void acb_lambertw_initial_asymp(acb_t w, const acb_t z, const fmpz_t k, slong prec) { acb_t L1, L2, t; acb_init(L1); acb_init(L2); acb_init(t); acb_const_pi(L2, prec); acb_mul_2exp_si(L2, L2, 1); acb_mul_fmpz(L2, L2, k, prec); acb_mul_onei(L2, L2); acb_log(L1, z, prec); acb_add(L1, L1, L2, prec); acb_log(L2, L1, prec); /* L1 - L2 + L2/L1 + L2(L2-2)/(2 L1^2) */ acb_inv(t, L1, prec); acb_mul_2exp_si(w, L2, 1); acb_submul(w, L2, L2, prec); acb_neg(w, w); acb_mul(w, w, t, prec); acb_mul_2exp_si(w, w, -1); acb_add(w, w, L2, prec); acb_mul(w, w, t, prec); acb_sub(w, w, L2, prec); acb_add(w, w, L1, prec); acb_clear(L1); acb_clear(L2); acb_clear(t); }
static void _acb_mat_det_cofactor_3x3(acb_t t, const acb_mat_t A, slong prec) { acb_t a; acb_init(a); acb_mul (a, acb_mat_entry(A, 1, 0), acb_mat_entry(A, 2, 1), prec); acb_submul(a, acb_mat_entry(A, 1, 1), acb_mat_entry(A, 2, 0), prec); acb_mul (t, a, acb_mat_entry(A, 0, 2), prec); acb_mul (a, acb_mat_entry(A, 1, 2), acb_mat_entry(A, 2, 0), prec); acb_submul(a, acb_mat_entry(A, 1, 0), acb_mat_entry(A, 2, 2), prec); acb_addmul(t, a, acb_mat_entry(A, 0, 1), prec); acb_mul (a, acb_mat_entry(A, 1, 1), acb_mat_entry(A, 2, 2), prec); acb_submul(a, acb_mat_entry(A, 1, 2), acb_mat_entry(A, 2, 1), prec); acb_addmul(t, a, acb_mat_entry(A, 0, 0), prec); acb_clear(a); }
/* f(z) = exp(-z^2+iz) */ int f_gaussian_twist(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_mul_onei(res, z); acb_submul(res, z, z, prec); acb_exp(res, res, prec); return 0; }
/* f(z) = sqrt(1-z^2) */ int f_circle(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_one(res); acb_submul(res, z, z, prec); acb_real_sqrtpos(res, res, order != 0, prec); return 0; }
/* assumes no aliasing */ slong acb_lambertw_initial(acb_t res, const acb_t z, const acb_t ez1, const fmpz_t k, slong prec) { /* Handle z very close to 0 on the principal branch. */ if (fmpz_is_zero(k) && (arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), -20) <= 0 && arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), -20) <= 0)) { acb_set(res, z); acb_submul(res, res, res, prec); return 40; /* could be tightened... */ } /* For moderate input not close to the branch point, compute a double approximation as the initial value. */ if (fmpz_is_zero(k) && arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 400) < 0 && arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 400) < 0 && (arf_cmp_d(arb_midref(acb_realref(z)), -0.37) < 0 || arf_cmp_d(arb_midref(acb_realref(z)), -0.36) > 0 || arf_cmpabs_d(arb_midref(acb_imagref(z)), 0.01) > 0)) { acb_lambertw_principal_d(res, z); return 48; } /* Check if we are close to the branch point at -1/e. */ if ((fmpz_is_zero(k) || (fmpz_is_one(k) && arb_is_negative(acb_imagref(z))) || (fmpz_equal_si(k, -1) && arb_is_nonnegative(acb_imagref(z)))) && ((arf_cmpabs_2exp_si(arb_midref(acb_realref(ez1)), -2) <= 0 && arf_cmpabs_2exp_si(arb_midref(acb_imagref(ez1)), -2) <= 0))) { acb_t t; acb_init(t); acb_mul_2exp_si(t, ez1, 1); mag_zero(arb_radref(acb_realref(t))); mag_zero(arb_radref(acb_imagref(t))); acb_mul_ui(t, t, 3, prec); acb_sqrt(t, t, prec); if (!fmpz_is_zero(k)) acb_neg(t, t); acb_lambertw_branchpoint_series(res, t, 0, prec); acb_clear(t); return 1; /* todo: estimate */ } acb_lambertw_initial_asymp(res, z, k, prec); return 1; /* todo: estimate */ }
