void _arb_poly_log1p_series(arb_ptr res, arb_srcptr f, slong flen, slong n, slong prec) { arb_t a; flen = FLINT_MIN(flen, n); arb_init(a); arb_log1p(a, f, prec); if (flen == 1) { _arb_vec_zero(res + 1, n - 1); } else if (n == 2) { arb_add_ui(res, f + 0, 1, prec); arb_div(res + 1, f + 1, res + 0, prec); } else if (_arb_vec_is_zero(f + 1, flen - 2)) /* f = a + bx^d */ { slong i, j, d = flen - 1; arb_add_ui(res, f + 0, 1, prec); for (i = 1, j = d; j < n; j += d, i++) { if (i == 1) arb_div(res + j, f + d, res, prec); else arb_mul(res + j, res + j - d, res + d, prec); _arb_vec_zero(res + j - d + 1, flen - 2); } _arb_vec_zero(res + j - d + 1, n - (j - d + 1)); for (i = 2, j = 2 * d; j < n; j += d, i++) arb_div_si(res + j, res + j, i % 2 ? i : -i, prec); } else { arb_ptr f_diff, f_inv; slong alloc; alloc = n + flen; f_inv = _arb_vec_init(alloc); f_diff = f_inv + n; arb_add_ui(f_diff, f, 1, prec); _arb_vec_set(f_diff + 1, f + 1, flen - 1); _arb_poly_inv_series(f_inv, f_diff, flen, n, prec); _arb_poly_derivative(f_diff, f, flen, prec); _arb_poly_mullow(res, f_inv, n - 1, f_diff, flen - 1, n - 1, prec); _arb_poly_integral(res, res, n, prec); _arb_vec_clear(f_inv, alloc); } arb_swap(res, a); arb_clear(a); }
static void bound_I(arb_ptr I, const arb_t A, const arb_t B, const arb_t C, slong len, slong wp) { slong k; arb_t D, Dk, L, T, Bm1; arb_init(D); arb_init(Dk); arb_init(Bm1); arb_init(T); arb_init(L); arb_sub_ui(Bm1, B, 1, wp); arb_one(L); /* T = 1 / (A^Bm1 * Bm1) */ arb_inv(T, A, wp); arb_pow(T, T, Bm1, wp); arb_div(T, T, Bm1, wp); if (len > 1) { arb_log(D, A, wp); arb_add(D, D, C, wp); arb_mul(D, D, Bm1, wp); arb_set(Dk, D); } for (k = 0; k < len; k++) { if (k > 0) { arb_mul_ui(L, L, k, wp); arb_add(L, L, Dk, wp); arb_mul(Dk, Dk, D, wp); } arb_mul(I + k, L, T, wp); arb_div(T, T, Bm1, wp); } arb_clear(D); arb_clear(Dk); arb_clear(Bm1); arb_clear(T); arb_clear(L); }
int arb_mat_lu(long * P, arb_mat_t LU, const arb_mat_t A, long prec) { arb_t d, e; arb_ptr * a; long i, j, m, n, r, row, col; int result; m = arb_mat_nrows(A); n = arb_mat_ncols(A); result = 1; if (m == 0 || n == 0) return result; arb_mat_set(LU, A); a = LU->rows; row = col = 0; for (i = 0; i < m; i++) P[i] = i; arb_init(d); arb_init(e); while (row < m && col < n) { r = arb_mat_find_pivot_partial(LU, row, m, col); if (r == -1) { result = 0; break; } else if (r != row) arb_mat_swap_rows(LU, P, row, r); arb_set(d, a[row] + col); for (j = row + 1; j < m; j++) { arb_div(e, a[j] + col, d, prec); arb_neg(e, e); _arb_vec_scalar_addmul(a[j] + col, a[row] + col, n - col, e, prec); arb_zero(a[j] + col); arb_neg(a[j] + row, e); } row++; col++; } arb_clear(d); arb_clear(e); return result; }
void arb_sech(arb_t res, const arb_t x, slong prec) { if (arf_cmpabs_2exp_si(arb_midref(x), 0) > 0) { arb_t t; arb_init(t); if (arf_sgn(arb_midref(x)) > 0) { arb_neg(t, x); arb_exp(t, t, prec + 4); } else { arb_exp(t, x, prec + 4); } arb_mul(res, t, t, prec + 4); arb_add_ui(res, res, 1, prec + 4); arb_div(res, t, res, prec); arb_mul_2exp_si(res, res, 1); arb_clear(t); } else { arb_cosh(res, x, prec + 4); arb_inv(res, res, prec); } }
