Exemplo n.º 1
0
void btGImpactCollisionAlgorithm::gimpacttrimeshpart_vs_plane_collision(
	btDispatcher* dispatcher, 
	const btCollider* body0,
	const btCollider* body1,
	const btGImpactMeshShapePart* shape0,
	const btStaticPlaneShape* shape1,
	bool swapped
)
{


	btTransform orgtrans0 = body0->getWorldTransform();
	btTransform orgtrans1 = body1->getWorldTransform();

	const btPlaneShape * planeshape = static_cast<const btPlaneShape *>(shape1);
	btVector4 plane;
	planeshape->get_plane_equation_transformed(orgtrans1,plane);

	//test box against plane

	btAABB tribox;
	shape0->getAabb(orgtrans0,tribox.m_min,tribox.m_max);
	tribox.increment_margin(planeshape->getMargin());

	if( tribox.plane_classify(plane)!= BT_CONST_COLLIDE_PLANE) return;

	shape0->lockChildShapes();

	btScalar margin = shape0->getMargin() + planeshape->getMargin();

	btVector3 vertex;
	int vi = shape0->getVertexCount();
	while(vi--)
	{
		shape0->getVertex(vi,vertex);
		vertex = orgtrans0(vertex);

		btScalar distance = vertex.dot(plane) - plane[3] - margin;

		if(distance<0.0)//add contact
		{
			if(swapped)
			{
				addContactPoint(dispatcher, body1, body0,
					vertex,
					-plane,
					distance);
			}
			else
			{
				addContactPoint(dispatcher, body0, body1,
					vertex,
					plane,
					distance);
			}
		}
	}

	shape0->unlockChildShapes();
}
Exemplo n.º 2
0
// This one is complicated and gross. Just don't go there...
// TODO: Comment me!
static int
seg2poly(cpShape *shape1, cpShape *shape2, cpContact **arr)
{
	cpSegmentShape *seg = (cpSegmentShape *)shape1;
	cpPolyShape *poly = (cpPolyShape *)shape2;
	cpPolyShapeAxis *axes = poly->tAxes;
	
	cpFloat segD = cpvdot(seg->tn, seg->ta);
	cpFloat minNorm = cpPolyShapeValueOnAxis(poly, seg->tn, segD) - seg->r;
	cpFloat minNeg = cpPolyShapeValueOnAxis(poly, cpvneg(seg->tn), -segD) - seg->r;
	if(minNeg > 0.0f || minNorm > 0.0f) return 0;
	
	int mini = 0;
	cpFloat poly_min = segValueOnAxis(seg, axes->n, axes->d);
	if(poly_min > 0.0f) return 0;
	for(int i=0; i<poly->numVerts; i++){
		cpFloat dist = segValueOnAxis(seg, axes[i].n, axes[i].d);
		if(dist > 0.0f){
			return 0;
		} else if(dist > poly_min){
			poly_min = dist;
			mini = i;
		}
	}
	
	int max = 0;
	int num = 0;
	
	cpVect poly_n = cpvneg(axes[mini].n);
	
	cpVect va = cpvadd(seg->ta, cpvmult(poly_n, seg->r));
	cpVect vb = cpvadd(seg->tb, cpvmult(poly_n, seg->r));
	if(cpPolyShapeContainsVert(poly, va))
		cpContactInit(addContactPoint(arr, &max, &num), va, poly_n, poly_min, CP_HASH_PAIR(seg, 0));
	if(cpPolyShapeContainsVert(poly, vb))
		cpContactInit(addContactPoint(arr, &max, &num), vb, poly_n, poly_min, CP_HASH_PAIR(seg, 1));