int main() { long iter; flint_rand_t state; printf("u...."); fflush(stdout); flint_randinit(state); for (iter = 0; iter < 2000; iter++) { acb_t a0, a1, a2, b, z, w0, w1, w2, t, u; long prec0, prec1, prec2; acb_init(a0); acb_init(a1); acb_init(a2); acb_init(b); acb_init(z); acb_init(w0); acb_init(w1); acb_init(w2); acb_init(t); acb_init(u); prec0 = 2 + n_randint(state, 700); prec1 = 2 + n_randint(state, 700); prec2 = 2 + n_randint(state, 700); acb_randtest_maybe_half_int(a0, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); acb_randtest_maybe_half_int(b, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); acb_randtest(z, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); acb_randtest(w0, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); acb_randtest(w1, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); acb_randtest(w2, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); acb_add_ui(a1, a0, 1, prec0); acb_add_ui(a2, a0, 2, prec0); switch (n_randint(state, 3)) { case 0: acb_hypgeom_u_asymp_proper(w0, a0, b, z, prec0); break; case 1: acb_hypgeom_u_1f1(w0, a0, b, z, prec0); break; default: acb_hypgeom_u(w0, a0, b, z, prec0); } switch (n_randint(state, 3)) { case 0: acb_hypgeom_u_asymp_proper(w1, a0, b, z, prec1); break; case 1: acb_hypgeom_u_1f1(w1, a0, b, z, prec1); break; default: acb_hypgeom_u(w1, a0, b, z, prec1); } if (!acb_overlaps(w0, w1)) { printf("FAIL: consistency\n\n"); printf("a = "); acb_printd(a0, 30); printf("\n\n"); printf("b = "); acb_printd(b, 30); printf("\n\n"); printf("z = "); acb_printd(z, 30); printf("\n\n"); printf("w0 = "); acb_printd(w0, 30); printf("\n\n"); printf("w1 = "); acb_printd(w1, 30); printf("\n\n"); abort(); } switch (n_randint(state, 3)) { case 0: acb_hypgeom_u_asymp_proper(w1, a1, b, z, prec1); break; case 1: acb_hypgeom_u_1f1(w1, a1, b, z, prec1); break; default: acb_hypgeom_u(w1, a1, b, z, prec1); } switch (n_randint(state, 3)) { case 0: acb_hypgeom_u_asymp_proper(w2, a2, b, z, prec2); break; case 1: acb_hypgeom_u_1f1(w2, a2, b, z, prec2); break; default: acb_hypgeom_u(w2, a2, b, z, prec2); } acb_set(t, w0); acb_mul_2exp_si(u, a0, 1); acb_sub(u, u, b, prec0); acb_add(u, u, z, prec0); acb_add_ui(u, u, 2, prec0); acb_submul(t, w1, u, prec0); acb_sub(u, a2, b, prec0); acb_mul(u, u, a1, prec0); acb_addmul(t, w2, u, prec0); if (!acb_contains_zero(t)) { printf("FAIL: contiguous relation\n\n"); printf("a = "); acb_printd(a0, 30); printf("\n\n"); printf("b = "); acb_printd(b, 30); printf("\n\n"); printf("z = "); acb_printd(z, 30); printf("\n\n"); printf("w0 = "); acb_printd(w0, 30); printf("\n\n"); printf("w1 = "); acb_printd(w1, 30); printf("\n\n"); printf("w2 = "); acb_printd(w2, 30); printf("\n\n"); printf("t = "); acb_printd(t, 30); printf("\n\n"); abort(); } acb_clear(a0); acb_clear(a1); acb_clear(a2); acb_clear(b); acb_clear(z); acb_clear(w0); acb_clear(w1); acb_clear(w2); acb_clear(t); acb_clear(u); } flint_randclear(state); flint_cleanup(); printf("PASS\n"); return EXIT_SUCCESS; }
int main() { long iter; flint_rand_t state; printf("bessel_j...."); fflush(stdout); flint_randinit(state); for (iter = 0; iter < 2000; iter++) { acb_t nu0, nu1, nu2, z, w0, w1, w2, t, u; long prec0, prec1, prec2; acb_init(nu0); acb_init(nu1); acb_init(nu2); acb_init(z); acb_init(w0); acb_init(w1); acb_init(w2); acb_init(t); acb_init(u); prec0 = 2 + n_randint(state, 1000); prec1 = 2 + n_randint(state, 1000); prec2 = 2 + n_randint(state, 