        acb_one(aa + 2);
        p = 2;
        q = 1;
    }

    if (acb_is_nonpositive_int(aa))
    {
        is_terminating = 1;

        if (arf_cmpabs_ui(arb_midref(acb_realref(aa)), prec) < 0)
            n_terminating = 1 - arf_get_si(arb_midref(acb_realref(aa)), ARF_RND_DOWN);
    }

    if (p == 2 && acb_is_nonpositive_int(aa + 1))
    {
        is_terminating = 1;

        if (arf_cmpabs_ui(arb_midref(acb_realref(aa + 1)), n_terminating) < 0)
            n_terminating = 1 - arf_get_si(arb_midref(acb_realref(aa + 1)), ARF_RND_DOWN);
    }

    acb_neg(w, z);
    acb_inv(w, w, prec);
    acb_neg(winv, z);

    /* low degree polynomial -- no need to try to terminate sooner */
    if (is_terminating && n_terminating < 8)
    {
        acb_hypgeom_pfq_sum_invz(s, t, aa, p, aa + p, q, w, winv,
            n_terminating, prec);
        acb_set(res, s);
    }
    else
    {
        mag_t C1, Cn, alpha, nu, sigma, rho, zinv, tmp, err;

        mag_init(C1);
        mag_init(Cn);
        mag_init(alpha);
        mag_init(nu);
        mag_init(sigma);
        mag_init(rho);
        mag_init(zinv);
        mag_init(tmp);
        mag_init(err);

        acb_hypgeom_u_asymp_bound_factors(&R, alpha, nu,
            sigma, rho, zinv, a, b, z);

        is_real = acb_is_real(a) && acb_is_real(b) && acb_is_real(z) &&
            (is_terminating || arb_is_positive(acb_realref(z)));

        if (R == 0)
        {
            /* if R == 0, the error bound is infinite unless terminating */
            if (is_terminating && n_terminating < prec)
            {
                acb_hypgeom_pfq_sum_invz(s, t, aa, p, aa + p, q, w, winv,
                    n_terminating, prec);
                acb_set(res, s);
            }
            else
            {
                acb_indeterminate(res);
            }
        }
        else
        {
            /* C1 */
            acb_hypgeom_mag_Cn(C1, R, nu, sigma, 1);

            /* err = 2 * alpha * exp(...) */
            mag_mul(tmp, C1, rho);
            mag_mul(tmp, tmp, alpha);
            mag_mul(tmp, tmp, zinv);
            mag_mul_2exp_si(tmp, tmp, 1);
            mag_exp(err, tmp);
            mag_mul(err, err, alpha);
            mag_mul_2exp_si(err, err, 1);

            /* choose n automatically */
            if (n < 0)
            {
                slong moreprec;

                /* take err into account when finding truncation point */
                /* we should take Cn into account as well, but this depends
                   on n which is to be determined; it's easier to look
                   only at exp(...) which should be larger anyway */
                if (mag_cmp_2exp_si(err, 10 * prec) > 0)
                    moreprec = 10 * prec;
                else if (mag_cmp_2exp_si(err, 0) < 0)
                    moreprec = 0;
                else
                    moreprec = MAG_EXP(err);

                n = acb_hypgeom_pfq_choose_n_max(aa, p, aa + p, q, w,
                    prec + moreprec, FLINT_MIN(WORD_MAX / 2, 50 + 10.0 * prec));
            }

            acb_hypgeom_pfq_sum_invz(s, t, aa, p, aa + p, q, w, winv, n, prec);

            /* add error bound, if not terminating */
            if (!(is_terminating && n == n_terminating))
            {
                acb_hypgeom_mag_Cn(Cn, R, nu, sigma, n);
                mag_mul(err, err, Cn);