void _arb_poly_sqrt_series(arb_ptr g, arb_srcptr h, long hlen, long len, long prec) { hlen = FLINT_MIN(hlen, len); if (hlen == 1) { arb_sqrt(g, h, prec); _arb_vec_zero(g + 1, len - 1); } else if (len == 2) { arb_sqrt(g, h, prec); arb_div(g + 1, h + 1, h, prec); arb_mul(g + 1, g + 1, g, prec); arb_mul_2exp_si(g + 1, g + 1, -1); } else { arb_ptr t; t = _arb_vec_init(len); _arb_poly_rsqrt_series(t, h, hlen, len, prec); _arb_poly_mullow(g, t, len, h, hlen, len, prec); _arb_vec_clear(t, len); } }
int main() { slong iter; flint_rand_t state; flint_printf("rgamma...."); fflush(stdout); flint_randinit(state); for (iter = 0; iter < 3000 * arb_test_multiplier(); iter++) { arb_t a, b, c; slong prec1, prec2; prec1 = 2 + n_randint(state, 1000); prec2 = prec1 + 30; arb_init(a); arb_init(b); arb_init(c); arb_randtest_precise(a, state, 1 + n_randint(state, 1000), 3); arb_rgamma(b, a, prec1); arb_rgamma(c, a, prec2); if (!arb_overlaps(b, c)) { flint_printf("FAIL: overlap\n\n"); flint_printf("a = "); arb_print(a); flint_printf("\n\n"); flint_printf("b = "); arb_print(b); flint_printf("\n\n"); flint_printf("c = "); arb_print(c); flint_printf("\n\n"); abort(); } /* check 1/gamma(z+1) = 1/gamma(z)/z */ arb_div(b, b, a, prec1); arb_add_ui(c, a, 1, prec1); arb_rgamma(c, c, prec1); if (!arb_overlaps(b, c)) { flint_printf("FAIL: functional equation\n\n"); flint_printf("a = "); arb_print(a); flint_printf("\n\n"); flint_printf("b = "); arb_print(b); flint_printf("\n\n"); flint_printf("c = "); arb_print(c); flint_printf("\n\n"); abort(); } arb_clear(a); arb_clear(b); arb_clear(c); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
void arb_rising_fmpq_ui(arb_t y, const fmpq_t x, ulong n, long prec) { if (n == 0) { arb_one(y); } else if (n == 1) { arb_set_fmpq(y, x, prec); } else { long wp; wp = ARF_PREC_ADD(prec, FLINT_BIT_COUNT(n)); bsplit(y, fmpq_numref(x), fmpq_denref(x), 0, n, wp); if (fmpz_is_one(fmpq_denref(x))) { arb_set_round(y, y, prec); } else { arb_t t; arb_init(t); arb_set_fmpz(t, fmpq_denref(x)); arb_pow_ui(t, t, n, wp); arb_div(y, y, t, prec); arb_clear(t); } } }
static void _interpolate_newton(arb_ptr ys, arb_srcptr xs, long n, long prec) { arb_t p, q, t; long i, j; arb_init(p); arb_init(q); arb_init(t); for (i = 1; i < n; i++) { arb_set(t, ys + i - 1); for (j = i; j < n; j++) { arb_sub(p, ys + j, t, prec); arb_sub(q, xs + j, xs + j - i, prec); arb_set(t, ys + j); arb_div(ys + j, p, q, prec); } } arb_clear(p); arb_clear(q); arb_clear(t); }
