/*
 *	Measure the time it takes for the logd posting call to make it into
 * the logs. Expect this to be less than double the process wakeup time (2ms).
 */
static void BM_log_delay(benchmark::State& state) {
  pid_t pid = getpid();

  struct logger_list* logger_list =
      android_logger_list_open(LOG_ID_EVENTS, ANDROID_LOG_RDONLY, 0, pid);

  if (!logger_list) {
    fprintf(stderr, "Unable to open events log: %s\n", strerror(errno));
    exit(EXIT_FAILURE);
  }

  signal(SIGALRM, caught_delay);
  alarm(alarm_time);

  while (state.KeepRunning()) {
    log_time ts(CLOCK_REALTIME);

    LOG_FAILURE_RETRY(android_btWriteLog(0, EVENT_TYPE_LONG, &ts, sizeof(ts)));

    for (;;) {
      log_msg log_msg;
      int ret = android_logger_list_read(logger_list, &log_msg);
      alarm(alarm_time);

      if (ret <= 0) {
        state.SkipWithError("android_logger_list_read");
        break;
      }
      if ((log_msg.entry.len != (4 + 1 + 8)) ||
          (log_msg.id() != LOG_ID_EVENTS)) {
        continue;
      }

      char* eventData = log_msg.msg();

      if (!eventData || (eventData[4] != EVENT_TYPE_LONG)) {
        continue;
      }
      log_time tx(eventData + 4 + 1);
      if (ts != tx) {
        if (0xDEADBEEFA55A5AA6ULL == caught_convert(eventData + 4 + 1)) {
          state.SkipWithError("signal");
          break;
        }
        continue;
      }

      break;
    }
  }
  state.PauseTiming();

  signal(SIGALRM, SIG_DFL);
  alarm(0);

  android_logger_list_free(logger_list);
}
Exemplo n.º 2
0
void dvmLogMadviseStats(size_t madvisedSizes[], size_t arrayLen)
{
    unsigned char eventBuf[1 + (1 + sizeof(int)) * 2];
    size_t total, zyg;
    size_t firstHeap, i;
    size_t nHeaps = dvmHeapSourceGetNumHeaps();

    assert(arrayLen >= nHeaps);

    firstHeap = nHeaps > 1 ? 1 : 0;
    total = 0;
    zyg = 0;
    for (i = 0; i < nHeaps; i++) {
        total += madvisedSizes[i];
        if (i >= firstHeap) {
            zyg += madvisedSizes[i];
        }
    }

    /* Build the event data.
     * [ 0: 0] item count (2)
     * [ 1: 1] EVENT_TYPE_INT
     * [ 2: 5] total madvise byte count
     * [ 6: 6] EVENT_TYPE_INT
     * [ 7:10] zygote heap madvise byte count
     */
    unsigned char *c = eventBuf;
    *c++ = 2;
    *c++ = EVENT_TYPE_INT;
    memcpy(c, &total, sizeof(total));
    c += sizeof(total);
    *c++ = EVENT_TYPE_INT;
    memcpy(c, &zyg, sizeof(zyg));
    c += sizeof(zyg);

    (void) android_btWriteLog(EVENT_LOG_TAG_dvm_gc_madvise_info,
            EVENT_TYPE_LIST, eventBuf, sizeof(eventBuf));
}
/*
 *	Measure the time it takes for the logd posting call to make it into
 * the logs. Expect this to be less than double the process wakeup time (2ms).
 */
static void BM_log_delay(int iters) {
    pid_t pid = getpid();

    struct logger_list * logger_list = android_logger_list_open(LOG_ID_EVENTS,
        O_RDONLY, 0, pid);

    if (!logger_list) {
        fprintf(stderr, "Unable to open events log: %s\n", strerror(errno));
        exit(EXIT_FAILURE);
    }

    signal(SIGALRM, caught_delay);
    alarm(alarm_time);

    StartBenchmarkTiming();

    for (int i = 0; i < iters; ++i) {
        log_time ts(CLOCK_REALTIME);

        LOG_FAILURE_RETRY(
            android_btWriteLog(0, EVENT_TYPE_LONG, &ts, sizeof(ts)));

        for (;;) {
            log_msg log_msg;
            int ret = android_logger_list_read(logger_list, &log_msg);
            alarm(alarm_time);

            if (ret <= 0) {
                iters = i;
                break;
            }
            if ((log_msg.entry.len != (4 + 1 + 8))
             || (log_msg.id() != LOG_ID_EVENTS)) {
                continue;
            }

            char* eventData = log_msg.msg();

            if (eventData[4] != EVENT_TYPE_LONG) {
                continue;
            }
            log_time tx(eventData + 4 + 1);
            if (ts != tx) {
                if (0xDEADBEEFA55A5AA6ULL == caught_convert(eventData + 4 + 1)) {
                    iters = i;
                    break;
                }
                continue;
            }

            break;
        }
    }

    signal(SIGALRM, SIG_DFL);
    alarm(0);