1000); acb_randtest_param(nu0, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); acb_randtest(z, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); acb_randtest(w0, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); acb_randtest(w1, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); acb_randtest(w2, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); acb_sub_ui(nu1, nu0, 1, prec0); acb_sub_ui(nu2, nu0, 2, prec0); switch (n_randint(state, 3)) { case 0: acb_hypgeom_bessel_j_asymp(w0, nu0, z, prec0); break; case 1: acb_hypgeom_bessel_j_0f1(w0, nu0, z, prec0); break; default: acb_hypgeom_bessel_j(w0, nu0, z, prec0); } switch (n_randint(state, 3)) { case 0: acb_hypgeom_bessel_j_asymp(w1, nu0, z, prec1); break; case 1: acb_hypgeom_bessel_j_0f1(w1, nu0, z, prec1); break; default: acb_hypgeom_bessel_j(w1, nu0, z, prec1); } if (!acb_overlaps(w0, w1)) { printf("FAIL: consistency\n\n"); printf("nu = "); acb_printd(nu0, 30); printf("\n\n"); printf("z = "); acb_printd(z, 30); printf("\n\n"); printf("w0 = "); acb_printd(w0, 30); printf("\n\n"); printf("w1 = "); acb_printd(w1, 30); printf("\n\n"); abort(); } switch (n_randint(state, 3)) { case 0: acb_hypgeom_bessel_j_asymp(w1, nu1, z, prec1); break; case 1: acb_hypgeom_bessel_j_0f1(w1, nu1, z, prec1); break; default: acb_hypgeom_bessel_j(w1, nu1, z, prec1); } switch (n_randint(state, 3)) { case 0: acb_hypgeom_bessel_j_asymp(w2, nu2, z, prec2); break; case 1: acb_hypgeom_bessel_j_0f1(w2, nu2, z, prec2); break; default: acb_hypgeom_bessel_j(w2, nu2, z, prec2); } acb_mul(t, w1, nu1, prec0); acb_mul_2exp_si(t, t, 1); acb_submul(t, w2, z, prec0); acb_submul(t, w0, z, prec0); if (!acb_contains_zero(t)) { printf("FAIL: contiguous relation\n\n"); printf("nu = "); acb_printd(nu0, 30); printf("\n\n"); printf("z = "); acb_printd(z, 30); printf("\n\n"); printf("w0 = "); acb_printd(w0, 30); printf("\n\n"); printf("w1 = "); acb_printd(w1, 30); printf("\n\n"); printf("w2 = "); acb_printd(w2, 30); printf("\n\n"); printf("t = "); acb_printd(t, 30); printf("\n\n"); abort(); } acb_neg(t, nu0); switch (n_randint(state, 3)) { case 0: acb_hypgeom_bessel_j_asymp(w2, t, z, prec2); break; case 1: acb_hypgeom_bessel_j_0f1(w2, t, z, prec2); break; default: acb_hypgeom_bessel_j(w2, t, z, prec2); } acb_mul(w1, w1, w2, prec2); acb_neg(t, nu1); switch (n_randint(state, 3)) { case 0: acb_hypgeom_bessel_j_asymp(w2, t, z, prec2); break; case 1: acb_hypgeom_bessel_j_0f1(w2, t, z, prec2); break; default: acb_hypgeom_bessel_j(w2, t, z, prec2); } acb_mul(w0, w0, w2, prec2); acb_add(w0, w0, w1, prec2); acb_sin_pi(t, nu0, prec2); acb_const_pi(u, prec2); acb_mul(u, u, z, prec2); acb_div(t, t, u, prec2); acb_mul_2exp_si(t, t, 1); if (!acb_overlaps(w0, t)) { printf("FAIL: wronskian\n\n"); printf("nu = "); acb_printd(nu0, 30); printf("\n\n"); printf("z = "); acb_printd(z, 30); printf("\n\n"); printf("w0 = "); acb_printd(w0, 30); printf("\n\n"); printf("t = "); acb_printd(t, 30); printf("\n\n"); abort(); } acb_clear(nu0); acb_clear(nu1); acb_clear(nu2); acb_clear(z); acb_clear(w0); acb_clear(w1); acb_clear(w2); acb_clear(t); acb_clear(u); } flint_randclear(state); flint_cleanup(); printf("PASS\n"); return EXIT_SUCCESS; }