	// Floating point precision problems here.
	// This will have to do for now.
	poly_min -= cp_collision_slop;
	if(minNorm >= poly_min || minNeg >= poly_min) {
		if(minNorm > minNeg)
			findPointsBehindSeg(arr, &max, &num, seg, poly, minNorm, 1.0f);
		else
			findPointsBehindSeg(arr, &max, &num, seg, poly, minNeg, -1.0f);
	}

	return num;
}
Exemplo n.º 3
0
// Add contacts for penetrating vertexes.
static inline int
findVerts(cpContact **arr, cpPolyShape *poly1, cpPolyShape *poly2, cpVect n, cpFloat dist)
{
	int max = 0;
	int num = 0;
	
	for(int i=0; i<poly1->numVerts; i++){
		cpVect v = poly1->tVerts[i];
		if(cpPolyShapeContainsVertPartial(poly2, v, cpvneg(n)))
			cpContactInit(addContactPoint(arr, &max, &num), v, n, dist, CP_HASH_PAIR(poly1->shape.hashid, i));
	}
	
	for(int i=0; i<poly2->numVerts; i++){
		cpVect v = poly2->tVerts[i];
		if(cpPolyShapeContainsVertPartial(poly1, v, n))
			cpContactInit(addContactPoint(arr, &max, &num), v, n, dist, CP_HASH_PAIR(poly2->shape.hashid, i));
	}
	
	//	if(!num)
	//		addContactPoint(arr, &size, &num, cpContactNew(shape1->body->p, n, dist, 0));

	return num;
}
Exemplo n.º 4
0
// Identify vertexes that have penetrated the segment.
static inline void
findPointsBehindSeg(cpContact **arr, int *max, int *num, cpSegmentShape *seg, cpPolyShape *poly, cpFloat pDist, cpFloat coef) 
{
	cpFloat dta = cpvcross(seg->tn, seg->ta);
	cpFloat dtb = cpvcross(seg->tn, seg->tb);
	cpVect n = cpvmult(seg->tn, coef);
	
	for(int i=0; i<poly->numVerts; i++){
		cpVect v = poly->tVerts[i];
		if(cpvdot(v, n) < cpvdot(seg->tn, seg->ta)*coef + seg->r){
			cpFloat dt = cpvcross(seg->tn, v);
			if(dta >= dt && dt >= dtb){
				cpContactInit(addContactPoint(arr, max, num), v, n, pDist, CP_HASH_PAIR(poly->shape.hashid, i));
			}
		}
	}
}
void btGImpactCollisionAlgorithm::collide_sat_triangles(btCollisionObject * body0,
					  btCollisionObject * body1,
					  btGImpactMeshShapePart * shape0,
					  btGImpactMeshShapePart * shape1,
					  const int * pairs, int pair_count)
{
	btTransform orgtrans0 = body0->getWorldTransform();
	btTransform orgtrans1 = body1->getWorldTransform();

	btPrimitiveTriangle ptri0;
	btPrimitiveTriangle ptri1;
	GIM_TRIANGLE_CONTACT contact_data;

	shape0->lockChildShapes();
	shape1->lockChildShapes();

	const int * pair_pointer = pairs;

	while(pair_count--)
	{

		m_triface0 = *(pair_pointer);
		m_triface1 = *(pair_pointer+1);
		pair_pointer+=2;


		shape0->getPrimitiveTriangle(m_triface0,ptri0);
		shape1->getPrimitiveTriangle(m_triface1,ptri1);

		#ifdef TRI_COLLISION_PROFILING
		bt_begin_gim02_tri_time();
		#endif

		ptri0.applyTransform(orgtrans0);
		ptri1.applyTransform(orgtrans1);


		//build planes
		ptri0.buildTriPlane();
		ptri1.buildTriPlane();
		// test conservative



		if(ptri0.overlap_test_conservative(ptri1))
		{
			if(ptri0.find_triangle_collision_clip_method(ptri1,contact_data))
			{

				int j = contact_data.m_point_count;
				while(j--)
				{

					addContactPoint(body0, body1,
								contact_data.m_points[j],
								contact_data.m_separating_normal,
								-contact_data.m_penetration_depth);
				}
			}
		}

		#ifdef TRI_COLLISION_PROFILING
		bt_end_gim02_tri_time();
		#endif

	}

	shape0->unlockChildShapes();
	shape1->unlockChildShapes();

