static acpi_status acpi_hw_write_multiple(u32 value, struct acpi_generic_address *register_a, struct acpi_generic_address *register_b) { acpi_status status; /* The first register is always required */ status = acpi_write(value, register_a); if (ACPI_FAILURE(status)) { return (status); } /* * Second register is optional * * No bit shifting or clearing is necessary, because of how the PM1 * registers are defined in the ACPI specification: * * "Although the bits can be split between the two register blocks (each * register block has a unique pointer within the FADT), the bit positions * are maintained. The register block with unimplemented bits (that is, * those implemented in the other register block) always returns zeros, * and writes have no side effects" */ if (register_b->address) { status = acpi_write(value, register_b); } return (status); }
acpi_status acpi_hw_write_pm1_control(u32 pm1a_control, u32 pm1b_control) { acpi_status status; ACPI_FUNCTION_TRACE(hw_write_pm1_control); status = acpi_write(pm1a_control, &acpi_gbl_FADT.xpm1a_control_block); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } if (acpi_gbl_FADT.xpm1b_control_block.address) { status = acpi_write(pm1b_control, &acpi_gbl_FADT.xpm1b_control_block); } return_ACPI_STATUS(status); }
/** * pcc_send_data - Called from Mailbox Controller code. Used * here only to ring the channel doorbell. The PCC client * specific read/write is done in the client driver in * order to maintain atomicity over PCC channel once * OS has control over it. See above for flow of operations. * @chan: Pointer to Mailbox channel over which to send data. * @data: Client specific data written over channel. Used here * only for debug after PCC transaction completes. * * Return: Err if something failed else 0 for success. */ static int pcc_send_data(struct mbox_chan *chan, void *data) { struct acpi_pcct_hw_reduced *pcct_ss = chan->con_priv; struct acpi_generic_address doorbell; u64 doorbell_preserve; u64 doorbell_val; u64 doorbell_write; doorbell = pcct_ss->doorbell_register; doorbell_preserve = pcct_ss->preserve_mask; doorbell_write = pcct_ss->write_mask; /* Sync notification from OS to Platform. */ acpi_read(&doorbell_val, &doorbell); acpi_write((doorbell_val & doorbell_preserve) | doorbell_write, &doorbell); return 0; }
acpi_status acpi_hw_extended_wake_prep(u8 sleep_state) { acpi_status status; u8 sleep_type_value; ACPI_FUNCTION_TRACE(hw_extended_wake_prep); status = acpi_get_sleep_type_data(ACPI_STATE_S0, &acpi_gbl_sleep_type_a, &acpi_gbl_sleep_type_b); if (ACPI_SUCCESS(status)) { sleep_type_value = ((acpi_gbl_sleep_type_a << ACPI_X_SLEEP_TYPE_POSITION) & ACPI_X_SLEEP_TYPE_MASK); (void)acpi_write((u64)(sleep_type_value | ACPI_X_SLEEP_ENABLE), &acpi_gbl_FADT.sleep_control); } return_ACPI_STATUS(AE_OK); }
/** * pcc_send_data - Called from Mailbox Controller code. Used * here only to ring the channel doorbell. The PCC client * specific read/write is done in the client driver in * order to maintain atomicity over PCC channel once * OS has control over it. See above for flow of operations. * @chan: Pointer to Mailbox channel over which to send data. * @data: Client specific data written over channel. Used here * only for debug after PCC transaction completes. * * Return: Err if something failed else 0 for success. */ static int pcc_send_data(struct mbox_chan *chan, void *data) { struct acpi_pcct_hw_reduced *pcct_ss = chan->con_priv; struct acpi_generic_address *doorbell; u64 doorbell_preserve; u64 doorbell_val; u64 doorbell_write; u32 id = chan - pcc_mbox_channels; int ret = 0; if (id >= pcc_mbox_ctrl.num_chans) { pr_debug("pcc_send_data: Invalid mbox_chan passed\n"); return -ENOENT; } doorbell = &pcct_ss->doorbell_register; doorbell_preserve = pcct_ss->preserve_mask; doorbell_write = pcct_ss->write_mask; /* Sync notification from OS to Platform. */ if (pcc_doorbell_vaddr[id]) { ret = read_register(pcc_doorbell_vaddr[id], &doorbell_val, doorbell->bit_width); if (ret) return ret; ret = write_register(pcc_doorbell_vaddr[id], (doorbell_val & doorbell_preserve) | doorbell_write, doorbell->bit_width); } else { ret = acpi_read(&doorbell_val, doorbell); if (ret) return ret; ret = acpi_write((doorbell_val & doorbell_preserve) | doorbell_write, doorbell); } return ret; }