void acb_hypgeom_ci_asymp(acb_t res, const acb_t z, slong prec) { acb_t t, u, w, v, one; acb_init(t); acb_init(u); acb_init(w); acb_init(v); acb_init(one); acb_one(one); acb_mul_onei(w, z); /* u = U(1,1,iz) */ acb_hypgeom_u_asymp(u, one, one, w, -1, prec); /* v = e^(-iz) */ acb_neg(v, w); acb_exp(v, v, prec); acb_mul(t, u, v, prec); if (acb_is_real(z)) { arb_div(acb_realref(t), acb_imagref(t), acb_realref(z), prec); arb_zero(acb_imagref(t)); acb_neg(t, t); } else { /* u = U(1,1,-iz) */ acb_neg(w, w); acb_hypgeom_u_asymp(u, one, one, w, -1, prec); acb_inv(v, v, prec); acb_submul(t, u, v, prec); acb_div(t, t, w, prec); acb_mul_2exp_si(t, t, -1); } if (arb_is_zero(acb_realref(z))) { if (arb_is_positive(acb_imagref(z))) { arb_const_pi(acb_imagref(t), prec); arb_mul_2exp_si(acb_imagref(t), acb_imagref(t), -1); } else if (arb_is_negative(acb_imagref(z))) { arb_const_pi(acb_imagref(t), prec); arb_mul_2exp_si(acb_imagref(t), acb_imagref(t), -1); arb_neg(acb_imagref(t), acb_imagref(t)); } else { acb_const_pi(u, prec); acb_mul_2exp_si(u, u, -1); arb_zero(acb_imagref(t)); arb_add_error(acb_imagref(t), acb_realref(u)); } } else { /* 0 if positive or positive imaginary pi if upper left quadrant (including negative real axis) -pi if lower left quadrant (including negative imaginary axis) */ if (arb_is_positive(acb_realref(z))) { /* do nothing */ } else if (arb_is_negative(acb_realref(z)) && arb_is_nonnegative(acb_imagref(z))) { acb_const_pi(u, prec); arb_add(acb_imagref(t), acb_imagref(t), acb_realref(u), prec); } else if (arb_is_nonpositive(acb_realref(z)) && arb_is_negative(acb_imagref(z))) { acb_const_pi(u, prec); arb_sub(acb_imagref(t), acb_imagref(t), acb_realref(u), prec); } else { /* add [-pi,pi] */ acb_const_pi(u, prec); arb_add_error(acb_imagref(t), acb_realref(u)); } } acb_swap(res, t); acb_clear(t); acb_clear(u); acb_clear(w); acb_clear(v); acb_clear(one); }
/* todo: use log(1-z) when this is better? would also need to adjust strategy in the main function */ void acb_hypgeom_dilog_bernoulli(acb_t res, const acb_t z, slong prec) { acb_t s, w, w2; slong n, k; fmpz_t c, d; mag_t m, err; double lm; int real; acb_init(s); acb_init(w); acb_init(w2); fmpz_init(c); fmpz_init(d); mag_init(m); mag_init(err); real = 0; if (acb_is_real(z)) { arb_sub_ui(acb_realref(w), acb_realref(z), 1, 30); real = arb_is_nonpositive(acb_realref(w)); } acb_log(w, z, prec); acb_get_mag(m, w); /* for k >= 4, the terms are bounded by (|w| / (2 pi))^k */ mag_set_ui_2exp_si(err, 2670177, -24); /* upper bound for 1/(2pi) */ mag_mul(err, err, m); lm = mag_get_d_log2_approx(err); if (lm < -0.25) { n = prec / (-lm) + 1; n = FLINT_MAX(n, 4); mag_geom_series(err, err, n); BERNOULLI_ENSURE_CACHED(n) acb_mul(w2, w, w, prec); for (k = n - (n % 2 == 0); k >= 3; k -= 2) { fmpz_mul_ui(c, fmpq_denref(bernoulli_cache + k - 1), k - 1); fmpz_mul_ui(d, c, (k + 1) * (k + 2)); acb_mul(s, s, w2, prec); acb_mul_fmpz(s, s, c, prec); fmpz_mul_ui(c, fmpq_numref(bernoulli_cache + k - 1), (k + 1) * (k + 2)); acb_sub_fmpz(s, s, c, prec); acb_div_fmpz(s, s, d, prec); } acb_mul(s, s, w, prec); acb_mul_2exp_si(s, s, 1); acb_sub_ui(s, s, 3, prec); acb_mul(s, s, w2, prec); acb_mul_2exp_si(s, s, -1); acb_const_pi(w2, prec); acb_addmul(s, w2, w2, prec); acb_div_ui(s, s, 6, prec); acb_neg(w2, w); acb_log(w2, w2, prec); acb_submul(s, w2, w, prec); acb_add(res, s, w, prec); acb_add_error_mag(res, err); if (real) arb_zero(acb_imagref(res)); } else { acb_indeterminate(res); } acb_clear(s); acb_clear(w); acb_clear(w2); fmpz_clear(c); fmpz_clear(d); mag_clear(m); mag_clear(err); }