                /* nth term * factor */
                acb_get_mag(tmp, t);
                mag_mul(err, err, tmp);

                if (is_real)
                    arb_add_error_mag(acb_realref(s), err);
                else
                    acb_add_error_mag(s, err);
            }

            acb_set(res, s);
        }

        mag_clear(C1);
        mag_clear(Cn);
        mag_clear(alpha);
        mag_clear(nu);
        mag_clear(sigma);
        mag_clear(rho);
        mag_clear(zinv);
        mag_clear(tmp);
        mag_clear(err);
    }

    acb_clear(aa);
    acb_clear(aa + 1);
    acb_clear(aa + 2);
    acb_clear(s);
    acb_clear(t);
    acb_clear(w);
    acb_clear(winv);
}
Exemplo n.º 11
0
void
_acb_lambertw(acb_t res, const acb_t z, const acb_t ez1, const fmpz_t k, int flags, slong prec)
{
    slong goal, ebits, ebits2, ls, lt;
    const fmpz * expo;

    /* Estimated accuracy goal. */
    /* todo: account for exponent bits and bits in k. */
    goal = acb_rel_accuracy_bits(z);
    goal = FLINT_MAX(goal, 10);
    goal = FLINT_MIN(goal, prec);

    /* Handle tiny z directly. For k >= 2, |c_k| <= 4^k / 16. */
    if (fmpz_is_zero(k)
        && arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), -goal / 2) < 0
        && arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), -goal / 2) < 0)
    {
        mag_t err;
        mag_init(err);
        acb_get_mag(err, z);
        mag_mul_2exp_si(err, err, 2);
        acb_set(res, z);
        acb_submul(res, res, res, prec);
        mag_geom_series(err, err, 3);
        mag_mul_2exp_si(err, err, -4);
        acb_add_error_mag(res, err);
        mag_clear(err);
        return;
    }

    if (arf_cmpabs(arb_midref(acb_realref(z)), arb_midref(acb_imagref(z))) >= 0)
        expo = ARF_EXPREF(arb_midref(acb_realref(z)));
    else
        expo = ARF_EXPREF(arb_midref(acb_imagref(z)));

    ebits = fmpz_bits(expo);

    /* ebits ~= log2(|log(z) + 2 pi i k|) */
    /* ebits2 ~= log2(log(log(z))) */
    ebits = FLINT_MAX(ebits, fmpz_bits(k));
    ebits = FLINT_MAX(ebits, 1) - 1;
    ebits2 = FLINT_BIT_COUNT(ebits);
    ebits2 = FLINT_MAX(ebits2, 1) - 1;

    /* We gain accuracy from the exponent when W ~ log - log log */
    if (fmpz_sgn(expo) > 0 || (fmpz_sgn(expo) < 0 && !fmpz_is_zero(k)))
    {
        goal += ebits - ebits2;
        goal = FLINT_MAX(goal, 10);
        goal = FLINT_MIN(goal, prec);

        /* The asymptotic series with truncation L, M gives us about 
           t - max(2+lt+L*(2+ls), M*(2+lt)) bits of accuracy where
           ls = -ebits, lt = ebits2 - ebits. */
        ls = 2 - ebits;
        lt = 2 + ebits2 - ebits;

        if (ebits - FLINT_MAX(lt + 1*ls, 1*lt) > goal)
        {
            acb_lambertw_asymp(res, z, k, 1, 1, goal);
            acb_set_round(res, res, prec);
            return;
        }
        else if (ebits - FLINT_MAX(lt + 3*ls, 5*lt) > goal)
        {
            acb_lambertw_asymp(res, z, k, 3, 5, goal);
            acb_set_round(res, res, prec);
            return;
        }
    }

    /* Extremely close to the branch point at -1/e, use the series expansion directly. */
    if (acb_lambertw_try_near_branch_point(res, z, ez1, k, flags, goal))
    {
        acb_set_round(res, res, prec);
        return;
    }