}
Exemplo n.º 6
0
int dBoxBox2 (const btVector3 p1, const dMatrix3 R1,
		const btVector3 side1, const btVector3 p2,
		const dMatrix3 R2, const btVector3 side2,
		BoxBoxResults *results)
{
	const btScalar fudge_factor = 1.05;
	btVector3 p,pp,normalC;
	normalC[0] = 0.f;
	normalC[1] = 0.f;
	normalC[2] = 0.f;
	const btScalar *normalR = 0;
	btScalar A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33,
			 Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l,normal[3],depth;
	int i,j,invert_normal,code;

	// get vector from centers of box 1 to box 2, relative to box 1
	p[0] = p2[0] - p1[0];
	p[1] = p2[1] - p1[1];
	p[2] = p2[2] - p1[2];
	dMULTIPLY1_331 (pp,R1,p);		// get pp = p relative to body 1

	// get side lengths (already specified as half lengths)
	A[0] = side1[0];
	A[1] = side1[1];
	A[2] = side1[2];
	B[0] = side2[0];
	B[1] = side2[1];
	B[2] = side2[2];

	// Rij is R1'*R2, i.e. the relative rotation between R1 and R2
	R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2);
	R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2);
	R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2);

	Q11 = btFabs(R11); Q12 = btFabs(R12); Q13 = btFabs(R13);
	Q21 = btFabs(R21); Q22 = btFabs(R22); Q23 = btFabs(R23);
	Q31 = btFabs(R31); Q32 = btFabs(R32); Q33 = btFabs(R33);

	// for all 15 possible separating axes:
	//   * see if the axis separates the boxes. if so, return 0.
	//   * find the depth of the penetration along the separating axis (s2)
	//   * if this is the largest depth so far, record it.
	// the normal vector will be set to the separating axis with the smallest
	// depth. note: normalR is set to point to a column of R1 or R2 if that is
	// the smallest depth normal so far. otherwise normalR is 0 and normalC is
	// set to a vector relative to body 1. invert_normal is 1 if the sign of
	// the normal should be flipped.

#define TST(expr1,expr2,norm,cc) \
	s2 = btFabs(expr1) - (expr2); \
	if (s2 > 0) return 0; \
	if (s2 > s) { \
		s = s2; \
		normalR = norm; \
		invert_normal = ((expr1) < 0); \
		code = (cc); \
	}

	s = -dInfinity;
	invert_normal = 0;
	code = 0;

	// separating axis = u1,u2,u3
	TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1);
	TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2);
	TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3);

	// separating axis = v1,v2,v3
	TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4);
	TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5);
	TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6);

	// note: cross product axes need to be scaled when s is computed.
	// normal (n1,n2,n3) is relative to box 1.
#undef TST
#define TST(expr1,expr2,n1,n2,n3,cc) \
	s2 = btFabs(expr1) - (expr2); \
	if (s2 > SIMD_EPSILON) return 0; \
	l = btSqrt((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \
	if (l > SIMD_EPSILON) { \
		s2 /= l; \
		if (s2*fudge_factor > s) { \
			s = s2; \
			normalR = 0; \
			normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \
			invert_normal = ((expr1) < 0); \
			code = (cc); \
		} \
	}

	btScalar fudge2 = 1.0e-5f;

	Q11 += fudge2;
	Q12 += fudge2;
	Q13 += fudge2;

	Q21 += fudge2;
	Q22 += fudge2;
	Q23 += fudge2;

	Q31 += fudge2;
	Q32 += fudge2;
	Q33 += fudge2;

	// separating axis = u1 x (v1,v2,v3)
	TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7);
	TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8);
	TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9);

	// separating axis = u2 x (v1,v2,v3)
	TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10);
	TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11);
	TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12);

	// separating axis = u3 x (v1,v2,v3)
	TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13);
	TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14);
	TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15);

#undef TST

	if (!code) return 0;
	results->code = code;

	// if we get to this point, the boxes interpenetrate. compute the normal
	// in global coordinates.
	if (normalR) {
		normal[0] = normalR[0];
		normal[1] = normalR[4];
		normal[2] = normalR[8];
	}
	else {
		dMULTIPLY0_331 (normal,R1,normalC);
	}
	if (invert_normal) {
		normal[0] = -normal[0];
		normal[1] = -normal[1];
		normal[2] = -normal[2];
	}
	depth = -s;