int main() { slong iter; flint_rand_t state; flint_printf("hermite_h...."); fflush(stdout); flint_randinit(state); for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++) { acb_t n, n1, n2, z, res1, res2, res3, s; slong prec1, prec2, prec3; acb_init(n); acb_init(n1); acb_init(n2); acb_init(z); acb_init(res1); acb_init(res2); acb_init(res3); acb_init(s); prec1 = 2 + n_randint(state, 300); prec2 = 2 + n_randint(state, 300); prec3 = 2 + n_randint(state, 300); acb_randtest_param(n, state, 1 + n_randint(state, 400), 10); acb_sub_ui(n1, n, 1, prec1); acb_sub_ui(n2, n, 2, prec1); acb_randtest_param(z, state, 1 + n_randint(state, 400), 10); acb_randtest_param(res1, state, 1 + n_randint(state, 400), 10); acb_hypgeom_hermite_h(res1, n, z, prec1); acb_hypgeom_hermite_h(res2, n1, z, prec2); acb_hypgeom_hermite_h(res3, n2, z, prec3); acb_mul(s, res2, z, prec1); acb_submul(s, res3, n1, prec1); acb_mul_2exp_si(s, s, 1); if (!acb_overlaps(res1, s)) { flint_printf("FAIL: consistency\n\n"); flint_printf("iter = %wd\n\n", iter); flint_printf("n = "); acb_printd(n, 30); flint_printf("\n\n"); flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n"); flint_printf("res1 = "); acb_printd(res1, 30); flint_printf("\n\n"); flint_printf("res2 = "); acb_printd(res2, 30); flint_printf("\n\n"); flint_printf("res3 = "); acb_printd(res3, 30); flint_printf("\n\n"); flint_printf("s = "); acb_printd(s, 30); flint_printf("\n\n"); flint_abort(); } acb_clear(n); acb_clear(n1); acb_clear(n2); acb_clear(z); acb_clear(res1); acb_clear(res2); acb_clear(res3); acb_clear(s); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
void acb_hypgeom_chi_asymp(acb_t res, const acb_t z, slong prec) { acb_t t, u, v, one; acb_init(t); acb_init(u); acb_init(v); acb_init(one); acb_one(one); /* u = U(1,1,z) */ acb_hypgeom_u_asymp(u, one, one, z, -1, prec); /* v = e^(-z) */ acb_neg(v, z); acb_exp(v, v, prec); acb_mul(t, u, v, prec); if (arb_is_zero(acb_realref(z))) { arb_div(acb_realref(t), acb_imagref(t), acb_imagref(z), prec); arb_zero(acb_imagref(t)); acb_neg(t, t); } else { /* u = U(1,1,-z) */ acb_neg(u, z); acb_hypgeom_u_asymp(u, one, one, u, -1, prec); acb_inv(v, v, prec); acb_submul(t, u, v, prec); acb_div(t, t, z, prec); acb_mul_2exp_si(t, t, -1); acb_neg(t, t); } if (acb_is_real(z)) { if (arb_is_positive(acb_realref(z))) { arb_zero(acb_imagref(t)); } else if (arb_is_negative(acb_realref(z))) { arb_const_pi(acb_imagref(t), prec); } else { /* add [-pi,pi]/2 i */ acb_const_pi(u, prec); arb_zero(acb_imagref(t)); arb_add_error(acb_imagref(t), acb_realref(u)); } } else { /* -pi/2 if positive real or in lower half plane pi/2 if negative real or in upper half plane */ if (arb_is_negative(acb_imagref(z))) { acb_const_pi(u, prec); acb_mul_2exp_si(u, u, -1); arb_sub(acb_imagref(t), acb_imagref(t), acb_realref(u), prec); } else if (arb_is_positive(acb_imagref(z))) { acb_const_pi(u, prec); acb_mul_2exp_si(u, u, -1); arb_add(acb_imagref(t), acb_imagref(t), acb_realref(u), prec); } else { /* add [-pi,pi]/2 i */ acb_const_pi(u, prec); acb_mul_2exp_si(u, u, -1); arb_add_error(acb_imagref(t), acb_realref(u)); } } acb_swap(res, t); acb_clear(t); acb_clear(u); acb_clear(v); acb_clear(one); }
int main() { slong iter; flint_rand_t state; flint_printf("airy...."); fflush(stdout); flint_randinit(state); for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++) { acb_t z, t, w; acb_t ai1, aip1, bi1, bip1; acb_t ai2, aip2, bi2, bip2; slong n1, n2, prec1, prec2; unsigned int mask; acb_init(z); acb_init(t); acb_init(w); acb_init(ai1); acb_init(aip1); acb_init(bi1); acb_init(bip1); acb_init(ai2); acb_init(aip2); acb_init(bi2); acb_init(bip2); prec1 = 2 + n_randint(state, 1000); prec2 = 2 + n_randint(state, 1000); n1 = n_randint(state, 300); n2 = n_randint(state, 