    /* compute union of both sides */
    if (acb_lambertw_branch_crossing(z, ez1, k))
    {
        acb_t za, zb, eza1, ezb1;
        fmpz_t kk;

        acb_init(za);
        acb_init(zb);
        acb_init(eza1);
        acb_init(ezb1);
        fmpz_init(kk);

        fmpz_neg(kk, k);

        acb_set(za, z);
        acb_conj(zb, z);
        arb_nonnegative_part(acb_imagref(za), acb_imagref(za));
        arb_nonnegative_part(acb_imagref(zb), acb_imagref(zb));

        acb_set(eza1, ez1);
        acb_conj(ezb1, ez1);
        arb_nonnegative_part(acb_imagref(eza1), acb_imagref(eza1));
        arb_nonnegative_part(acb_imagref(ezb1), acb_imagref(ezb1));

        /* Check series expansion again, because now there is no crossing. */
        if (!acb_lambertw_try_near_branch_point(res, za, eza1, k, flags, goal))
            acb_lambertw_cleared_cut_fix_small(za, za, eza1, k, flags, goal);

        if (!acb_lambertw_try_near_branch_point(res, zb, ezb1, kk, flags, goal))
            acb_lambertw_cleared_cut_fix_small(zb, zb, ezb1, kk, flags, goal);

        acb_conj(zb, zb);
        acb_union(res, za, zb, prec);

        acb_clear(za);
        acb_clear(zb);
        acb_clear(eza1);
        acb_clear(ezb1);
        fmpz_clear(kk);
    }
    else
    {
        acb_lambertw_cleared_cut_fix_small(res, z, ez1, k, flags, goal);
        acb_set_round(res, res, prec);
    }
}
Exemplo n.º 12
0
/* note: z should be exact here */
void acb_lambertw_main(acb_t res, const acb_t z,
                const acb_t ez1, const fmpz_t k, int flags, slong prec)
{
    acb_t w, t, oldw, ew;
    mag_t err;
    slong i, wp, accuracy, ebits, kbits, mbits, wp_initial, extraprec;
    int have_ew;

    acb_init(t);
    acb_init(w);
    acb_init(oldw);
    acb_init(ew);
    mag_init(err);

    /* We need higher precision for large k, large exponents, or very close
       to the branch point at -1/e. todo: we should be recomputing
       ez1 to higher precision when close... */
    acb_get_mag(err, z);
    if (fmpz_is_zero(k) && mag_cmp_2exp_si(err, 0) < 0)
        ebits = 0;
    else
        ebits = fmpz_bits(MAG_EXPREF(err));

    if (fmpz_is_zero(k) || (fmpz_is_one(k) && arb_is_negative(acb_imagref(z)))
                        || (fmpz_equal_si(k, -1) && arb_is_nonnegative(acb_imagref(z))))
    {
        acb_get_mag(err, ez1);
        mbits = -MAG_EXP(err);
        mbits = FLINT_MAX(mbits, 0);
        mbits = FLINT_MIN(mbits, prec);
    }
    else
    {
        mbits = 0;
    }

    kbits = fmpz_bits(k);

    extraprec = FLINT_MAX(ebits, kbits);
    extraprec = FLINT_MAX(extraprec, mbits);

    wp = wp_initial = 40 + extraprec;

    accuracy = acb_lambertw_initial(w, z, ez1, k, wp_initial);
    mag_zero(arb_radref(acb_realref(w)));
    mag_zero(arb_radref(acb_imagref(w)));

    /* We should be able to compute e^w for the final certification
       during the Halley iteration. */
    have_ew = 0;

    for (i = 0; i < 5 + FLINT_BIT_COUNT(prec + extraprec); i++)
    {
        /* todo: should we restart? */
        if (!acb_is_finite(w))
            break;

        wp = FLINT_MIN(3 * accuracy, 1.1 * prec + 10);
        wp = FLINT_MAX(wp, 40);
        wp += extraprec;

        acb_set(oldw, w);
        acb_lambertw_halley_step(t, ew, z, w, wp);