void nd_accum_accumulate(nd_accum_t a, int *coords, arb_struct *value, slong prec) { int axis_idx; int offset, coord, stride; nd_axis_struct *axis; arb_struct *p; arb_t x; arb_init(x); arb_set(x, value); offset = 0; for (axis_idx = 0; axis_idx < a->ndim; axis_idx++) { axis = a->axes + axis_idx; coord = coords[axis_idx]; stride = a->strides[axis_idx]; /* flint_printf("debug:\n"); flint_printf("ndim=%wd axis=%d coord=%d\n", a->ndim, axis_idx, coord); flint_printf("strides:\n"); { int j; for (j = 0; j < a->ndim; j++) { flint_printf("%d : %d\n", j, a->strides[j]); } } */ if (axis->agg_weights) { arb_mul(x, x, axis->agg_weights + coord, prec); /* todo: delay this division */ arb_div(x, x, axis->agg_weight_divisor, prec); } else { offset += coord * stride; } } if (offset < 0) { fprintf(stderr, "internal error: negative offset\n"); abort(); } if (offset >= a->size) { fprintf(stderr, "internal error: offset=%d >= size=%d\n", offset, a->size); abort(); } p = a->data + offset; arb_add(p, p, x, prec); arb_clear(x); }
void arb_tan(arb_t y, const arb_t x, long prec) { arb_t u; arb_init(u); arb_sin_cos(y, u, x, prec + 4); arb_div(y, y, u, prec); arb_clear(u); }
void arb_ui_div(arb_t z, ulong x, const arb_t y, long prec) { arb_t t; arb_init(t); arb_set_ui(t, x); arb_div(z, t, y, prec); arb_clear(t); }
void arb_twobytwo_diag(arb_t u1, arb_t u2, const arb_t a, const arb_t b, const arb_t d, slong prec) { // Compute the orthogonal matrix that diagonalizes // // A = [a b] // [b d] // // This matrix will have the form // // U = [cos x , -sin x] // [sin x, cos x] // // where the diagonal matrix is U^t A U. // We set u1 = cos x, u2 = -sin x. if(arb_contains_zero(b)) { // this is not quite right (doesn't set error intervals) arb_set_ui(u1, 1); arb_set_ui(u2, 0); return; } arb_t x; arb_init(x); arb_mul(u1, b, b, prec); // u1 = b^2 arb_sub(u2, a, d, prec); // u2 = a - d arb_mul_2exp_si(u2, u2, -1); // u2 = (a - d)/2 arb_mul(u2, u2, u2, prec); // u2 = ( (a - d)/2 )^2 arb_add(u1, u1, u2, prec); // u1 = b^2 + ( (a-d)/2 )^2 arb_sqrt(u1, u1, prec); // u1 = sqrt(above) arb_mul_2exp_si(u1, u1, 1); // u1 = 2 (sqrt (above) ) arb_add(u1, u1, d, prec); // u1 += d arb_sub(u1, u1, a, prec); // u1 -= a arb_mul_2exp_si(u1, u1, -1); // u1 = (d - a)/2 + sqrt(b^2 + ( (a-d)/2 )^2) arb_mul(x, u1, u1, prec); arb_addmul(x, b, b, prec); // x = u1^2 + b^2 arb_sqrt(x, x, prec); // x = sqrt(u1^2 + b^2) arb_div(u2, u1, x, prec); arb_div(u1, b, x, prec); arb_neg(u1, u1); arb_clear(x); }
void arb_div_2expm1_ui(arb_t y, const arb_t x, ulong n, long prec) { if (n < FLINT_BITS) { arb_div_ui(y, x, (1UL << n) - 1, prec); } else if (n < 1024 + prec / 32 || n > LONG_MAX / 4) { arb_t t; fmpz_t e; arb_init(t); fmpz_init_set_ui(e, n); arb_one(t); arb_mul_2exp_fmpz(t, t, e); arb_sub_ui(t, t, 1, prec); arb_div(y, x, t, prec); arb_clear(t); fmpz_clear(e); } else { arb_t s, t; long i, b; arb_init(s); arb_init(t); /* x / (2^n - 1) = sum_{k>=1} x * 2^(-k*n)*/ arb_mul_2exp_si(s, x, -n); arb_set(t, s); b = 1; for (i = 2; i <= prec / n + 1; i++) { arb_mul_2exp_si(t, t, -n); arb_add(s, s, t, prec); b = i; } /* error bound: sum_{k>b} x * 2^(-k*n) <= x * 2^(-b*n - (n-1)) */ arb_mul_2exp_si(t, x, -b*n - (n-1)); arb_abs(t, t); arb_add_error(s, t); arb_set(y, s); arb_clear(s); arb_clear(t); } }