    StopBenchmarkTiming();

    android_logger_list_free(logger_list);
}
Exemplo n.º 4
0
static void logContentionEvent(Thread *self, u4 waitMs, u4 samplePercent,
                               const char *ownerFileName, u4 ownerLineNumber)
{
    const StackSaveArea *saveArea;
    const Method *meth;
    u4 relativePc;
    char eventBuffer[174];
    const char *fileName;
    char procName[33];
    char *cp;
    size_t len;
    int fd;

    /* When a thread is being destroyed it is normal that the frame depth is zero */
    if (self->interpSave.curFrame == NULL) {
        return;
    }

    saveArea = SAVEAREA_FROM_FP(self->interpSave.curFrame);
    meth = saveArea->method;
    cp = eventBuffer;

    /* Emit the event list length, 1 byte. */
    *cp++ = 9;

    /* Emit the process name, <= 37 bytes. */
    fd = open("/proc/self/cmdline", O_RDONLY);
    memset(procName, 0, sizeof(procName));
    read(fd, procName, sizeof(procName) - 1);
    close(fd);
    len = strlen(procName);
    cp = logWriteString(cp, procName, len);

    /* Emit the sensitive thread ("main thread") status, 5 bytes. */
    bool isSensitive = false;
    if (gDvm.isSensitiveThreadHook != NULL) {
        isSensitive = gDvm.isSensitiveThreadHook();
    }
    cp = logWriteInt(cp, isSensitive);

    /* Emit self thread name string, <= 37 bytes. */
    std::string selfName = dvmGetThreadName(self);
    cp = logWriteString(cp, selfName.c_str(), selfName.size());

    /* Emit the wait time, 5 bytes. */
    cp = logWriteInt(cp, waitMs);

    /* Emit the source code file name, <= 37 bytes. */
    fileName = dvmGetMethodSourceFile(meth);
    if (fileName == NULL) fileName = "";
    cp = logWriteString(cp, fileName, strlen(fileName));

    /* Emit the source code line number, 5 bytes. */
    relativePc = saveArea->xtra.currentPc - saveArea->method->insns;
    cp = logWriteInt(cp, dvmLineNumFromPC(meth, relativePc));

    /* Emit the lock owner source code file name, <= 37 bytes. */
    if (ownerFileName == NULL) {
        ownerFileName = "";
    } else if (strcmp(fileName, ownerFileName) == 0) {
        /* Common case, so save on log space. */
        ownerFileName = "-";
    }
    cp = logWriteString(cp, ownerFileName, strlen(ownerFileName));

    /* Emit the source code line number, 5 bytes. */
    cp = logWriteInt(cp, ownerLineNumber);

    /* Emit the sample percentage, 5 bytes. */
    cp = logWriteInt(cp, samplePercent);

    assert((size_t)(cp - eventBuffer) <= sizeof(eventBuffer));
    android_btWriteLog(EVENT_LOG_TAG_dvm_lock_sample,
                       EVENT_TYPE_LIST,
                       eventBuffer,
                       (size_t)(cp - eventBuffer));
}
/*
 *	Measure the time it takes for the logd posting call to acquire the
 * timestamp to place into the internal record.  Expect this to be less than
 * 4 syscalls (3us).  This test uses manual injection of timing because it is
 * comparing the timestamp at send, and then picking up the corresponding log
 * end-to-end long path from logd to see what actual timestamp was submitted.
 */
static void BM_log_latency(benchmark::State& state) {
  pid_t pid = getpid();

  struct logger_list* logger_list =
      android_logger_list_open(LOG_ID_EVENTS, ANDROID_LOG_RDONLY, 0, pid);

  if (!logger_list) {
    fprintf(stderr, "Unable to open events log: %s\n", strerror(errno));
    exit(EXIT_FAILURE);
  }

  signal(SIGALRM, caught_latency);
  alarm(alarm_time);

  for (size_t j = 0; state.KeepRunning() && j < 10 * state.iterations(); ++j) {
  retry:  // We allow transitory errors (logd overloaded) to be retried.
    log_time ts;
    LOG_FAILURE_RETRY((ts = log_time(CLOCK_REALTIME),
                       android_btWriteLog(0, EVENT_TYPE_LONG, &ts, sizeof(ts))));

    for (;;) {
      log_msg log_msg;
      int ret = android_logger_list_read(logger_list, &log_msg);
      alarm(alarm_time);