        /* estimate the error (conservatively) */
        acb_sub(w, w, t, wp);
        acb_get_mag(err, w);
        acb_set(w, t);
        acb_add_error_mag(t, err);
        accuracy = acb_rel_accuracy_bits(t);

        if (accuracy > 2 * extraprec)
            accuracy *= 2.9;  /* less conservatively */

        accuracy = FLINT_MIN(accuracy, wp);
        accuracy = FLINT_MAX(accuracy, 0);

        if (accuracy > prec + extraprec)
        {
            /* e^w = e^oldw * e^(w-oldw) */
            acb_sub(t, w, oldw, wp);
            acb_exp(t, t, wp);
            acb_mul(ew, ew, t, wp);
            have_ew = 1;
            break;
        }

        mag_zero(arb_radref(acb_realref(w)));
        mag_zero(arb_radref(acb_imagref(w)));
    }

    wp = FLINT_MIN(3 * accuracy, 1.1 * prec + 10);
    wp = FLINT_MAX(wp, 40);
    wp += extraprec;

    if (acb_lambertw_check_branch(w, k, wp))
    {
        acb_t u, r, eu1;
        mag_t err, rad;

        acb_init(u);
        acb_init(r);
        acb_init(eu1);

        mag_init(err);
        mag_init(rad);

        if (have_ew)
            acb_set(t, ew);
        else
            acb_exp(t, w, wp);
        /* t = w e^w */
        acb_mul(t, t, w, wp);

        acb_sub(r, t, z, wp);

        /* Bound W' on the straight line path between t and z */
        acb_union(u, t, z, wp);

        arb_const_e(acb_realref(eu1), wp);
        arb_zero(acb_imagref(eu1));
        acb_mul(eu1, eu1, u, wp);
        acb_add_ui(eu1, eu1, 1, wp);

        if (acb_lambertw_branch_crossing(u, eu1, k))
        {
            mag_inf(err);
        }
        else
        {
            acb_lambertw_bound_deriv(err, u, eu1, k);
            acb_get_mag(rad, r);
            mag_mul(err, err, rad);
        }

        acb_add_error_mag(w, err);

        acb_set(res, w);

        acb_clear(u);
        acb_clear(r);
        acb_clear(eu1);
        mag_clear(err);
        mag_clear(rad);
    }
    else
    {
        acb_indeterminate(res);
    }

    acb_clear(t);
    acb_clear(w);
    acb_clear(oldw);
    acb_clear(ew);
    mag_clear(err);
}
Exemplo n.º 13
0
static void
acb_log_sin_pi_half(acb_t res, const acb_t z, slong prec, int upper)
{
    acb_t t, u, zmid;
    arf_t n;
    arb_t pi;

    acb_init(t);
    acb_init(u);
    acb_init(zmid);
    arf_init(n);
    arb_init(pi);

    arf_set(arb_midref(acb_realref(zmid)), arb_midref(acb_realref(z)));
    arf_set(arb_midref(acb_imagref(zmid)), arb_midref(acb_imagref(z)));

    arf_floor(n, arb_midref(acb_realref(zmid)));
    arb_sub_arf(acb_realref(zmid), acb_realref(zmid), n, prec);

    arb_const_pi(pi, prec);

    if (arf_cmpabs_2exp_si(arb_midref(acb_imagref(zmid)), 2) < 1)
    {
        acb_sin_pi(t, zmid, prec);
        acb_log(t, t, prec);
    }
    else  /* i*pi*(z-0.5) + log((1-exp(-2i*pi*z))/2) */
    {
        acb_mul_2exp_si(t, zmid, 1);
        acb_neg(t, t);

        if (upper)
            acb_conj(t, t);

        acb_exp_pi_i(t, t, prec);
        acb_sub_ui(t, t, 1, prec);
        acb_neg(t, t);

        acb_mul_2exp_si(t, t, -1);

        acb_log(t, t, prec);
        acb_one(u);
        acb_mul_2exp_si(u, u, -1);
        acb_sub(u, zmid, u, prec);
        if (upper)
            acb_conj(u, u);
        acb_mul_onei(u, u);
        acb_addmul_arb(t, u, pi, prec);
        if (upper)
            acb_conj(t, t);
    }

    if (upper)
        arb_submul_arf(acb_imagref(t), pi, n, prec);
    else
        arb_addmul_arf(acb_imagref(t), pi, n, prec);