	// compute contact point(s)

	if (code > 6) {
		// an edge from box 1 touches an edge from box 2.
		// find a point pa on the intersecting edge of box 1
		btVector3 pa;
		btScalar sign;
		for (i=0; i<3; i++) pa[i] = p1[i];
		for (j=0; j<3; j++) {
			sign = (dDOT14(normal,R1+j) > 0) ? 1.0 : -1.0;
			for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j];
		}

		// find a point pb on the intersecting edge of box 2
		btVector3 pb;
		for (i=0; i<3; i++) pb[i] = p2[i];
		for (j=0; j<3; j++) {
			sign = (dDOT14(normal,R2+j) > 0) ? -1.0 : 1.0;
			for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j];
		}

		btScalar alpha,beta;
		btVector3 ua,ub;
		for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4];
		for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4];

		dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta);
		for (i=0; i<3; i++) pa[i] += ua[i]*alpha;
		for (i=0; i<3; i++) pb[i] += ub[i]*beta;

		{
			btVector3 pointInWorld;
			addContactPoint(results,normal,pb,depth);
		}
		return 1;
	}

	// okay, we have a face-something intersection (because the separating
	// axis is perpendicular to a face). define face 'a' to be the reference
	// face (i.e. the normal vector is perpendicular to this) and face 'b' to be
	// the incident face (the closest face of the other box).

	const btScalar *Ra,*Rb,*pa,*pb,*Sa,*Sb;
	if (code <= 3) {
		Ra = R1;
		Rb = R2;
		pa = p1;
		pb = p2;
		Sa = A;
		Sb = B;
	}
	else {
		Ra = R2;
		Rb = R1;
		pa = p2;
		pb = p1;
		Sa = B;
		Sb = A;
	}

	// nr = normal vector of reference face dotted with axes of incident box.
	// anr = absolute values of nr.
	btVector3 normal2,nr,anr;
	if (code <= 3) {
		normal2[0] = normal[0];
		normal2[1] = normal[1];
		normal2[2] = normal[2];
	}
	else {
		normal2[0] = -normal[0];
		normal2[1] = -normal[1];
		normal2[2] = -normal[2];
	}
	dMULTIPLY1_331 (nr,Rb,normal2);
	anr[0] = btFabs (nr[0]);
	anr[1] = btFabs (nr[1]);
	anr[2] = btFabs (nr[2]);

	// find the largest compontent of anr: this corresponds to the normal
	// for the indident face. the other axis numbers of the indicent face
	// are stored in a1,a2.
	int lanr,a1,a2;
	if (anr[1] > anr[0]) {
		if (anr[1] > anr[2]) {
			a1 = 0;
			lanr = 1;
			a2 = 2;
		}
		else {
			a1 = 0;
			a2 = 1;
			lanr = 2;
		}
	}
	else {
		if (anr[0] > anr[2]) {
			lanr = 0;
			a1 = 1;
			a2 = 2;
		}
		else {
			a1 = 0;
			a2 = 1;
			lanr = 2;
		}
	}

	// compute center point of incident face, in reference-face coordinates
	btVector3 center;
	if (nr[lanr] < 0) {
		for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr];
	}
	else {
		for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr];
	}

	// find the normal and non-normal axis numbers of the reference box
	int codeN,code1,code2;
	if (code <= 3) codeN = code-1; else codeN = code-4;
	if (codeN==0) {
		code1 = 1;
		code2 = 2;
	}
	else if (codeN==1) {
		code1 = 0;
		code2 = 2;
	}
	else {
		code1 = 0;
		code2 = 1;
	}