acpi_status acpi_hw_extended_wake(u8 sleep_state) { ACPI_FUNCTION_TRACE(hw_extended_wake); /* Ensure enter_sleep_state_prep -> enter_sleep_state ordering */ acpi_gbl_sleep_type_a = ACPI_SLEEP_TYPE_INVALID; /* Execute the wake methods */ acpi_hw_execute_sleep_method(METHOD_PATHNAME__SST, ACPI_SST_WAKING); acpi_hw_execute_sleep_method(METHOD_PATHNAME__WAK, sleep_state); /* * Some BIOS code assumes that WAK_STS will be cleared on resume * and use it to determine whether the system is rebooting or * resuming. Clear WAK_STS for compatibility. */ (void)acpi_write((u64)ACPI_X_WAKE_STATUS, &acpi_gbl_FADT.sleep_status); acpi_gbl_system_awake_and_running = TRUE; acpi_hw_execute_sleep_method(METHOD_PATHNAME__SST, ACPI_SST_WORKING); return_ACPI_STATUS(AE_OK); }
acpi_status acpi_hw_extended_sleep(u8 sleep_state) { acpi_status status; u8 sleep_control; u64 sleep_status; ACPI_FUNCTION_TRACE(hw_extended_sleep); /* Extended sleep registers must be valid */ if (!acpi_gbl_FADT.sleep_control.address || !acpi_gbl_FADT.sleep_status.address) { return_ACPI_STATUS(AE_NOT_EXIST); } /* Clear wake status (WAK_STS) */ status = acpi_write((u64)ACPI_X_WAKE_STATUS, &acpi_gbl_FADT.sleep_status); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } acpi_gbl_system_awake_and_running = FALSE; /* * Set the SLP_TYP and SLP_EN bits. * * Note: We only use the first value returned by the \_Sx method * (acpi_gbl_sleep_type_a) - As per ACPI specification. */ ACPI_DEBUG_PRINT((ACPI_DB_INIT, "Entering sleep state [S%u]\n", sleep_state)); sleep_control = ((acpi_gbl_sleep_type_a << ACPI_X_SLEEP_TYPE_POSITION) & ACPI_X_SLEEP_TYPE_MASK) | ACPI_X_SLEEP_ENABLE; /* Flush caches, as per ACPI specification */ ACPI_FLUSH_CPU_CACHE(); status = acpi_os_enter_sleep(sleep_state, sleep_control, 0); if (status == AE_CTRL_TERMINATE) { return_ACPI_STATUS(AE_OK); } if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } status = acpi_write((u64)sleep_control, &acpi_gbl_FADT.sleep_control); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } /* Wait for transition back to Working State */ do { status = acpi_read(&sleep_status, &acpi_gbl_FADT.sleep_status); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } } while (!(((u8)sleep_status) & ACPI_X_WAKE_STATUS)); return_ACPI_STATUS(AE_OK); }
acpi_status acpi_hw_register_write(u32 register_id, u32 value) { acpi_status status; u32 read_value; ACPI_FUNCTION_TRACE(hw_register_write); switch (register_id) { case ACPI_REGISTER_PM1_STATUS: /* PM1 A/B: 16-bit access each */ /* * Handle the "ignored" bit in PM1 Status. According to the ACPI * specification, ignored bits are to be preserved when writing. * Normally, this would mean a read/modify/write sequence. However, * preserving a bit in the status register is different. Writing a * one clears the status, and writing a zero preserves the status. * Therefore, we must always write zero to the ignored bit. * * This behavior is clarified in the ACPI 4.0 specification. */ value &= ~ACPI_PM1_STATUS_PRESERVED_BITS; status = acpi_hw_write_multiple(value, &acpi_gbl_xpm1a_status, &acpi_gbl_xpm1b_status); break; case ACPI_REGISTER_PM1_ENABLE: /* PM1 A/B: 16-bit access */ status = acpi_hw_write_multiple(value, &acpi_gbl_xpm1a_enable, &acpi_gbl_xpm1b_enable); break; case ACPI_REGISTER_PM1_CONTROL: /* PM1 A/B: 16-bit access each */ /* * Perform a read first to preserve certain bits (per ACPI spec) * Note: This includes SCI_EN, we never want to change this bit */ status = acpi_hw_read_multiple(&read_value, &acpi_gbl_FADT. xpm1a_control_block, &acpi_gbl_FADT. xpm1b_control_block); if (ACPI_FAILURE(status)) { goto exit; } /* Insert the bits to be preserved */ ACPI_INSERT_BITS(value, ACPI_PM1_CONTROL_PRESERVED_BITS, read_value); /* Now we can write the data */ status = acpi_hw_write_multiple(value, &acpi_gbl_FADT. xpm1a_control_block, &acpi_gbl_FADT. xpm1b_control_block); break; case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */ /* * For control registers, all reserved bits must be preserved, * as per the ACPI spec. */ status = acpi_read(&read_value, &acpi_gbl_FADT.xpm2_control_block); if (ACPI_FAILURE(status)) { goto exit; } /* Insert the bits to be preserved */ ACPI_INSERT_BITS(value, ACPI_PM2_CONTROL_PRESERVED_BITS, read_value); status = acpi_write(value, &acpi_gbl_FADT.xpm2_control_block); break; case ACPI_REGISTER_PM_TIMER: /* 32-bit access */ status = acpi_write(value, &acpi_gbl_FADT.xpm_timer_block); break; case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */ /* SMI_CMD is currently always in IO space */ status = acpi_hw_write_port(acpi_gbl_FADT.smi_command, value, 8); break; default: ACPI_ERROR((AE_INFO, "Unknown Register ID: %X", register_id)); status = AE_BAD_PARAMETER; break; } exit: return_ACPI_STATUS(status); }