/* 0.5*(B/AN)^2 + |B|/AN */ static void bound_C(arb_t C, const arb_t AN, const arb_t B, slong wp) { arb_t t; arb_init(t); arb_abs(t, B); arb_div(t, t, AN, wp); arb_mul_2exp_si(C, t, -1); arb_add_ui(C, C, 1, wp); arb_mul(C, C, t, wp); arb_clear(t); }
void _arb_sinc_direct(arb_t z, const arb_t x, slong prec) { /* z = sin(x) / x */ slong wp; arb_t y; wp = prec + 2; arb_init(y); arb_sin(y, x, wp); arb_div(z, y, x, prec); arb_clear(y); }
void _arb_poly_div_series(arb_ptr Q, arb_srcptr A, long Alen, arb_srcptr B, long Blen, long n, long prec) { Alen = FLINT_MIN(Alen, n); Blen = FLINT_MIN(Blen, n); if (Blen == 1) { _arb_vec_scalar_div(Q, A, Alen, B, prec); _arb_vec_zero(Q + Alen, n - Alen); } else if (n == 2) { if (Alen == 1) { arb_div(Q, A, B, prec); arb_div(Q + 1, Q, B, prec); arb_mul(Q + 1, Q + 1, B + 1, prec); arb_neg(Q + 1, Q + 1); } else { arb_div(Q, A, B, prec); arb_mul(Q + 1, Q, B + 1, prec); arb_sub(Q + 1, A + 1, Q + 1, prec); arb_div(Q + 1, Q + 1, B, prec); } } else { arb_ptr Binv; Binv = _arb_vec_init(n); _arb_poly_inv_series(Binv, B, Blen, n, prec); _arb_poly_mullow(Q, Binv, n, A, Alen, n, prec); _arb_vec_clear(Binv, n); } }
void arb_mat_solve_cho_precomp(arb_mat_t X, const arb_mat_t L, const arb_mat_t B, slong prec) { slong i, j, c, n, m; n = arb_mat_nrows(X); m = arb_mat_ncols(X); arb_mat_set(X, B); for (c = 0; c < m; c++) { /* solve Ly = b */ for (i = 0; i < n; i++) { for (j = 0; j < i; j++) { arb_submul(arb_mat_entry(X, i, c), arb_mat_entry(L, i, j), arb_mat_entry(X, j, c), prec); } arb_div(arb_mat_entry(X, i, c), arb_mat_entry(X, i, c), arb_mat_entry(L, i, i), prec); } /* solve Ux = y */ for (i = n - 1; i >= 0; i--) { for (j = i + 1; j < n; j++) { arb_submul(arb_mat_entry(X, i, c), arb_mat_entry(L, j, i), arb_mat_entry(X, j, c), prec); } arb_div(arb_mat_entry(X, i, c), arb_mat_entry(X, i, c), arb_mat_entry(L, i, i), prec); } } }
int arb_calc_newton_step(arb_t xnew, arb_calc_func_t func, void * param, const arb_t x, const arb_t conv_region, const arf_t conv_factor, slong prec) { mag_t err, v; arb_t t; arb_struct u[2]; int result; mag_init(err); mag_init(v); arb_init(t); arb_init(u + 0); arb_init(u + 1); mag_mul(err, arb_radref(x), arb_radref(x)); arf_get_mag(v, conv_factor); mag_mul(err, err, v); arf_set(arb_midref(t), arb_midref(x)); mag_zero(arb_radref(t)); func(u, t, param, 2, prec); arb_div(u, u, u + 1, prec); arb_sub(u, t, u, prec); mag_add(arb_radref(u), arb_radref(u), err); if (arb_contains(conv_region, u) && (mag_cmp(arb_radref(u), arb_radref(x)) < 0)) { arb_swap(xnew, u); result = ARB_CALC_SUCCESS; } else { arb_set(xnew, x); result = ARB_CALC_NO_CONVERGENCE; } arb_clear(t); arb_clear(u); arb_clear(u + 1); mag_clear(err); mag_clear(v); return result; }