	// find the four corners of the incident face, in reference-face coordinates
	btScalar quad[8];	// 2D coordinate of incident face (x,y pairs)
	btScalar c1,c2,m11,m12,m21,m22;
	c1 = dDOT14 (center,Ra+code1);
	c2 = dDOT14 (center,Ra+code2);
	// optimize this? - we have already computed this data above, but it is not
	// stored in an easy-to-index format. for now it's quicker just to recompute
	// the four dot products.
	m11 = dDOT44 (Ra+code1,Rb+a1);
	m12 = dDOT44 (Ra+code1,Rb+a2);
	m21 = dDOT44 (Ra+code2,Rb+a1);
	m22 = dDOT44 (Ra+code2,Rb+a2);
	{
		btScalar k1 = m11*Sb[a1];
		btScalar k2 = m21*Sb[a1];
		btScalar k3 = m12*Sb[a2];
		btScalar k4 = m22*Sb[a2];
		quad[0] = c1 - k1 - k3;
		quad[1] = c2 - k2 - k4;
		quad[2] = c1 - k1 + k3;
		quad[3] = c2 - k2 + k4;
		quad[4] = c1 + k1 + k3;
		quad[5] = c2 + k2 + k4;
		quad[6] = c1 + k1 - k3;
		quad[7] = c2 + k2 - k4;
	}

	// find the size of the reference face
	btScalar rect[2];
	rect[0] = Sa[code1];
	rect[1] = Sa[code2];

	// intersect the incident and reference faces
	btScalar ret[16];
	int n = intersectRectQuad2 (rect,quad,ret);
	if (n < 1) return 0;		// this should never happen

	// convert the intersection points into reference-face coordinates,
	// and compute the contact position and depth for each point. only keep
	// those points that have a positive (penetrating) depth. delete points in
	// the 'ret' array as necessary so that 'point' and 'ret' correspond.
	btScalar point[3*8];		// penetrating contact points
	btScalar dep[8];			// depths for those points
	btScalar det1 = 1.f/(m11*m22 - m12*m21);
	m11 *= det1;
	m12 *= det1;
	m21 *= det1;
	m22 *= det1;
	int cnum = 0;			// number of penetrating contact points found
	for (j=0; j < n; j++) {
		btScalar k1 =  m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2);
		btScalar k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2);
		for (i=0; i<3; i++) point[cnum*3+i] =
			center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2];
		dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3);
		if (dep[cnum] >= 0) {
			ret[cnum*2] = ret[j*2];
			ret[cnum*2+1] = ret[j*2+1];
			cnum++;
		}
	}
	if (cnum < 1) return 0;	// this should never happen

	// we can't generate more contacts than we actually have
	int maxc = 4;
	if (maxc > cnum) maxc = cnum;
	if (maxc < 1) maxc = 1;

	if (cnum <= maxc)
	{
		if (code<4)
		{
			// we have less contacts than we need, so we use them all
			for (j=0; j < cnum; j++)
			{
				btVector3 pointInWorld;
				for (i=0; i<3; i++)
					pointInWorld[i] = point[j*3+i] + pa[i];
				addContactPoint(results,normal,pointInWorld,dep[j]);
			}
		}
		else
		{
			// we have less contacts than we need, so we use them all
			for (j=0; j < cnum; j++)
			{
				btVector3 pointInWorld;
				for (i=0; i<3; i++)
					pointInWorld[i] = point[j*3+i] + pa[i]-normal[i]*dep[j];
				addContactPoint(results,normal,pointInWorld,dep[j]);
			}
		}
	}
	else {
		// we have more contacts than are wanted, some of them must be culled.
		// find the deepest point, it is always the first contact.
		int i1 = 0;
		btScalar maxdepth = dep[0];
		for (i=1; i<cnum; i++)
		{
			if (dep[i] > maxdepth)
			{
				maxdepth = dep[i];
				i1 = i;
			}
		}

		int iret[8];
		cullPoints2 (cnum,ret,maxc,i1,iret);

		for (j=0; j < maxc; j++)
		{
			btVector3 posInWorld;
			for (i=0; i<3; i++)
				posInWorld[i] = point[iret[j]*3+i] + pa[i];
			if (code<4)
			{
				addContactPoint(results, normal,posInWorld,dep[iret[j]]);
			}
			else
			{
				posInWorld[0] -= normal[0]*dep[iret[j]];
				posInWorld[1] -= normal[1]*dep[iret[j]];
				posInWorld[2] -= normal[2]*dep[iret[j]];
				addContactPoint(results, normal,posInWorld,dep[iret[j]]);
			}
		}
		cnum = maxc;
	}
	return cnum;
}