      if (ret <= 0) {
        state.SkipWithError("android_logger_list_read");
        break;
      }
      if ((log_msg.entry.len != (4 + 1 + 8)) ||
          (log_msg.id() != LOG_ID_EVENTS)) {
        continue;
      }

      char* eventData = log_msg.msg();

      if (!eventData || (eventData[4] != EVENT_TYPE_LONG)) {
        continue;
      }
      log_time tx(eventData + 4 + 1);
      if (ts != tx) {
        if (0xDEADBEEFA55A5AA5ULL == caught_convert(eventData + 4 + 1)) {
          state.SkipWithError("signal");
          break;
        }
        continue;
      }

      uint64_t start = ts.nsec();
      uint64_t end = log_msg.nsec();
      if (end < start) goto retry;
      state.SetIterationTime((end - start) / (double)NS_PER_SEC);
      break;
    }
  }

  signal(SIGALRM, SIG_DFL);
  alarm(0);

  android_logger_list_free(logger_list);
}
/*
 * In class android.util.EventLog:
 *  static native int writeEvent(long tag, long value)
 */
static jint android_util_EventLog_writeEvent_Long(JNIEnv* env, jobject clazz,
                                                  jint tag, jlong value)
{
    return android_btWriteLog(tag, EVENT_TYPE_LONG, &value, sizeof(value));
}
/*
 * In class android.util.EventLog:
 *  static native int writeEvent(int tag, int value)
 */
static jint android_util_EventLog_writeEvent_Integer(JNIEnv* env, jobject clazz,
                                                     jint tag, jint value)
{
    return android_btWriteLog(tag, EVENT_TYPE_INT, &value, sizeof(value));
}
Exemplo n.º 8
0
void dvmLogGcStats(size_t numFreed, size_t sizeFreed, size_t gcTimeMs)
{
    size_t perHeapActualSize[HEAP_SOURCE_MAX_HEAP_COUNT],
           perHeapAllowedSize[HEAP_SOURCE_MAX_HEAP_COUNT],
           perHeapNumAllocated[HEAP_SOURCE_MAX_HEAP_COUNT],
           perHeapSizeAllocated[HEAP_SOURCE_MAX_HEAP_COUNT];
    unsigned char eventBuf[1 + (1 + sizeof(long long)) * 4];
    size_t actualSize, allowedSize, numAllocated, sizeAllocated;
    size_t softLimit = dvmHeapSourceGetIdealFootprint();
    size_t nHeaps = dvmHeapSourceGetNumHeaps();

    /* Enough to quiet down gcc for unitialized variable check */
    perHeapActualSize[0] = perHeapAllowedSize[0] = perHeapNumAllocated[0] =
                           perHeapSizeAllocated[0] = 0;
    actualSize = dvmHeapSourceGetValue(HS_FOOTPRINT, perHeapActualSize,
                                       HEAP_SOURCE_MAX_HEAP_COUNT);
    allowedSize = dvmHeapSourceGetValue(HS_ALLOWED_FOOTPRINT,
                      perHeapAllowedSize, HEAP_SOURCE_MAX_HEAP_COUNT);
    numAllocated = dvmHeapSourceGetValue(HS_OBJECTS_ALLOCATED,
                      perHeapNumAllocated, HEAP_SOURCE_MAX_HEAP_COUNT);
    sizeAllocated = dvmHeapSourceGetValue(HS_BYTES_ALLOCATED,
                      perHeapSizeAllocated, HEAP_SOURCE_MAX_HEAP_COUNT);

    /*
     * Construct the the first 64-bit value to write to the log.
     * Global information:
     *
     * [63   ] Must be zero
     * [62-24] ASCII process identifier
     * [23-12] GC time in ms
     * [11- 0] Bytes freed
     *
     */
    long long event0;
    event0 = 0LL << 63 |
            (long long)intToFloat12(gcTimeMs) << 12 |
            (long long)intToFloat12(sizeFreed);
    insertProcessName(&event0);

    /*
     * Aggregated heap stats:
     *
     * [63-62] 10
     * [61-60] Reserved; must be zero
     * [59-48] Objects freed
     * [47-36] Actual size (current footprint)
     * [35-24] Allowed size (current hard max)
     * [23-12] Objects allocated
     * [11- 0] Bytes allocated
     */
    long long event1;
    event1 = 2LL << 62 |
            (long long)intToFloat12(numFreed) << 48 |
            (long long)intToFloat12(actualSize) << 36 |
            (long long)intToFloat12(allowedSize) << 24 |
            (long long)intToFloat12(numAllocated) << 12 |
            (long long)intToFloat12(sizeAllocated);