300); acb_randtest_param(z, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); acb_randtest_param(t, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); acb_add(z, z, t, 1000); acb_sub(z, z, t, 1000); switch (n_randint(state, 3)) { case 0: acb_hypgeom_airy_direct(ai1, aip1, bi1, bip1, z, n1, prec1); break; case 1: acb_hypgeom_airy_asymp(ai1, aip1, bi1, bip1, z, n1, prec1); break; default: acb_hypgeom_airy(ai1, aip1, bi1, bip1, z, prec1); break; } switch (n_randint(state, 3)) { case 0: acb_hypgeom_airy_direct(ai2, aip2, bi2, bip2, z, n2, prec2); break; case 1: acb_hypgeom_airy_asymp(ai2, aip2, bi2, bip2, z, n2, prec2); break; default: acb_hypgeom_airy(ai2, aip2, bi2, bip2, z, prec2); break; } if (!acb_overlaps(ai1, ai2)) { flint_printf("FAIL: consistency (Ai)\n\n"); flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n"); flint_printf("ai1 = "); acb_printd(ai1, 30); flint_printf("\n\n"); flint_printf("ai2 = "); acb_printd(ai2, 30); flint_printf("\n\n"); abort(); } if (!acb_overlaps(aip1, aip2)) { flint_printf("FAIL: consistency (Ai')\n\n"); flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n"); flint_printf("aip1 = "); acb_printd(aip1, 30); flint_printf("\n\n"); flint_printf("aip2 = "); acb_printd(aip2, 30); flint_printf("\n\n"); abort(); } if (!acb_overlaps(bi1, bi2)) { flint_printf("FAIL: consistency (Bi)\n\n"); flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n"); flint_printf("bi1 = "); acb_printd(bi1, 30); flint_printf("\n\n"); flint_printf("bi2 = "); acb_printd(bi2, 30); flint_printf("\n\n"); abort(); } if (!acb_overlaps(bip1, bip2)) { flint_printf("FAIL: consistency (Bi')\n\n"); flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n"); flint_printf("bip1 = "); acb_printd(bip1, 30); flint_printf("\n\n"); flint_printf("bip2 = "); acb_printd(bip2, 30); flint_printf("\n\n"); abort(); } acb_mul(w, ai1, bip1, prec1); acb_submul(w, bi1, aip1, prec1); acb_const_pi(t, prec1); acb_inv(t, t, prec1); if (!acb_overlaps(w, t)) { flint_printf("FAIL: wronskian\n\n"); flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n"); flint_printf("ai1 = "); acb_printd(ai1, 30); flint_printf("\n\n"); flint_printf("aip1 = "); acb_printd(aip1, 30); flint_printf("\n\n"); flint_printf("bi1 = "); acb_printd(bi1, 30); flint_printf("\n\n"); flint_printf("bip1 = "); acb_printd(bip1, 30); flint_printf("\n\n"); flint_printf("w = "); acb_printd(w, 30); flint_printf("\n\n"); abort(); } mask = n_randlimb(state); acb_hypgeom_airy((mask & 1) ? ai2 : NULL, (mask & 2) ? aip2 : NULL, (mask & 4) ? bi2 : NULL, (mask & 8) ? bip2 : NULL, z, prec2); if (!acb_overlaps(ai1, ai2) || !acb_overlaps(aip1, aip2) || !acb_overlaps(bi1, bi2) || !acb_overlaps(bip1, bip2)) { flint_printf("FAIL: consistency (mask)\n\n"); flint_printf("mask = %u\n\n", mask); flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n"); flint_printf("ai1 = "); acb_printd(ai1, 30); flint_printf("\n\n"); flint_printf("ai2 = "); acb_printd(ai2, 30); flint_printf("\n\n"); flint_printf("aip1 = "); acb_printd(aip1, 30); flint_printf("\n\n"); flint_printf("aip2 = "); acb_printd(aip2, 30); flint_printf("\n\n"); flint_printf("bi1 = "); acb_printd(bi1, 30); flint_printf("\n\n"); flint_printf("bi2 = "); acb_printd(bi2, 30); flint_printf("\n\n"); flint_printf("bip1 = "); acb_printd(bip1, 30); flint_printf("\n\n"); flint_printf("bip2 = "); acb_printd(bip2, 30); flint_printf("\n\n"); abort(); } acb_clear(z); acb_clear(t); acb_clear(w); acb_clear(ai1); acb_clear(aip1); acb_clear(bi1); acb_clear(bip1); acb_clear(ai2); acb_clear(aip2); acb_clear(bi2); acb_clear(bip2); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