    /* propagated error bound from the derivative pi cot(pi z) */
    if (!acb_is_exact(z))
    {
        mag_t zm, um;

        mag_init(zm);
        mag_init(um);

        acb_cot_pi(u, z, prec);
        acb_mul_arb(u, u, pi, prec);

        mag_hypot(zm, arb_radref(acb_realref(z)), arb_radref(acb_imagref(z)));
        acb_get_mag(um, u);
        mag_mul(um, um, zm);

        acb_add_error_mag(t, um);

        mag_clear(zm);
        mag_clear(um);
    }

    acb_set(res, t);

    acb_clear(t);
    acb_clear(u);
    acb_clear(zmid);
    arf_clear(n);
    arb_clear(pi);
}
Exemplo n.º 14
0
void
acb_hypgeom_2f1_continuation(acb_t res, acb_t res1,
    const acb_t a, const acb_t b, const acb_t c, const acb_t y,
    const acb_t z, const acb_t f0, const acb_t f1, long prec)
{
    mag_t A, nu, N, w, err, err1, R, T, goal;
    acb_t x;
    long j, k;

    mag_init(A);
    mag_init(nu);
    mag_init(N);
    mag_init(err);
    mag_init(err1);
    mag_init(w);
    mag_init(R);
    mag_init(T);
    mag_init(goal);
    acb_init(x);

    bound(A, nu, N, a, b, c, y, f0, f1);

    acb_sub(x, z, y, prec);

    /* |T(k)| <= A * binomial(N+k, k) * nu^k * |x|^k */
    acb_get_mag(w, x);
    mag_mul(w, w, nu); /* w = nu |x| */
    mag_mul_2exp_si(goal, A, -prec-2);

    /* bound for T(0) */
    mag_set(T, A);
    mag_inf(R);

    for (k = 1; k < 100 * prec; k++)
    {
        /* T(k) = T(k) * R(k), R(k) = (N+k)/k * w = (1 + N/k) w */
        mag_div_ui(R, N, k);
        mag_add_ui(R, R, 1);
        mag_mul(R, R, w);

        /* T(k) */
        mag_mul(T, T, R);

        if (mag_cmp(T, goal) <= 0 && mag_cmp_2exp_si(R, 0) < 0)
            break;
    }

    /* T(k) [1 + R + R^2 + R^3 + ...] */
    mag_geom_series(err, R, 0);
    mag_mul(err, T, err);

    /* Now compute T, R for the derivative */
    /* Coefficients are A * (k+1) * binomial(N+k+1, k+1) */
    mag_add_ui(T, N, 1);
    mag_mul(T, T, A);
    mag_inf(R);

    for (j = 1; j <= k; j++)
    {
        mag_add_ui(R, N, k + 1);
        mag_div_ui(R, R, k);
        mag_mul(R, R, w);
        mag_mul(T, T, R);
    }

    mag_geom_series(err1, R, 0);
    mag_mul(err1, T, err1);

    if (mag_is_inf(err))
    {
        acb_indeterminate(res);
        acb_indeterminate(res1);
    }
    else
    {
        evaluate_sum(res, res1, a, b, c, y, x, f0, f1, k, prec);

        acb_add_error_mag(res, err);
        acb_add_error_mag(res1, err1);
    }

    mag_clear(A);
    mag_clear(nu);
    mag_clear(N);
    mag_clear(err);
    mag_clear(err1);
    mag_clear(w);
    mag_clear(R);
    mag_clear(T);
    mag_clear(goal);
    acb_clear(x);
}