    /*
     * Report the current state of the zygote heap(s).
     *
     * The active heap is always heap[0].  We can be in one of three states
     * at present:
     *
     *  (1) Still in the zygote.  Zygote using heap[0].
     *  (2) In the zygote, when the first child is started.  We created a
     *      new heap just before the first fork() call, so the original
     *      "zygote heap" is now heap[1], and we have a small heap[0] for
     *      anything we do from here on.
     *  (3) In an app process.  The app gets a new heap[0], and can also
     *      see the two zygote heaps [1] and [2] (probably unwise to
     *      assume any specific ordering).
     *
     * So if nHeaps == 1, we want the stats from heap[0]; else we want
     * the sum of the values from heap[1] to heap[nHeaps-1].
     *
     *
     * Zygote heap stats (except for the soft limit, which belongs to the
     * active heap):
     *
     * [63-62] 11
     * [61-60] Reserved; must be zero
     * [59-48] Soft Limit (for the active heap)
     * [47-36] Actual size (current footprint)
     * [35-24] Allowed size (current hard max)
     * [23-12] Objects allocated
     * [11- 0] Bytes allocated
     */
    long long event2;
    size_t zActualSize, zAllowedSize, zNumAllocated, zSizeAllocated;
    int firstHeap = (nHeaps == 1) ? 0 : 1;
    size_t hh;

    zActualSize = zAllowedSize = zNumAllocated = zSizeAllocated = 0;
    for (hh = firstHeap; hh < nHeaps; hh++) {
        zActualSize += perHeapActualSize[hh];
        zAllowedSize += perHeapAllowedSize[hh];
        zNumAllocated += perHeapNumAllocated[hh];
        zSizeAllocated += perHeapSizeAllocated[hh];
    }
    event2 = 3LL << 62 |
            (long long)intToFloat12(softLimit) << 48 |
            (long long)intToFloat12(zActualSize) << 36 |
            (long long)intToFloat12(zAllowedSize) << 24 |
            (long long)intToFloat12(zNumAllocated) << 12 |
            (long long)intToFloat12(zSizeAllocated);

    /*
     * Report the current external allocation stats and the native heap
     * summary.
     *
     * [63-48] Reserved; must be zero (TODO: put new data in these slots)
     * [47-36] dlmalloc_footprint
     * [35-24] mallinfo: total allocated space
     * [23-12] External byte limit
     * [11- 0] External bytes allocated
     */
    long long event3;
    size_t externalLimit, externalBytesAllocated;
    size_t uordblks, footprint;

#if 0
    /*
     * This adds 2-5msec to the GC cost on a DVT, or about 2-3% of the cost
     * of a GC, so it's not horribly expensive but it's not free either.
     */
    extern size_t dlmalloc_footprint(void);
    struct mallinfo mi;
    //u8 start, end;

    //start = dvmGetRelativeTimeNsec();
    mi = mallinfo();
    uordblks = mi.uordblks;
    footprint = dlmalloc_footprint();
    //end = dvmGetRelativeTimeNsec();
    //LOGD("mallinfo+footprint took %dusec; used=%zd footprint=%zd\n",
    //    (int)((end - start) / 1000), mi.uordblks, footprint);
#else
    uordblks = footprint = 0;
#endif

    externalLimit =
            dvmHeapSourceGetValue(HS_EXTERNAL_LIMIT, NULL, 0);
    externalBytesAllocated =
            dvmHeapSourceGetValue(HS_EXTERNAL_BYTES_ALLOCATED, NULL, 0);
    event3 =
            (long long)intToFloat12(footprint) << 36 |
            (long long)intToFloat12(uordblks) << 24 |
            (long long)intToFloat12(externalLimit) << 12 |
            (long long)intToFloat12(externalBytesAllocated);

    /* Build the event data.
     * [ 0: 0] item count (4)
     * [ 1: 1] EVENT_TYPE_LONG
     * [ 2: 9] event0
     * [10:10] EVENT_TYPE_LONG
     * [11:18] event1
     * [19:19] EVENT_TYPE_LONG
     * [20:27] event2
     * [28:28] EVENT_TYPE_LONG
     * [29:36] event2
     */
    unsigned char *c = eventBuf;
    *c++ = 4;
    *c++ = EVENT_TYPE_LONG;
    memcpy(c, &event0, sizeof(event0));
    c += sizeof(event0);
    *c++ = EVENT_TYPE_LONG;
    memcpy(c, &event1, sizeof(event1));
    c += sizeof(event1);
    *c++ = EVENT_TYPE_LONG;
    memcpy(c, &event2, sizeof(event2));
    c += sizeof(event2);
    *c++ = EVENT_TYPE_LONG;
    memcpy(c, &event3, sizeof(event3));

    (void) android_btWriteLog(EVENT_LOG_TAG_dvm_gc_info, EVENT_TYPE_LIST,
            eventBuf, sizeof(eventBuf));
}