int main() { slong iter; flint_rand_t state; flint_printf("gamma_lower...."); fflush(stdout); flint_randinit(state); for (iter = 0; iter < 2000 * arb_test_multiplier(); iter++) { acb_t a0, a1, b, z, w0, w1, t, u, enz; slong prec0, prec1; int regularized; acb_init(a0); acb_init(a1); acb_init(b); acb_init(z); acb_init(w0); acb_init(w1); acb_init(t); acb_init(u); acb_init(enz); regularized = n_randint(state, 3); prec0 = 2 + n_randint(state, 1000); prec1 = 2 + n_randint(state, 1000); acb_randtest_param(a0, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); acb_randtest(z, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); acb_randtest(w0, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); acb_randtest(w1, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); acb_add_ui(a1, a0, 1, prec0); acb_hypgeom_gamma_lower(w0, a0, z, regularized, prec0); acb_hypgeom_gamma_lower(w1, a1, z, regularized, prec1); acb_neg(enz, z); acb_exp(enz, enz, prec0); /* recurrence relations */ if (regularized == 2) { /* gamma^{*}(a,z) - exp(-z)/Gamma(a+1) - z gamma^{*}(a+1,z) = 0 */ /* http://dlmf.nist.gov/8.8.E4 */ acb_set(t, w0); acb_rgamma(u, a1, prec0); acb_submul(t, enz, u, prec0); acb_submul(t, z, w1, prec0); } else if (regularized == 1) { /* P(a,z) - exp(-z) z^a / Gamma(a+1) - P(a+1,z) = 0 */ /* http://dlmf.nist.gov/8.8.E5 */ acb_pow(u, z, a0, prec0); acb_rgamma(b, a1, prec0); acb_mul(u, u, b, prec0); acb_sub(t, w0, w1, prec0); acb_submul(t, enz, u, prec0); } else { /* a gamma(a,z) - exp(-z) z^a - gamma(a+1,z) = 0 */ /* http://dlmf.nist.gov/8.8.E1 */ acb_pow(u, z, a0, prec0); acb_mul(t, a0, w0, prec0); acb_submul(t, enz, u, prec0); acb_sub(t, t, w1, prec0); } if (!acb_contains_zero(t)) { flint_printf("FAIL: recurrence relation\n\n"); flint_printf("regularized = %d\n\n", regularized); flint_printf("a0 = "); acb_printd(a0, 30); flint_printf("\n\n"); flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n"); flint_printf("w0 = "); acb_printd(w0, 30); flint_printf("\n\n"); flint_printf("w1 = "); acb_printd(w1, 30); flint_printf("\n\n"); flint_printf("t = "); acb_printd(t, 30); flint_printf("\n\n"); abort(); } /* identities relating lower and upper incomplete gamma functions */ if (regularized == 0 || regularized == 1) { acb_t u0; acb_init(u0); acb_hypgeom_gamma_upper(u0, a0, z, regularized, prec0); acb_zero(t); if (regularized == 1) { /* P(s,z) + Q(s,z) - 1 = 0 */ /* http://dlmf.nist.gov/8.2.E5 */ acb_add(t, w0, u0, prec0); acb_sub_ui(t, t, 1, prec0); } else { /* gamma(s,z) + Gamma(s,z) - Gamma(s) = 0 */ /* excludes non-positive integer values of s */ /* http://dlmf.nist.gov/8.2.E3 */ if (!acb_is_int(a0) || arb_is_positive(acb_realref(a0))) { acb_gamma(b, a0, prec0); acb_add(t, w0, u0, prec0); acb_sub(t, t, b, prec0); } } if (!acb_contains_zero(t)) { flint_printf("FAIL: lower plus upper\n\n"); flint_printf("regularized = %d\n\n", regularized); flint_printf("a0 = "); acb_printd(a0, 30); flint_printf("\n\n"); flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n"); flint_printf("w0 = "); acb_printd(w0, 30); flint_printf("\n\n"); flint_printf("w1 = "); acb_printd(w1, 30); flint_printf("\n\n"); flint_printf("t = "); acb_printd(t, 30); flint_printf("\n\n"); abort(); } acb_clear(u0); } acb_clear(a0); acb_clear(a1); acb_clear(b); acb_clear(z); acb_clear(w0); acb_clear(w1); acb_clear(t); acb_clear(u); acb_clear(enz); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