int _arb_poly_newton_step(arb_t xnew, arb_srcptr poly, long len, const arb_t x, const arb_t convergence_interval, const arf_t convergence_factor, long prec) { arf_t err; arb_t t, u, v; int result; arf_init(err); arb_init(t); arb_init(u); arb_init(v); arf_set_mag(err, arb_radref(x)); arf_mul(err, err, err, MAG_BITS, ARF_RND_UP); arf_mul(err, err, convergence_factor, MAG_BITS, ARF_RND_UP); arf_set(arb_midref(t), arb_midref(x)); mag_zero(arb_radref(t)); _arb_poly_evaluate2(u, v, poly, len, t, prec); arb_div(u, u, v, prec); arb_sub(u, t, u, prec); arb_add_error_arf(u, err); if (arb_contains(convergence_interval, u) && (mag_cmp(arb_radref(u), arb_radref(x)) < 0)) { arb_swap(xnew, u); result = 1; } else { arb_set(xnew, x); result = 0; } arb_clear(t); arb_clear(u); arb_clear(v); arf_clear(err); return result; }
void arb_mat_cholesky(arb_mat_t out, const arb_mat_t in, slong prec) { int nrows = arb_mat_nrows(in); for(int j = 0; j < nrows; j++) { for(int i = j; i < nrows; i++) { arb_set(arb_mat_entry(out, i, j), arb_mat_entry(in, i, j)); for(int k = 0; k < j; k++) { arb_submul(arb_mat_entry(out, i, j), arb_mat_entry(out, i, k), arb_mat_entry(out, j, k), prec); } if(i == j) { arb_sqrt(arb_mat_entry(out, i, j), arb_mat_entry(out, i, j), prec); } else { arb_div(arb_mat_entry(out, i, j), arb_mat_entry(out, i, j), arb_mat_entry(out, j, j), prec); } } } }
void arb_bernoulli_fmpz(arb_t res, const fmpz_t n, slong prec) { if (fmpz_cmp_ui(n, UWORD_MAX) <= 0) { if (fmpz_sgn(n) >= 0) arb_bernoulli_ui(res, fmpz_get_ui(n), prec); else arb_zero(res); } else if (fmpz_is_odd(n)) { arb_zero(res); } else { arb_t t; slong wp; arb_init(t); wp = prec + 2 * fmpz_bits(n); /* zeta(n) ~= 1 */ arf_one(arb_midref(res)); mag_one(arb_radref(res)); mag_mul_2exp_si(arb_radref(res), arb_radref(res), WORD_MIN); /* |B_n| = 2 * n! / (2*pi)^n * zeta(n) */ arb_gamma_fmpz(t, n, wp); arb_mul_fmpz(t, t, n, wp); arb_mul(res, res, t, wp); arb_const_pi(t, wp); arb_mul_2exp_si(t, t, 1); arb_pow_fmpz(t, t, n, wp); arb_div(res, res, t, prec); arb_mul_2exp_si(res, res, 1); if (fmpz_fdiv_ui(n, 4) == 0) arb_neg(res, res); arb_clear(t); } }
void arb_zeta_ui_borwein_bsplit(arb_t x, ulong s, slong prec) { zeta_bsplit_t sum; mag_t err; slong wp, n; /* zeta(0) = -1/2 */ if (s == 0) { arb_set_si(x, -1); arb_mul_2exp_si(x, x, -1); return; } if (s == 1) { flint_printf("zeta_ui_borwein_bsplit: zeta(1)"); abort(); } n = prec / ERROR_B + 2; wp = prec + 30; zeta_bsplit_init(sum); zeta_bsplit(sum, 0, n + 1, n, s, 0, wp); /* A/Q3 - B/Q3 / (C/Q1) = (A*C - B*Q1) / (Q3*C) */ arb_mul(sum->A, sum->A, sum->C, wp); arb_mul(sum->B, sum->B, sum->Q1, wp); arb_sub(sum->A, sum->A, sum->B, wp); arb_mul(sum->Q3, sum->Q3, sum->C, wp); arb_div(sum->C, sum->A, sum->Q3, wp); mag_init(err); mag_borwein_error(err, n); mag_add(arb_radref(sum->C), arb_radref(sum->C), err); mag_clear(err); /* convert from eta(s) to zeta(s) */ arb_div_2expm1_ui(x, sum->C, s - 1, wp); arb_mul_2exp_si(x, x, s - 1); zeta_bsplit_clear(sum); }
void arb_fac2_ui(arb_t res, ulong n, long prec) { if (n % 2 == 0) { arb_fac_ui(res, n / 2, prec); arb_mul_2exp_si(res, res, n / 2); } else { arb_t t; arb_init(t); arb_fac2_ui(t, n - 1, prec + 5); arb_fac_ui(res, n, prec + 5); arb_div(res, res, t, prec); arb_clear(t); } }
static void bound_K(arb_t C, const arb_t AN, const arb_t B, const arb_t T, slong wp) { if (arb_is_zero(B) || arb_is_zero(T)) { arb_one(C); } else { arb_div(C, B, AN, wp); /* TODO: atan is dumb, should also bound by pi/2 */ arb_atan(C, C, wp); arb_mul(C, C, T, wp); if (arb_is_nonpositive(C)) arb_one(C); else arb_exp(C, C, wp); } }
void _arb_poly_borel_transform(arb_ptr res, arb_srcptr poly, long len, long prec) { long i; arb_t t; arb_init(t); arb_one(t); for (i = 0; i < len; i++) { if (i > 1) arb_mul_ui(t, t, i, prec); arb_div(res + i, poly + i, t, prec); } arb_clear(t); }
void arb_calc_newton_conv_factor(arf_t conv_factor, arb_calc_func_t func, void * param, const arb_t conv_region, long prec) { arb_struct t[3]; arb_init(t); arb_init(t + 1); arb_init(t + 2); func(t, conv_region, param, 3, prec); arb_div(t, t + 2, t + 1, prec); arb_mul_2exp_si(t, t, -1); arb_get_abs_ubound_arf(conv_factor, t, prec); arb_clear(t); arb_clear(t + 1); arb_clear(t + 2); }
void arb_const_e_eval(arb_t s, slong prec) { hypgeom_t series; arb_t t; arb_init(t); hypgeom_init(series); fmpz_poly_set_str(series->A, "1 1"); fmpz_poly_set_str(series->B, "1 1"); fmpz_poly_set_str(series->P, "1 1"); fmpz_poly_set_str(series->Q, "2 0 1"); prec += FLINT_CLOG2(prec); arb_hypgeom_infsum(s, t, series, prec, prec); arb_div(s, s, t, prec); hypgeom_clear(series); arb_clear(t); }
void arb_const_catalan_eval(arb_t s, slong prec) { hypgeom_t series; arb_t t; arb_init(t); hypgeom_init(series); fmpz_poly_set_str(series->A, "3 19 56 40"); fmpz_poly_set_str(series->B, "1 1"); fmpz_poly_set_str(series->P, "5 0 0 0 32 -64"); fmpz_poly_set_str(series->Q, "5 9 96 352 512 256"); prec += FLINT_CLOG2(prec); arb_hypgeom_infsum(s, t, series, prec, prec); arb_mul_ui(t, t, 18, prec); arb_div(s, s, t, prec); hypgeom_clear(series); arb_clear(t); }
void arb_atanh(arb_t z, const arb_t x, slong prec) { if (arb_is_zero(x)) { arb_zero(z); } else { arb_t t; arb_init(t); arb_sub_ui(t, x, 1, prec + 4); arb_div(t, x, t, prec + 4); arb_mul_2exp_si(t, t, 1); arb_neg(t, t); arb_log1p(z, t, prec); arb_mul_2exp_si(z, z, -1); arb_clear(t); } }
void _arb_poly_inv_series(arb_ptr Qinv, arb_srcptr Q, slong Qlen, slong len, slong prec) { arb_inv(Qinv, Q, prec); if (Qlen == 1) { _arb_vec_zero(Qinv + 1, len - 1); } else if (len == 2) { arb_div(Qinv + 1, Qinv, Q, prec); arb_mul(Qinv + 1, Qinv + 1, Q + 1, prec); arb_neg(Qinv + 1, Qinv + 1); } else { slong Qnlen, Wlen, W2len; arb_ptr W; W = _arb_vec_init(len); NEWTON_INIT(1, len) NEWTON_LOOP(m, n) Qnlen = FLINT_MIN(Qlen, n); Wlen = FLINT_MIN(Qnlen + m - 1, n); W2len = Wlen - m; MULLOW(W, Q, Qnlen, Qinv, m, Wlen, prec); MULLOW(Qinv + m, Qinv, m, W + m, W2len, n - m, prec); _arb_vec_neg(Qinv + m, Qinv + m, n - m); NEWTON_END_LOOP NEWTON_END _arb_vec_clear(W, len); } }