void _acb_lambertw(acb_t res, const acb_t z, const acb_t ez1, const fmpz_t k, int flags, slong prec) { slong goal, ebits, ebits2, ls, lt; const fmpz * expo; /* Estimated accuracy goal. */ /* todo: account for exponent bits and bits in k. */ goal = acb_rel_accuracy_bits(z); goal = FLINT_MAX(goal, 10); goal = FLINT_MIN(goal, prec); /* Handle tiny z directly. For k >= 2, |c_k| <= 4^k / 16. */ if (fmpz_is_zero(k) && arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), -goal / 2) < 0 && arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), -goal / 2) < 0) { mag_t err; mag_init(err); acb_get_mag(err, z); mag_mul_2exp_si(err, err, 2); acb_set(res, z); acb_submul(res, res, res, prec); mag_geom_series(err, err, 3); mag_mul_2exp_si(err, err, -4); acb_add_error_mag(res, err); mag_clear(err); return; } if (arf_cmpabs(arb_midref(acb_realref(z)), arb_midref(acb_imagref(z))) >= 0) expo = ARF_EXPREF(arb_midref(acb_realref(z))); else expo = ARF_EXPREF(arb_midref(acb_imagref(z))); ebits = fmpz_bits(expo); /* ebits ~= log2(|log(z) + 2 pi i k|) */ /* ebits2 ~= log2(log(log(z))) */ ebits = FLINT_MAX(ebits, fmpz_bits(k)); ebits = FLINT_MAX(ebits, 1) - 1; ebits2 = FLINT_BIT_COUNT(ebits); ebits2 = FLINT_MAX(ebits2, 1) - 1; /* We gain accuracy from the exponent when W ~ log - log log */ if (fmpz_sgn(expo) > 0 || (fmpz_sgn(expo) < 0 && !fmpz_is_zero(k))) { goal += ebits - ebits2; goal = FLINT_MAX(goal, 10); goal = FLINT_MIN(goal, prec); /* The asymptotic series with truncation L, M gives us about t - max(2+lt+L*(2+ls), M*(2+lt)) bits of accuracy where ls = -ebits, lt = ebits2 - ebits. */ ls = 2 - ebits; lt = 2 + ebits2 - ebits; if (ebits - FLINT_MAX(lt + 1*ls, 1*lt) > goal) { acb_lambertw_asymp(res, z, k, 1, 1, goal); acb_set_round(res, res, prec); return; } else if (ebits - FLINT_MAX(lt + 3*ls, 5*lt) > goal) { acb_lambertw_asymp(res, z, k, 3, 5, goal); acb_set_round(res, res, prec); return; } } /* Extremely close to the branch point at -1/e, use the series expansion directly. */ if (acb_lambertw_try_near_branch_point(res, z, ez1, k, flags, goal)) { acb_set_round(res, res, prec); return; } /* compute union of both sides */ if (acb_lambertw_branch_crossing(z, ez1, k)) { acb_t za, zb, eza1, ezb1; fmpz_t kk; acb_init(za); acb_init(zb); acb_init(eza1); acb_init(ezb1); fmpz_init(kk); fmpz_neg(kk, k); acb_set(za, z); acb_conj(zb, z); arb_nonnegative_part(acb_imagref(za), acb_imagref(za)); arb_nonnegative_part(acb_imagref(zb), acb_imagref(zb)); acb_set(eza1, ez1); acb_conj(ezb1, ez1); arb_nonnegative_part(acb_imagref(eza1), acb_imagref(eza1)); arb_nonnegative_part(acb_imagref(ezb1), acb_imagref(ezb1)); /* Check series expansion again, because now there is no crossing. */ if (!acb_lambertw_try_near_branch_point(res, za, eza1, k, flags, goal)) acb_lambertw_cleared_cut_fix_small(za, za, eza1, k, flags, goal); if (!acb_lambertw_try_near_branch_point(res, zb, ezb1, kk, flags, goal)) acb_lambertw_cleared_cut_fix_small(zb, zb, ezb1, kk, flags, goal); acb_conj(zb, zb); acb_union(res, za, zb, prec); acb_clear(za); acb_clear(zb); acb_clear(eza1); acb_clear(ezb1); fmpz_clear(kk); } else { acb_lambertw_cleared_cut_fix_small(res, z, ez1, k, flags, goal); acb_set_round(res, res, prec); } }
static void _acb_mat_det_cofactor_2x2(acb_t t, const acb_mat_t A, slong prec) { acb_mul (t, acb_mat_entry(A, 0, 0), acb_mat_entry(A, 1, 1), prec); acb_submul(t, acb_mat_entry(A, 0, 1), acb_mat_entry(A, 1, 0), prec); }